aboutsummaryrefslogtreecommitdiff
AgeCommit message (Collapse)AuthorFilesLines
2015-06-23Merge branch 'xfs-freelist-cleanup' into for-nextDave Chinner7-130/+142
2015-06-22xfs: clean up XFS_MIN_FREELIST macrosDave Chinner7-21/+26
We no longer calculate the minimum freelist size from the on-disk AGF, so we don't need the macros used for this. That means the nested macros can be cleaned up, and turn this into an actual function so the logic is clear and concise. This will make it much easier to add support for the rmap btree when the time comes. This also gets rid of the XFS_AG_MAXLEVELS macro used by these freelist macros as it is simply a wrapper around a single variable. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-22xfs: sanitise error handling in xfs_alloc_fix_freelistDave Chinner1-56/+55
The error handling is currently an inconsistent mess as every error condition handles return values and releasing buffers individually. Clean this up by using gotos and a sane error label stack. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-22xfs: factor out free space extent length checkDave Chinner1-27/+44
The longest extent length checks in xfs_alloc_fix_freelist() are now essentially identical. Factor them out into a helper function, so we know they are checking exactly the same thing before and after we lock the AGF. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-22xfs: xfs_alloc_fix_freelist() can use incore perag structuresDave Chinner4-46/+37
At the moment, xfs_alloc_fix_freelist() uses a mix of per-ag based access and agf buffer based access to freelist and space usage information. However, once the AGF buffer is locked inside this function, it is guaranteed that both the in-memory and on-disk values are identical. xfs_alloc_fix_freelist() doesn't modify the values in the structures directly, so it is a read-only user of the infomration, and hence can use the per-ag structure exclusively for determining what it should do. This opens up an avenue for cleaning up a lot of duplicated logic whose only difference is the structure it gets the data from, and in doing so removes a lot of needless byte swapping overhead when fixing up the free list. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04Merge branch 'xfs-commit-cleanup' into for-nextDave Chinner26-385/+193
Conflicts: fs/xfs/xfs_attr_inactive.c
2015-06-04xfs: fix xfs_log_done interfaceChristoph Hellwig4-52/+11
Instead of the confusing flags argument pass a boolean flag to indicate if we want to release or regrant a log reservation. Also ensure that xfs_log_done always drop the reference on the log ticket, to both simplify the code and make the logic in xfs_trans_roll easier to understand. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: saner xfs_trans_commit interfaceChristoph Hellwig24-74/+68
The flags argument to xfs_trans_commit is not useful for most callers, as a commit of a transaction without a permanent log reservation must pass 0 here, and all callers for a transaction with a permanent log reservation except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove the flags argument from the public xfs_trans_commit interfaces, and introduce low-level __xfs_trans_commit variant just for xfs_trans_roll that regrants a log reservation instead of releasing it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: remove the flags argument to xfs_trans_cancelChristoph Hellwig22-171/+104
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and XFS_TRANS_ABORT. Both of them are a direct product of the transaction state, and can be deducted: - any dirty transaction needs XFS_TRANS_ABORT to be properly canceled, and XFS_TRANS_ABORT is a noop for a transaction that is not dirty. - any transaction with a permanent log reservation needs XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent log reservation is invalid. So just remove the flags argument and do the right thing. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: pass a boolean flag to xfs_trans_free_itemsChristoph Hellwig3-6/+6
The flags value always was 0 or XFS_TRANS_ABORT. Switch to a bool parameter to allow further cleanups. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: switch remaining xfs_trans_dup users to xfs_trans_rollChristoph Hellwig4-92/+16
We have three remaining callers of xfs_trans_dup: - xfs_itruncate_extents which open codes xfs_trans_roll - xfs_bmap_finish doesn't have an xfs_inode argument and thus leaves attaching them to it's callers, but otherwise is identical to xfs_trans_roll - xfs_dir_ialloc looks at the log reservations in the old xfs_trans structure instead of the log reservation parameters, but otherwise is identical to xfs_trans_roll. By allowing a NULL xfs_inode argument to xfs_trans_roll we can switch these three remaining users over to xfs_trans_roll and mark xfs_trans_dup static. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04Merge branch 'xfs-misc-fixes-for-4.2-2' into for-nextDave Chinner2-10/+12
2015-06-04xfs: check min blks for random debug mode sparse allocationsBrian Foster1-7/+8
