aboutsummaryrefslogtreecommitdiff
AgeCommit message (Collapse)AuthorFilesLines
2016-07-26khugepaged: move up_read(mmap_sem) out of khugepaged_alloc_page()Kirill A. Shutemov1-15/+10
Both variants of khugepaged_alloc_page() do up_read(&mm->mmap_sem) first: no point keep it inside the function. Link: http://lkml.kernel.org/r/1466021202-61880-33-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: extract khugepaged from mm/huge_memory.cKirill A. Shutemov5-1485/+1515
khugepaged implementation grew to the point when it deserve separate file in source. Let's move it to mm/khugepaged.c. Link: http://lkml.kernel.org/r/1466021202-61880-32-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappingsKirill A. Shutemov2-17/+22
Let's wire up existing madvise() hugepage hints for file mappings. MADV_HUGEPAGE advise shmem to allocate huge page on page fault in the VMA. It only has effect if the filesystem is mounted with huge=advise or huge=within_size. MADV_NOHUGEPAGE prevents hugepage from being allocated on page fault in the VMA. It doesn't prevent a huge page from being allocated by other means, i.e. page fault into different mapping or write(2) into file. Link: http://lkml.kernel.org/r/1466021202-61880-31-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26shmem: add huge pages supportKirill A. Shutemov9-70/+331
Here's basic implementation of huge pages support for shmem/tmpfs. It's all pretty streight-forward: - shmem_getpage() allcoates huge page if it can and try to inserd into radix tree with shmem_add_to_page_cache(); - shmem_add_to_page_cache() puts the page onto radix-tree if there's space for it; - shmem_undo_range() removes huge pages, if it fully within range. Partial truncate of huge pages zero out this part of THP. This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE) behaviour. As we don't really create hole in this case, lseek(SEEK_HOLE) may have inconsistent results depending what pages happened to be allocated. - no need to change shmem_fault: core-mm will map an compound page as huge if VMA is suitable; Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26shmem: get_unmapped_area align huge pageHugh Dickins5-4/+142
Provide a shmem_get_unmapped_area method in file_operations, called at mmap time to decide the mapping address. It could be conditional on CONFIG_TRANSPARENT_HUGEPAGE, but save #ifdefs in other places by making it unconditional. shmem_get_unmapped_area() first calls the usual mm->get_unmapped_area (which we treat as a black box, highly dependent on architecture and config and executable layout). Lots of conditions, and in most cases it just goes with the address that chose; but when our huge stars are rightly aligned, yet that did not provide a suitable address, go back to ask for a larger arena, within which to align the mapping suitably. There have to be some direct calls to shmem_get_unmapped_area(), not via the file_operations: because of the way shmem_zero_setup() is called to create a shmem object late in the mmap sequence, when MAP_SHARED is requested with MAP_ANONYMOUS or /dev/zero. Though this only matters when /proc/sys/vm/shmem_huge has been set. Link: http://lkml.kernel.org/r/1466021202-61880-29-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Hugh Dickins <[email protected]> Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26shmem: prepare huge= mount option and sysfs knobKirill A. Shutemov4-1/+168
This patch adds new mount option "huge=". It can have following values: - "always": Attempt to allocate huge pages every time we need a new page; - "never": Do not allocate huge pages; - "within_size": Only allocate huge page if it will be fully within i_size. Also respect fadvise()/madvise() hints; - "advise: Only allocate huge pages if requested with fadvise()/madvise(); Default is "never" for now. "mount -o remount,huge= /mountpoint" works fine after mount: remounting huge=never will not attempt to break up huge pages at all, just stop more from being allocated. No new config option: put this under CONFIG_TRANSPARENT_HUGEPAGE, which is the appropriate option to protect those who don't want the new bloat, and with which we shall share some pmd code. Prohibit the option when !CONFIG_TRANSPARENT_HUGEPAGE, just as mpol is invalid without CONFIG_NUMA (was hidden in mpol_parse_str(): make it explicit). Allow enabling THP only if the machine has_transparent_hugepage(). But what about Shmem with no user-visible mount? SysV SHM, memfds, shared anonymous mmaps (of /dev/zero or MAP_ANONYMOUS), GPU drivers' DRM objects, Ashmem. Though unlikely to suit all usages, provide sysfs knob /sys/kernel/mm/transparent_hugepage/shmem_enabled to experiment with huge on those. And allow shmem_enabled two further values: - "deny": For use in emergencies, to force the huge option off from all mounts; - "force": Force the huge option on for all - very useful for testing; Based on patch by Hugh Dickins. Link: http://lkml.kernel.org/r/1466021202-61880-28-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm, rmap: account shmem thp pagesKirill A. Shutemov8-15/+58
Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and smaps. It indicates how many times we allocate and map shmem THP. NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS. Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26truncate: handle file thpKirill A. Shutemov1-5/+23
For shmem/tmpfs we only need to tweak truncate_inode_page() and invalidate_mapping_pages(). truncate_inode_pages_range() and invalidate_inode_pages2_range() are adjusted to use page_to_pgoff(). Link: http://lkml.kernel.org/r/1466021202-61880-26-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26filemap: prepare find and delete operations for huge pagesKirill A. Shutemov1-56/+122
For now, we would have HPAGE_PMD_NR entries in radix tree for every huge page. That's suboptimal and it will be changed to use Matthew's multi-order entries later. 'add' operation is not changed, because we don't need it to implement hugetmpfs: shmem uses its own implementation. Link: http://lkml.kernel.org/r/1466021202-61880-25-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26radix-tree: implement radix_tree_maybe_preload_order()Kirill A. Shutemov2-5/+80
The new helper is similar to radix_tree_maybe_preload(), but tries to preload number of nodes required to insert (1 << order) continuous naturally-aligned elements. This is required to push huge pages into pagecache. Link: http://lkml.kernel.org/r/1466021202-61880-24-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26page-flags: relax policy for PG_mappedtodisk and PG_reclaimKirill A. Shutemov1-3/+3
These flags are in use for file THP. Link: http://lkml.kernel.org/r/1466021202-61880-23-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26vmscan: split file huge pages before paging them outKirill A. Shutemov1-0/+6
This is preparation of vmscan for file huge pages. We cannot write out huge pages, so we need to split them on the way out. Link: http://lkml.kernel.org/r/1466021202-61880-22-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp, mlock: do not mlock PTE-mapped file huge pagesKirill A. Shutemov5-10/+54
As with anon THP, we only mlock file huge pages if we can prove that the page is not mapped with PTE. This way we can avoid mlock leak into non-mlocked vma on split. We rely on PageDoubleMap() under lock_page() to check if the the page may be PTE mapped. PG_double_map is set by page_add_file_rmap() when the page mapped with PTEs. Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: file pages support for split_huge_page()Kirill A. Shutemov2-45/+117
Basic scheme is the same as for anon THP. Main differences: - File pages are on radix-tree, so we have head->_count offset by HPAGE_PMD_NR. The count got distributed to small pages during split. - mapping->tree_lock prevents non-lockless access to pages under split over radix-tree; - Lockless access is prevented by setting the head->_count to 0 during split; - After split, some pages can be beyond i_size. We drop them from radix-tree. - We don't setup migration entries. Just unmap pages. It helps handling cases when i_size is in the middle of the page: no need handle unmap pages beyond i_size manually. Link: http://lkml.kernel.org/r/1466021202-61880-20-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: run vma_adjust_trans_huge() outside i_mmap_rwsemKirill A. Shutemov1-2/+2
vma_addjust_trans_huge() splits pmd if it's crossing VMA boundary. During split we munlock the huge page which requires rmap walk. rmap wants to take the lock on its own. Let's move vma_adjust_trans_huge() outside i_mmap_rwsem to fix this. Link: http://lkml.kernel.org/r/1466021202-61880-19-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: prepare change_huge_pmd() for file thpKirill A. Shutemov1-1/+2
change_huge_pmd() has assert which is not relvant for file page. For shared mapping it's perfectly fine to have page table entry writable, without explicit mkwrite. Link: http://lkml.kernel.org/r/1466021202-61880-18-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: skip file huge pmd on copy_huge_pmd()Kirill A. Shutemov1-18/+16
copy_page_range() has a check for "Don't copy ptes where a page fault will fill them correctly." It works on VMA level. We still copy all page table entries from private mappings, even if they map page cache. We can simplify copy_huge_pmd() a bit by skipping file PMDs. We don't map file private pages with PMDs, so they only can map page cache. It's safe to skip them as they can be re-faulted later. Link: http://lkml.kernel.org/r/1466021202-61880-17-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: handle file COW faultsKirill A. Shutemov1-0/+5