The inode allocator enables random sparse inode chunk allocations in DEBUG mode to facilitate testing. Sparse inode allocations are not always possible, however, depending on the fs geometry. For example, there is no possibility for a sparse inode allocation on filesystems where the block size is large enough to fit one or more inode chunks within a single block. Fix up the DEBUG mode sparse inode allocation logic to trigger random sparse allocations only when the geometry of the fs allows it. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: fix sparse inodes 32-bit compile failureBrian Foster1-3/+4
The kbuild test robot reports the following compilation failure with a 32-bit kernel configuration: fs/built-in.o: In function `xfs_ifree_cluster': >> xfs_inode.c:(.text+0x17ac84): undefined reference to `__umoddi3' This is due to the use of the modulus operator on a 64-bit variable in the ASSERT() added as part of the following commit: xfs: skip unallocated regions of inode chunks in xfs_ifree_cluster() This ASSERT() simply checks that the offset of the inode in a sparse cluster is appropriately aligned. Since the maximum inode record offset is 63 (for a 64 inode record) and the calculated offset here should be something less than that, just use a 32-bit variable to store the offset and call the do_mod() helper. Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04Merge branch 'xfs-dax-support' into for-nextDave Chinner12-153/+332
2015-06-04xfs: add initial DAX supportDave Chinner3-14/+37
Add initial DAX support to XFS. To do this we need a new mount option to turn DAX on filesystem, and we need to propagate this into the inode flags whenever an inode is instantiated so that the per-inode checks throughout the code Do The Right Thing. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: add DAX IO path supportDave Chinner1-9/+27
DAX does not do buffered IO (can't buffer direct access!) and hence all read/write IO is vectored through the direct IO path. Hence we need to add the DAX IO path callouts to the direct IO infrastructure. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: add DAX truncate supportDave Chinner1-1/+5
When we truncate a DAX file, we need to call through the DAX page truncation path rather than through block_truncate_page() so that mappings and block zeroing are all handled correctly. Otherwise, truncate does not need to change. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: add DAX block zeroing supportDave Chinner2-22/+46
Add initial support for DAX block zeroing operations to XFS. DAX cannot use buffered IO through the page cache for zeroing, nor do we need to issue IO for uncached block zeroing. In both cases, we can simply call out to the dax block zeroing function. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: add DAX file operations supportDave Chinner3-83/+158
Add the initial support for DAX file operations to XFS. This includes the necessary block allocation and mmap page fault hooks for DAX to function. Note that there are changes to the splice interfaces to ensure that for DAX splice avoids direct page cache manipulations and instead takes the DAX IO paths for read/write operations. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04dax: expose __dax_fault for filesystems with locking constraintsDave Chinner2-3/+17
Some filesystems cannot call dax_fault() directly because they have different locking and/or allocation constraints in the page fault IO path. To handle this, we need to follow the same model as the generic block_page_mkwrite code, where the internals are exposed via __block_page_mkwrite() so that filesystems can wrap the correct locking and operations around the outside. This is loosely based on a patch originally from Matthew Willcox. Unlike the original patch, it does not change ext4 code, error returns or unwritten extent conversion handling. It also adds a __dax_mkwrite() wrapper for .page_mkwrite implementations to do the right thing, too. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04dax: don't abuse get_block mapping for endio callbacksDave Chinner5-26/+42
dax_fault() currently relies on the get_block callback to attach an io completion callback to the mapping buffer head so that it can run unwritten extent conversion after zeroing allocated blocks. Instead of this hack, pass the conversion callback directly into dax_fault() similar to the get_block callback. When the filesystem allocates unwritten extents, it will set the buffer_unwritten() flag, and hence the dax_fault code can call the completion function in the contexts where it is necessary without overloading the mapping buffer head. Note: The changes to ext4 to use this interface are suspect at best. In fact, the way ext4 did this end_io assignment in the first place looks suspect because it only set a completion callback when there wasn't already some other write() call taking place on the same inode. The ext4 end_io code looks rather intricate and fragile with all it's reference counting and passing to different contexts for modification via inode private pointers that aren't protected by locks... Signed-off-by: Dave Chinner <dchinner@redhat.com> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-04xfs: mmap lock needs to be inside freeze protectionDave Chinner1-3/+8
Lock ordering for the new mmap lock needs to be: mmap_sem sb_start_pagefault i_mmap_lock page lock <fault processsing> Right now xfs_vm_page_mkwrite gets this the wrong way around, While technically it cannot deadlock due to the current freeze ordering, it's still a landmine that might explode if we change anything in future. Hence we need to nest the locks correctly. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-01Merge branch 'xfs-sparse-inode' into for-nextDave Chinner16-86/+829
2015-06-01Merge branch 'xfs-misc-fixes-for-4.2' into for-nextDave Chinner5-23/+36
2015-06-01xfs: Clean up xfs_trans_dup_dqinfoNan Jia1-2/+2
Fixed two missing spaces. Signed-off-by: Nan Jia <jiananmail@gmail.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-01xfs: fix kernel version in docsFanael Linithien1-6/+6
Linux v3.20 was released as v4.0. Signed-off-by: Fanael Linithien <fanael4@gmail.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-01xfs: don't cast string literalsEric Sandeen1-2/+2
The commit: a9273ca5 xfs: convert attr to use unsigned names added these (unsigned char *) casts, but then the _SIZE macros return "7" - size of a pointer minus one - not the length of the string. This is harmless in the kernel, because the _SIZE macros are not used, but as we sync up with userspace, this will matter. I don't think the cast is necessary; i.e. assigning the string literal to an unsigned char *, or passing it to a function expecting an unsigned char *, should be ok, right? Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-01xfs: fix quota block reservation leak when tp allocates and frees blocksBrian Foster2-12/+17
Al Viro reports that generic/231 fails frequently on XFS and bisected the problem to the following commit: 5d11fb4b xfs: rework zero range to prevent invalid i_size updates ... which is just the first commit that happens to cause fsx to reproduce the problem. fsx reproduces via zero range calls. The aforementioned commit overhauls zero range to use hole punch and fallocate. As it turns out, the problem is reproducible on demand using basic hole punch as follows: $ mkfs.xfs -f -m crc=1,finobt=1 <dev> $ mount <dev> /mnt -o uquota $ xfs_io -f -c "falloc 0 50m" /mnt/file $ for i in $(seq 1 20); do xfs_io -c "fpunch ${i}m 32k" /mnt/file; done $ rm -f /mnt/file $ repquota -us /mnt ... User used soft hard grace used soft hard grace ---------------------------------------------------------------------- root -- 32K 0K 0K 3 0 0 A file is allocated with a single 50m extent. The extent count increases via hole punches until the bmap converts to btree format. The file is removed but quota reports 32k of space usage for the user. This reservation is effectively leaked for the lifetime of the mount. The reason this occurs is because the quota block reservation tracking is confused when a transaction happens to free and allocate blocks at the same time. Consider the following sequence of events: - tp is allocated from xfs_free_file_space() and reserves several blocks for btree management. Blocks are reserved against the dquot and marked as such in the transaction (qtrx->qt_blk_res). - 8 blocks are accounted free when the 32k range is punched out. xfs_trans_mod_dquot() is called with XFS_TRANS_DQ_BCOUNT and sets ->qt_bcount_delta to -8. - Subsequently, a block is allocated against the same transaction by xfs_bmap_extents_to_btree() for btree conversion. A call to xfs_trans_mod_dquot() increases qt_blk_res_used to 1 and qt_bcount_delta to -7. - The transaction is dup'd and committed by xfs_bmap_finish(). xfs_trans_dup_dqinfo() sets the first transaction up such that it has a matching qt_blk_res and qt_blk_res_used of 1. The remaining unused reservation is transferred to the duplicate tp. When the transactions are committed, the dquots are fixed up in xfs_trans_apply_dquot_deltas() according to one of two methods: 1.) If the transaction holds a block reservation (->qt_blk_res != 0), _only_ the unused portion reservation is unaccounted from the dquot. Note that the tp duplication behavior of xfs_bmap_finish() makes it such that qt_blk_res is typically 0 for tp's with unused reservation. 