File COW for THP is handled on pte level: just split the pmd. It's not clear how benefitial would be allocation of huge pages on COW faults. And it would require some code to make them work. I think at some point we can consider teaching khugepaged to collapse pages in COW mappings, but allocating huge on fault is probably overkill. Link: http://lkml.kernel.org/r/1466021202-61880-16-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: handle file pages in split_huge_pmd()Kirill A. Shutemov1-2/+10
Splitting THP PMD is simple: just unmap it as in DAX case. This way we can avoid memory overhead on page table allocation to deposit. It's probably a good idea to try to allocation page table with GFP_ATOMIC in __split_huge_pmd_locked() to avoid refaulting the area, but clearing pmd should be good enough for now. Unlike DAX, we also remove the page from rmap and drop reference. pmd_young() is transfered to PageReferenced(). Link: http://lkml.kernel.org/r/1466021202-61880-15-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp: support file pages in zap_huge_pmd()Kirill A. Shutemov1-3/+9
split_huge_pmd() for file mappings (and DAX too) is implemented by just clearing pmd entry as we can re-fill this area from page cache on pte level later. This means we don't need deposit page tables when file THP is mapped. Therefore we shouldn't try to withdraw a page table on zap_huge_pmd() file THP PMD. Link: http://lkml.kernel.org/r/1466021202-61880-14-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp, vmstats: add counters for huge file pagesKirill A. Shutemov3-0/+10
THP_FILE_ALLOC: how many times huge page was allocated and put page cache. THP_FILE_MAPPED: how many times file huge page was mapped. Link: http://lkml.kernel.org/r/1466021202-61880-13-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: introduce do_set_pmd()Kirill A. Shutemov4-8/+74
With postponed page table allocation we have chance to setup huge pages. do_set_pte() calls do_set_pmd() if following criteria met: - page is compound; - pmd entry in pmd_none(); - vma has suitable size and alignment; Link: http://lkml.kernel.org/r/1466021202-61880-12-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26rmap: support file thpKirill A. Shutemov6-20/+52
Naive approach: on mapping/unmapping the page as compound we update ->_mapcount on each 4k page. That's not efficient, but it's not obvious how we can optimize this. We can look into optimization later. PG_double_map optimization doesn't work for file pages since lifecycle of file pages is different comparing to anon pages: file page can be mapped again at any time. Link: http://lkml.kernel.org/r/1466021202-61880-11-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: postpone page table allocation until we have page to mapKirill A. Shutemov3-127/+197
The idea (and most of code) is borrowed again: from Hugh's patchset on huge tmpfs[1]. Instead of allocation pte page table upfront, we postpone this until we have page to map in hands. This approach opens possibility to map the page as huge if filesystem supports this. Comparing to Hugh's patch I've pushed page table allocation a bit further: into do_set_pte(). This way we can postpone allocation even in faultaround case without moving do_fault_around() after __do_fault(). do_set_pte() got renamed to alloc_set_pte() as it can allocate page table if required. [1] http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/1466021202-61880-10-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: introduce fault_envKirill A. Shutemov10-516/+475
The idea borrowed from Peter's patch from patchset on speculative page faults[1]: Instead of passing around the endless list of function arguments, replace the lot with a single structure so we can change context without endless function signature changes. The changes are mostly mechanical with exception of faultaround code: filemap_map_pages() got reworked a bit. This patch is preparation for the next one. [1] http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/1466021202-61880-9-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Acked-by: Peter Zijlstra (Intel) <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: do not pass mm_struct into handle_mm_faultKirill A. Shutemov36-51/+48
We always have vma->vm_mm around. Link: http://lkml.kernel.org/r/1466021202-61880-8-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26thp, mlock: update unevictable-lru.txtKirill A. Shutemov1-0/+21
Add description of THP handling into unevictable-lru.txt. Link: http://lkml.kernel.org/r/1466021202-61880-7-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26khugepaged: recheck pmd after mmap_sem re-acquiredKirill A. Shutemov1-0/+6