2.) Otherwise, the dquot is fixed up based on the block delta (->qt_bcount_delta) created by the transaction. Therefore, if a transaction has a negative qt_bcount_delta and positive qt_blk_res_used, the former set of blocks that have been removed from the file are never factored out of the in-core dquot reservation. Instead, *_apply_dquot_deltas() sees 1 block used out of a 1 block reservation and believes there is nothing to fix up. The on-disk d_bcount is updated independently from qt_bcount_delta, and thus is correct (and allows the quota usage to correct on remount). To deal with this situation, we effectively want the "used reservation" part of the transaction to be consistent with any freed blocks with respect to quota tracking. For example, if 8 blocks are freed, the subsequent single block allocation does not need to consume the initial reservation made by the tp. Instead, it simply borrows one from the previously freed. One possible implementation of such borrowing is to avoid the blks_res_used increment when bcount_delta is negative. This alone is flawed logic in that it only handles the case where blocks are freed before allocated, however. Rather than add more complexity to manage synchronization between bcount_delta and blks_res_used, kill the latter entirely. blk_res_used is only updated in one place and always in sync with delta_bcount. Therefore, the net block reservation consumption of the transaction is always available from bcount_delta. Calculate the reservation consumption on the fly where necessary based on whether the tp has a reservation and results in a positive net block delta on the inode. Reported-by: Al Viro <viro@ZenIV.linux.org.uk> Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-06-01xfs: always log the inode on unwritten extent conversionBrian Foster1-1/+9
The fsync() requirements for crash consistency on XFS are to flush file data and force any in-core inode updates to the log. We currently check whether the inode is pinned to identify whether the log needs to be forced, since a non-zero pin count generally represents an inode that has transactions awaiting a flush to the on-disk log. This is not sufficient in all cases, however. Reports of xfstests test generic/311 failures on ppc64/s390x hosts have identified failures to fsync outstanding inode modifications due to the inode not being pinned at the time of the fsync. This occurs because certain bmap updates can complete by logging bmapbt buffers but without ever dirtying (and thus pinning) the core inode. The following is a specific incarnation of this problem: $ mount $dev /mnt -o noatime,nobarrier $ for i in $(seq 0 2 31); do \ xfs_io -f -c "falloc $((i * 32768)) 32k" -c fsync /mnt/file; \ done $ xfs_io -c "pwrite -S 0 80k 16k" -c fsync -c "pwrite 76k 4k" -c fsync /mnt/file; \ hexdump /mnt/file; \ ./xfstests-dev/src/godown /mnt ... 0000000 0000 0000 0000 0000 0000 0000 0000 0000 * 0013000 cdcd cdcd cdcd cdcd cdcd cdcd cdcd cdcd * 0014000 0000 0000 0000 0000 0000 0000 0000 0000 * 00f8000 $ umount /mnt; mount ... $ hexdump /mnt/file 0000000 0000 0000 0000 0000 0000 0000 0000 0000 * 00f8000 In short, the unwritten extent conversion for the last write is lost despite the fact that an fsync executed before the filesystem was shutdown. Note that this is impossible to reproduce on v5 supers due to unconditional time callbacks for di_changecount and highly difficult to reproduce on CONFIG_HZ=1000 kernels due to those same callbacks frequently updating cmtime prior to the bmap update. CONFIG_HZ=100 reduces timer granularity enough to increase the odds that time updates are skipped and allows this to reproduce within a handful of attempts. To deal with this problem, unconditionally log the core in the unwritten extent conversion path. Fix up logflags after the extent conversion to keep the extent update code consistent with the other extent update helpers. This fixup is not necessary for the other (hole, delay) extent helpers because they execute in the block allocation codepath, which already logs the inode for other reasons (e.g., for di_nblocks). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: enable sparse inode chunks for v5 superblocksBrian Foster1-1/+2
Enable mounting of filesystems with sparse inode support enabled. Add the incompat. feature bit to the *_ALL mask. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: skip unallocated regions of inode chunks in xfs_ifree_cluster()Brian Foster3-20/+35
xfs_ifree_cluster() is called to mark all in-memory inodes and inode buffers as stale. This occurs after we've removed the inobt records and dropped any references of inobt data. xfs_ifree_cluster() uses the starting inode number to walk the namespace of inodes expected for a single chunk a cluster buffer at a time. The cluster buffer disk addresses are calculated by decoding the sequential inode numbers expected from the chunk. The problem with this approach is that if the inode chunk being removed is a sparse chunk, not all of the buffer addresses that are calculated as part of this sequence may be inode clusters. Attempting to acquire the buffer based on expected inode characterstics (i.e., cluster length) can lead to errors and is generally incorrect. We already use a couple variables to carry requisite state from xfs_difree() to xfs_ifree_cluster(). Rather than add a third, define a new internal structure to carry the existing parameters through these functions. Add an alloc field that represents the physical allocation bitmap of inodes in the chunk being removed. Modify xfs_ifree_cluster() to check each inode against the bitmap and skip the clusters that were never allocated as real inodes on disk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: only free allocated regions of inode chunksBrian Foster1-3/+78