Vlastimil noted[1] that pmd can be no longer valid after we drop mmap_sem. We need recheck it once mmap_sem taken again. [1] http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/1466021202-61880-6-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm, thp: fix locking inconsistency in collapse_huge_pageEbru Akagunduz1-4/+10
After creating revalidate vma function, locking inconsistency occured due to directing the code path to wrong label. This patch directs to correct label and fix the inconsistency. Related commit that caused inconsistency: http://git.kernel.org/cgit/linux/kernel/git/next/linux-next.git/commit/?id=da4360877094368f6dfe75bbe804b0f0a5d575b0 Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/1466021202-61880-4-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Ebru Akagunduz <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Sergey Senozhatsky <[email protected]> Cc: Kirill A. Shutemov <[email protected]> Cc: Stephen Rothwell <[email protected]> Cc: Rik van Riel <[email protected]> Cc: Andrea Arcangeli <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm, thp: make swapin readahead under down_read of mmap_semEbru Akagunduz1-29/+62
Currently khugepaged makes swapin readahead under down_write. This patch supplies to make swapin readahead under down_read instead of down_write. The patch was tested with a test program that allocates 800MB of memory, writes to it, and then sleeps. The system was forced to swap out all. Afterwards, the test program touches the area by writing, it skips a page in each 20 pages of the area. [[email protected]: update comment to match new code] [[email protected]: passing 'vma' to hugepage_vma_revlidate() is useless] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/1466021202-61880-3-git-send-email-kirill.shutemov@linux.intel.com Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/1466021202-61880-2-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Ebru Akagunduz <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Rik van Riel <[email protected]> Cc: "Kirill A. Shutemov" <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Cyrill Gorcunov <[email protected]> Cc: Mel Gorman <[email protected]> Cc: David Rientjes <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Aneesh Kumar K.V <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: make swapin readahead to improve thp collapse rateEbru Akagunduz4-4/+69
This patch makes swapin readahead to improve thp collapse rate. When khugepaged scanned pages, there can be a few of the pages in swap area. With the patch THP can collapse 4kB pages into a THP when there are up to max_ptes_swap swap ptes in a 2MB range. The patch was tested with a test program that allocates 400B of memory, writes to it, and then sleeps. I force the system to swap out all. Afterwards, the test program touches the area by writing, it skips a page in each 20 pages of the area. Without the patch, system did not swap in readahead. THP rate was %65 of the program of the memory, it did not change over time. With this patch, after 10 minutes of waiting khugepaged had collapsed %99 of the program's memory. [[email protected]: trivial cleanup of exit path of the function] [[email protected]: __collapse_huge_page_swapin(): drop unused 'pte' parameter] [[email protected]: do not hold anon_vma lock during swap in] Signed-off-by: Ebru Akagunduz <[email protected]> Acked-by: Rik van Riel <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Xie XiuQi <[email protected]> Cc: Cyrill Gorcunov <[email protected]> Cc: Mel Gorman <[email protected]> Cc: David Rientjes <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Aneesh Kumar K.V <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Signed-off-by: Kirill A. Shutemov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: make optimistic check for swapin readaheadEbru Akagunduz2-8/+51
Introduce a new sysfs integer knob /sys/kernel/mm/transparent_hugepage/khugepaged/max_ptes_swap which makes optimistic check for swapin readahead to increase thp collapse rate. Before getting swapped out pages to memory, checks them and allows up to a certain number. It also prints out using tracepoints amount of unmapped ptes. [[email protected]: fix scan not aborted on SCAN_EXCEED_SWAP_PTE] [[email protected]: build fix] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Ebru Akagunduz <[email protected]> Acked-by: Rik van Riel <[email protected]> Cc: Kirill A. Shutemov <[email protected]> Cc: Naoya Horiguchi <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Xie XiuQi <[email protected]> Cc: Cyrill Gorcunov <[email protected]> Cc: Mel Gorman <[email protected]> Cc: David Rientjes <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Aneesh Kumar K.V <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Signed-off-by: Stephen Rothwell <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm/memblock.c:memblock_add_range(): if nr_new is 0 just returnnimisolo1-0/+3
If nr_new is 0 which means there's no region would be added, so just return to the caller. Signed-off-by: nimisolo <[email protected]> Cc: Alexander Kuleshov <[email protected]> Cc: Pekka Enberg <[email protected]> Cc: Tony Luck <[email protected]> Cc: Mel Gorman <[email protected]> Cc: Tang Chen <[email protected]> Cc: Wei Yang <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm, memcg: use consistent gfp flags during readaheadMichal Hocko8-16/+19
Vladimir has noticed that we might declare memcg oom even during readahead because read_pages only uses GFP_KERNEL (with mapping_gfp restriction) while __do_page_cache_readahead uses page_cache_alloc_readahead which adds __GFP_NORETRY to prevent from OOMs. This gfp mask discrepancy is really unfortunate and easily fixable. Drop page_cache_alloc_readahead() which only has one user and outsource the gfp_mask logic into readahead_gfp_mask and propagate this mask from __do_page_cache_readahead down to read_pages. This alone would have only very limited impact as most filesystems are implementing ->readpages and the common implementation mpage_readpages does GFP_KERNEL (with mapping_gfp restriction) again. We can tell it to use readahead_gfp_mask instead as this function is called only during readahead as well. The same applies to read_cache_pages. ext4 has its own ext4_mpage_readpages but the path which has pages != NULL can use the same gfp mask. Btrfs, cifs, f2fs and orangefs are doing a very similar pattern to mpage_readpages so the same can be applied to them as well. [[email protected]: coding-style fixes] [[email protected]: restrict gfp mask in mpage_alloc] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Michal Hocko <[email protected]> Cc: Vladimir Davydov <[email protected]> Cc: Chris Mason <[email protected]> Cc: Steve French <[email protected]> Cc: Theodore Ts'o <[email protected]> Cc: Jan Kara <[email protected]> Cc: Mike Marshall <[email protected]> Cc: Jaegeuk Kim <[email protected]> Cc: Changman Lee <[email protected]> Cc: Chao Yu <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm, oom_reaper: make sure that mmput_async is called only when memory was reapedMichal Hocko1-7/+18
Tetsuo is worried that mmput_async might still lead to a premature new oom victim selection due to the following race: __oom_reap_task exit_mm find_lock_task_mm atomic_inc(mm->mm_users) # = 2 task_unlock task_lock task->mm = NULL up_read(&mm->mmap_sem) < somebody write locks mmap_sem > task_unlock mmput atomic_dec_and_test # = 1 exit_oom_victim down_read_trylock # failed - no reclaim mmput_async # Takes unpredictable amount of time < new OOM situation > the final __mmput will be executed in the delayed context which might happen far in the future. Such a race is highly unlikely because the write holder of mmap_sem would have to be an external task (all direct holders are already killed or exiting) and it usually have to pin mm_users in order to do anything reasonable. We can, however, make sure that the mmput_async is only called when we do not back off and reap some memory. That would reduce the impact of the delayed __mmput because the real content would be already freed. Pin mm_count to keep it alive after we drop task_lock and before we try to get mmap_sem. If the mmap_sem succeeds we can try to grab mm_users reference and then go on with unmapping the address space. It is not clear whether this race is possible at all but it is better to be more robust and do not pin mm_users unless we are sure we are actually doing some real work during __oom_reap_task. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Michal Hocko <[email protected]> Reported-by: Tetsuo Handa <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26include/linux/memblock.h: Clean up code for several trivial detailsChen Gang1-11/+9
Correct the function parameters alignment, since original code already use both tabs and white spaces together for the incorrect parameters alignment functions. If one line can hold one statement within 80 columns, let it in one line (original code did not consider about the tabs/spaces for 2nd line when a statement is separated into 2 lines). Try to let '' aligned within one macro, since all related lines are short enough. Remove useless statement "idx = 0;", and always assign rgn within the 'for' statement. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Chen Gang <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: add NR_ZSMALLOC to vmstatMinchan Kim3-2/+12