An inode chunk is currently added to the transaction free list based on a simple fsb conversion and hardcoded chunk length. The nature of sparse chunks is such that the physical chunk of inodes on disk may consist of one or more discontiguous parts. Blocks that reside in the holes of the inode chunk are not inodes and could be allocated to any other use or not allocated at all. Refactor the existing xfs_bmap_add_free() call into the xfs_difree_inode_chunk() helper. The new helper uses the existing calculation if a chunk is not sparse. Otherwise, use the inobt record holemask to free the contiguous regions of the chunk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: filter out sparse regions from individual inode allocationBrian Foster1-2/+13
Inode allocation from an existing record with free inodes traditionally selects the first inode available according to the ir_free mask. With sparse inode chunks, the ir_free mask could refer to an unallocated region. We must mask the unallocated regions out of ir_free before using it to select a free inode in the chunk. Update the xfs_inobt_first_free_inode() helper to find the first free inode available of the allocated regions of the inode chunk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: randomly do sparse inode allocations in DEBUG modeBrian Foster1-2/+13
Sparse inode allocations generally only occur when full inode chunk allocation fails. This requires some level of filesystem space usage and fragmentation. For filesystems formatted with sparse inode chunks enabled, do random sparse inode chunk allocs when compiled in DEBUG mode to increase test coverage. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: allocate sparse inode chunks on full chunk allocation failureBrian Foster4-14/+401
xfs_ialloc_ag_alloc() makes several attempts to allocate a full inode chunk. If all else fails, reduce the allocation to the sparse length and alignment and attempt to allocate a sparse inode chunk. If sparse chunk allocation succeeds, check whether an inobt record already exists that can track the chunk. If so, inherit and update the existing record. Otherwise, insert a new record for the sparse chunk. Create helpers to align sparse chunk inode records and insert or update existing records in the inode btrees. The xfs_inobt_insert_sprec() helper implements the merge or update semantics required for sparse inode records with respect to both the inobt and finobt. To update the inobt, either insert a new record or merge with an existing record. To update the finobt, use the updated inobt record to either insert or replace an existing record. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: helper to convert holemask to inode alloc. bitmapBrian Foster2-0/+54
The inobt record holemask field is a condensed data type designed to fit into the existing on-disk record and is zero based (allocated regions are set to 0, sparse regions are set to 1) to provide backwards compatibility. This makes the type somewhat complex for use in higher level inode manipulations such as individual inode allocation, etc. Rather than foist the complexity of dealing with this field to every bit of logic that requires inode granular information, create a helper to convert the holemask to an inode allocation bitmap. The inode allocation bitmap is inode granularity similar to the inobt record free mask and indicates which inodes of the chunk are physically allocated on disk, irrespective of whether the inode is considered allocated or free by the filesystem. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: handle sparse inode chunks in icreate log recoveryBrian Foster1-6/+16
Recovery of icreate transactions assumes hardcoded values for the inode count and chunk length. Sparse inode chunks are allocated in units of m_ialloc_min_blks. Update the icreate validity checks to allow for appropriately sized inode chunks and verify the inode count matches what is expected based on the extent length rather than assuming a hardcoded count. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: pass inode count through ordered icreate log itemBrian Foster3-6/+7
v5 superblocks use an ordered log item for logging the initialization of inode chunks. The icreate log item is currently hardcoded to an inode count of 64 inodes. The agbno and extent length are used to initialize the inode chunk from log recovery. While an incorrect inode count does not lead to bad inode chunk initialization, we should pass the correct inode count such that log recovery has enough data to perform meaningful validity checks on the chunk. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: use actual inode count for sparse records in bulkstat/inumbersBrian Foster1-5/+8
The bulkstat and inumbers mechanisms make the assumption that inode records consist of a full 64 inode chunk in several places. For example, this is used to track how many inodes have been processed overall as well as to determine whether a record has allocated inodes that must be handled. This assumption is invalid for sparse inode records. While sparse inodes will be marked as free in the ir_free mask, they are not accounted as free in ir_freecount because they cannot be allocated. Therefore, ir_freecount may be less than 64 inodes in an inode record for which all physically allocated inodes are free (and in turn ir_freecount < 64 does not signify that the record has allocated inodes). The new in-core inobt record format includes the ir_count field. This holds the number of true, physical inodes tracked by the record. The in-core ir_count field is always valid as it is hardcoded to XFS_INODES_PER_CHUNK when sparse inodes is not enabled. Use ir_count to handle inode records correctly in bulkstat in a generic manner. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: introduce inode record hole mask for sparse inode chunksBrian Foster3-12/+81
The inode btrees track 64 inodes per record regardless of inode size. Thus, inode chunks on disk vary in size depending on the size of the inodes. This creates a contiguous allocation requirement for new inode chunks that can be difficult to satisfy on an aged and fragmented (free space) filesystems. The inode record freecount currently uses 4 bytes on disk to track the free inode count. With a maximum freecount value of 64, only one byte is required. Convert the freecount field to a single byte and use two of the remaining 3 higher order bytes left for the hole mask field. Use the final leftover byte for the total count field. The hole mask field tracks holes in the chunks of physical space that the inode record refers to. This facilitates the sparse allocation of inode chunks when contiguous chunks are not available and allows the inode btrees to identify what portions of the chunk contain valid inodes. The total count field contains the total number of valid inodes referred to by the record. This can also be deduced from the hole mask. The count field provides clarity and redundancy for internal record verification. Note that neither of the new fields can be written to disk on fs' without sparse inode support. Doing so writes to the high-order bytes of freecount and causes corruption from the perspective of older kernels. The on-disk inobt record data structure is updated with a union to distinguish between the original, "full" format and the new, "sparse" format. The conversion routines to get, insert and update records are updated to translate to and from the on-disk record accordingly such that freecount remains a 4-byte value on non-supported fs, yet the new fields of the in-core record are always valid with respect to the record. This means that higher level code can refer to the current in-core record format unconditionally and lower level code ensures that records are translated to/from disk according to the capabilities of the fs. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: add fs geometry bit for sparse inode chunksBrian Foster2-1/+4
Define an fs geometry bit for sparse inode chunks such that the characteristic of the fs can be identified by userspace. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: sparse inode chunks feature helpers and mount requirementsBrian Foster3-0/+44
The sparse inode chunks feature uses the helper function to enable the allocation of sparse inode chunks. The incompatible feature bit is set on disk at mkfs time to prevent mount from unsupported kernels. Also, enforce the inode alignment requirements required for sparse inode chunks at mount time. When enabled, full inode chunks (and all inode record) alignment is increased from cluster size to inode chunk size. Sparse inode alignment must match the cluster size of the fs. Both superblock alignment fields are set as such by mkfs when sparse inode support is enabled. Finally, warn that sparse inode chunks is an experimental feature until further notice. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: use sparse chunk alignment for min. inode allocation requirementBrian Foster3-1/+8
xfs_ialloc_ag_select() iterates through the allocation groups looking for free inodes or free space to determine whether to allow an inode allocation to proceed. If no free inodes are available, it assumes that an AG must have an extent longer than mp->m_ialloc_blks. Sparse inode chunk support currently allows for allocations smaller than the traditional inode chunk size specified in m_ialloc_blks. The current minimum sparse allocation is set in the superblock sb_spino_align field at mkfs time. Create a new m_ialloc_min_blks field in xfs_mount and use this to represent the minimum supported allocation size for inode chunks. Initialize m_ialloc_min_blks at mount time based on whether sparse inodes are supported. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: add sparse inode chunk alignment superblock fieldBrian Foster2-4/+4