zram is very popular for some of the embedded world (e.g., TV, mobile phones). On those system, zsmalloc's consumed memory size is never trivial (one of example from real product system, total memory: 800M, zsmalloc consumed: 150M), so we have used this out of tree patch to monitor system memory behavior via /proc/vmstat. With zsmalloc in vmstat, it helps in tracking down system behavior due to memory usage. [[email protected]: zsmalloc: follow up zsmalloc vmstat] Link: http://lkml.kernel.org/r/20160607091737.GC23435@bbox [[email protected]: fix build with CONFIG_ZSMALLOC=m] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Minchan Kim <[email protected]> Cc: Sangseok Lee <[email protected]> Cc: Chanho Min <[email protected]> Cc: Chan Gyun Jeong <[email protected]> Cc: Sergey Senozhatsky <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm, frontswap: convert frontswap_enabled to static keyVlastimil Babka4-37/+38
I have noticed that frontswap.h first declares "frontswap_enabled" as extern bool variable, and then overrides it with "#define frontswap_enabled (1)" for CONFIG_FRONTSWAP=Y or (0) when disabled. The bool variable isn't actually instantiated anywhere. This all looks like an unfinished attempt to make frontswap_enabled reflect whether a backend is instantiated. But in the current state, all frontswap hooks call unconditionally into frontswap.c just to check if frontswap_ops is non-NULL. This should at least be checked inline, but we can further eliminate the overhead when CONFIG_FRONTSWAP is enabled and no backend registered, using a static key that is initially disabled, and gets enabled only upon first backend registration. Thus, checks for "frontswap_enabled" are replaced with "frontswap_enabled()" wrapping the static key check. There are two exceptions: - xen's selfballoon_process() was testing frontswap_enabled in code guarded by #ifdef CONFIG_FRONTSWAP, which was effectively always true when reachable. The patch just removes this check. Using frontswap_enabled() does not sound correct here, as this can be true even without xen's own backend being registered. - in SYSCALL_DEFINE2(swapon), change the check to IS_ENABLED(CONFIG_FRONTSWAP) as it seems the bitmap allocation cannot currently be postponed until a backend is registered. This means that frontswap will still have some memory overhead by being configured, but without a backend. After the patch, we can expect that some functions in frontswap.c are called only when frontswap_ops is non-NULL. Change the checks there to VM_BUG_ONs. While at it, convert other BUG_ONs to VM_BUG_ONs as frontswap has been stable for some time. [[email protected]: coding-style fixes] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Vlastimil Babka <[email protected]> Cc: Konrad Rzeszutek Wilk <[email protected]> Cc: Boris Ostrovsky <[email protected]> Cc: David Vrabel <[email protected]> Cc: Juergen Gross <[email protected]> Cc: "Kirill A. Shutemov" <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm,oom: remove unused argument from oom_scan_process_thread().Tetsuo Handa3-4/+4
oom_scan_process_thread() does not use totalpages argument. oom_badness() uses it. Link: http://lkml.kernel.org/r/1463796041-7889-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <[email protected]> Acked-by: Michal Hocko <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26af_unix: charge buffers to kmemcgVladimir Davydov1-0/+1
Unix sockets can consume a significant amount of system memory, hence they should be accounted to kmemcg. Since unix socket buffers are always allocated from process context, all we need to do to charge them to kmemcg is set __GFP_ACCOUNT in sock->sk_allocation mask. Eric asked: > 1) What happens when a buffer, allocated from socket <A> lands in a > different socket <B>, maybe owned by another user/process. > > Who owns it now, in term of kmemcg accounting ? We never move memcg charges. E.g. if two processes from different cgroups are sharing a memory region, each page will be charged to the process which touched it first. Or if two processes are working with the same directory tree, inodes and dentries will be charged to the first user. The same is fair for unix socket buffers - they will be charged to the sender. > 2) Has performance impact been evaluated ? I ran netperf STREAM_STREAM with default options in a kmemcg on a 4 core x2 HT box. The results are below: # clients bandwidth (10^6bits/sec) base patched 1 67643 +- 725 64874 +- 353 - 4.0 % 4 193585 +- 2516 186715 +- 1460 - 3.5 % 8 194820 +- 377 187443 +- 1229 - 3.7 % So the accounting doesn't come for free - it takes ~4% of performance. I believe we could optimize it by using per cpu batching not only on charge, but also on uncharge in memcg core, but that's beyond the scope of this patch set - I'll take a look at this later. Anyway, if performance impact is found to be unacceptable, it is always possible to disable kmem accounting at boot time (cgroup.memory=nokmem) or not use memory cgroups at runtime at all (thanks to jump labels there'll be no overhead even if they are compiled in). Link: http://lkml.kernel.org/r/fcfe6cae27a59fbc5e40145664b3cf085a560c68.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <[email protected]> Cc: "David S. Miller" <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26pipe: account to kmemcgVladimir Davydov1-6/+26
Pipes can consume a significant amount of system memory, hence they should be accounted to kmemcg. This patch marks pipe_inode_info and anonymous pipe buffer page allocations as __GFP_ACCOUNT so that they would be charged to kmemcg. Note, since a pipe buffer page can be "stolen" and get reused for other purposes, including mapping to userspace, we clear PageKmemcg thus resetting page->_mapcount and uncharge it in anon_pipe_buf_steal, which is introduced by this patch. A note regarding anon_pipe_buf_steal implementation. We allow to steal the page if its ref count equals 1. It looks racy, but it is correct for anonymous pipe buffer pages, because: - We lock out all other pipe users, because ->steal is called with pipe_lock held, so the page can't be spliced to another pipe from under us. - The page is not on LRU and it never was. - Thus a parallel thread can access it only by PFN. Although this is quite possible (e.g. see page_idle_get_page and balloon_page_isolate) this is not dangerous, because all such functions do is increase page ref count, check if the page is the one they are looking for, and decrease ref count if it isn't. Since our page is clean except for PageKmemcg mark, which doesn't conflict with other _mapcount users, the worst that can happen is we see page_count > 2 due to a transient ref, in which case we false-positively abort ->steal, which is still fine, because ->steal is not guaranteed to succeed. Link: http://lkml.kernel.org/r/20160527150313.GD26059@esperanza Signed-off-by: Vladimir Davydov <[email protected]> Cc: Alexander Viro <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26arch: x86: charge page tables to kmemcgVladimir Davydov2-5/+17
Page tables can bite a relatively big chunk off system memory and their allocations are easy to trigger from userspace, so they should be accounted to kmemcg. This patch marks page table allocations as __GFP_ACCOUNT for x86. Note we must not charge allocations of kernel page tables, because they can be shared among processes from different cgroups so accounting them to a particular one can pin other cgroups for indefinitely long. So we clear __GFP_ACCOUNT flag if a page table is allocated for the kernel. Link: http://lkml.kernel.org/r/7d5c54f6a2bcbe76f03171689440003d87e6c742.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <[email protected]> Cc: Thomas Gleixner <[email protected]> Cc: Ingo Molnar <[email protected]> Cc: "H. Peter Anvin" <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: memcontrol: teach uncharge_list to deal with kmem pagesVladimir Davydov1-18/+24
Page table pages are batched-freed in release_pages on most architectures. If we want to charge them to kmemcg (this is what is done later in this series), we need to teach mem_cgroup_uncharge_list to handle kmem pages. Link: http://lkml.kernel.org/r/18d5c09e97f80074ed25b97a7d0f32b95d875717.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: charge/uncharge kmemcg from generic page allocator pathsVladimir Davydov7-72/+31
Currently, to charge a non-slab allocation to kmemcg one has to use alloc_kmem_pages helper with __GFP_ACCOUNT flag. A page allocated with this helper should finally be freed using free_kmem_pages, otherwise it won't be uncharged. This API suits its current users fine, but it turns out to be impossible to use along with page reference counting, i.e. when an allocation is supposed to be freed with put_page, as it is the case with pipe or unix socket buffers. To overcome this limitation, this patch moves charging/uncharging to generic page allocator paths, i.e. to __alloc_pages_nodemask and free_pages_prepare, and zaps alloc/free_kmem_pages helpers. This way, one can use any of the available page allocation functions to get the allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT, just like in case of kmalloc and friends. A charged page will be automatically uncharged on free. To make it possible, we need to mark pages charged to kmemcg somehow. To avoid introducing a new page flag, we make use of page->_mapcount for marking such pages. Since pages charged to kmemcg are not supposed to be mapped to userspace, it should work just fine. There are other (ab)users of page->_mapcount - buddy and balloon pages - but we don't conflict with them. In case kmemcg is compiled out or not used at runtime, this patch introduces no overhead to generic page allocator paths. If kmemcg is used, it will be plus one gfp flags check on alloc and plus one page->_mapcount check on free, which shouldn't hurt performance, because the data accessed are hot. Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: memcontrol: cleanup kmem charge functionsVladimir Davydov4-123/+80