Add sb_spino_align to the superblock to specify sparse inode chunk alignment. This also currently represents the minimum allowable sparse chunk allocation size. Signed-off-by: Brian Foster <bfoster@redhat.com>
2015-05-29xfs: support min/max agbno args in block allocatorBrian Foster2-5/+39
The block allocator supports various arguments to tweak block allocation behavior and set allocation requirements. The sparse inode chunk feature introduces a new requirement not supported by the current arguments. Sparse inode allocations must convert or merge into an inode record that describes a fixed length chunk (64 inodes x inodesize). Full inode chunk allocations by definition always result in valid inode records. Sparse chunk allocations are smaller and the associated records can refer to blocks not owned by the inode chunk. This model can result in invalid inode records in certain cases. For example, if a sparse allocation occurs near the start of an AG, the aligned inode record for that chunk might refer to agbno 0. If an allocation occurs towards the end of the AG and the AG size is not aligned, the inode record could refer to blocks beyond the end of the AG. While neither of these scenarios directly result in corruption, they both insert invalid inode records and at minimum cause repair to complain, are unlikely to merge into full chunks over time and set land mines for other areas of code. To guarantee sparse inode chunk allocation creates valid inode records, support the ability to specify an agbno range limit for XFS_ALLOCTYPE_NEAR_BNO block allocations. The min/max agbno's are specified in the allocation arguments and limit the block allocation algorithms to that range. The starting 'agbno' hint is clamped to the range if the specified agbno is out of range. If no sufficient extent is available within the range, the allocation fails. For backwards compatibility, the min/max fields can be initialized to 0 to disable range limiting (e.g., equivalent to min=0,max=agsize). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: update free inode record logic to support sparse inode recordsBrian Foster1-4/+12
xfs_difree_inobt() uses logic in a couple places that assume inobt records refer to fully allocated chunks. Specifically, the use of mp->m_ialloc_inos can cause problems for inode chunks that are sparsely allocated. Sparse inode chunks can, by definition, define a smaller number of inodes than a full inode chunk. Fix the logic that determines whether an inode record should be removed from the inobt to use the ir_free mask rather than ir_freecount. Fix the agi counters modification to use ir_freecount to add the actual number of inodes freed rather than assuming a full inode chunk. Also make sure that we preserve the behavior to not remove inode chunks if the block size is large enough for multiple inode chunks (e.g., bsize=64k, isize=512). This behavior was previously implicit in that in such configurations, ir.freecount of a single record never matches m_ialloc_inos. Hence, add some comments as well. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: create individual inode alloc. helperBrian Foster1-2/+12
Inode allocation from sparse inode records must filter the ir_free mask against ir_holemask. In preparation for this requirement, create a helper to allocate an individual inode from an inode record. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: fix broken i_nlink accounting for whiteout tmpfile inodeBrian Foster1-2/+8
XFS uses the internal tmpfile() infrastructure for the whiteout inode used for RENAME_WHITEOUT operations. For tmpfile inodes, XFS allocates the inode, drops di_nlink, adds the inode to the agi unlinked list, calls d_tmpfile() which correspondingly drops i_nlink of the vfs inode, and then finishes the common inode setup (e.g., clear I_NEW and unlock). The d_tmpfile() call was originally made inxfs_create_tmpfile(), but was pulled up out of that function as part of the following commit to resolve a deadlock issue: 330033d6 xfs: fix tmpfile/selinux deadlock and initialize security As a result, callers of xfs_create_tmpfile() are responsible for either calling d_tmpfile() or fixing up i_nlink appropriately. The whiteout tmpfile allocation helper does neither. As a result, the vfs ->i_nlink becomes inconsistent with the on-disk ->di_nlink once xfs_rename() links it back into the source dentry and calls xfs_bumplink(). Update the assert in xfs_rename() to help detect this problem in the future and update xfs_rename_alloc_whiteout() to decrement the link count as part of the manual tmpfile inode setup. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2015-05-29xfs: xfs_iozero can return positive errnoDave Chinner1-1/+1
It was missed when we converted everything in XFs to use negative error numbers, so fix it now. Bug introduced in 3.17 by commit 2451337 ("xfs: global error sign conversion"), and should go back to stable kernels. Thanks to Brian Foster for noticing it. cc: <stable@vger.kernel.org> # 3.17, 3.18, 3.19, 4.0 Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>