- Handle memcg_kmem_enabled check out to the caller. This reduces the number of function definitions making the code easier to follow. At the same time it doesn't result in code bloat, because all of these functions are used only in one or two places. - Move __GFP_ACCOUNT check to the caller as well so that one wouldn't have to dive deep into memcg implementation to see which allocations are charged and which are not. - Refresh comments. Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: clean up non-standard page->_mapcount usersVladimir Davydov3-41/+40
- Add a proper comment to page->_mapcount. - Introduce a macro for generating helper functions. - Place all special page->_mapcount values next to each other so that readers can see all possible values and so we don't get duplicates. Link: http://lkml.kernel.org/r/502f49000e0b63e6c62e338fac6b420bf34fb526.1464079537.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: remove pointless struct in struct page definitionVladimir Davydov1-36/+32
This patchset implements per kmemcg accounting of page tables (x86-only), pipe buffers, and unix socket buffers. Patches 1-3 are just cleanups that are not supposed to introduce any functional changes. Patches 4 and 5 move charge/uncharge to generic page allocator paths for the sake of accounting pipe and unix socket buffers. Patches 5-7 make x86 page tables, pipe buffers, and unix socket buffers accountable. This patch (of 8): ... to reduce indentation level thus leaving more space for comments. Link: http://lkml.kernel.org/r/f34ffe70fce2b0b9220856437f77972d67c14275.1464079537.git.vdavydov@virtuozzo.com Signed-off-by: Vladimir Davydov <[email protected]> Cc: Johannes Weiner <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Eric Dumazet <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm/mmu_gather: track page size with mmu gather and force flush if page size ↵Aneesh Kumar K.V9-9/+93
change This allows an arch which needs to do special handing with respect to different page size when flushing tlb to implement the same in mmu gather. Link: http://lkml.kernel.org/r/1465049193-22197-3-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Michael Ellerman <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: "Kirill A. Shutemov" <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Mel Gorman <[email protected]> Cc: David Rientjes <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm: change the interface for __tlb_remove_page()Aneesh Kumar K.V7-30/+94
This updates the generic and arch specific implementation to return true if we need to do a tlb flush. That means if a __tlb_remove_page indicate a flush is needed, the page we try to remove need to be tracked and added again after the flush. We need to track it because we have already update the pte to none and we can't just loop back. This change is done to enable us to do a tlb_flush when we try to flush a range that consists of different page sizes. For architectures like ppc64, we can do a range based tlb flush and we need to track page size for that. When we try to remove a huge page, we will force a tlb flush and starts a new mmu gather. [[email protected]: mm-change-the-interface-for-__tlb_remove_page-v3] Link: http://lkml.kernel.org/r/1465049193-22197-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/1464860389-29019-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Michael Ellerman <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: "Kirill A. Shutemov" <[email protected]> Cc: Andrea Arcangeli <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Mel Gorman <[email protected]> Cc: David Rientjes <[email protected]> Cc: Vlastimil Babka <[email protected]> Cc: Minchan Kim <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
2016-07-26mm/hugetlb: simplify hugetlb unmapAneesh Kumar K.V1-33/+21
For hugetlb like THP (and unlike regular page), we do tlb flush after dropping ptl. Because of the above, we don't need to track force_flush like we do now. Instead we can simply call tlb_remove_page() which will do the flush if needed. No functionality change in this patch. Link: http://lkml.kernel.org/r/1465049193-22197-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <[email protected]> Cc: Benjamin Herrenschmidt <[email protected]> Cc: Paul Mackerras <[email protected]> Cc: Michael Ellerman <[email protected]> Cc: "Kirill A. Shutemov" <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>