diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/hugetlb.c | 14 | ||||
-rw-r--r-- | mm/madvise.c | 21 | ||||
-rw-r--r-- | mm/mempolicy.c | 2 | ||||
-rw-r--r-- | mm/page_alloc.c | 32 | ||||
-rw-r--r-- | mm/slab.c | 186 | ||||
-rw-r--r-- | mm/slob.c | 2 | ||||
-rw-r--r-- | mm/swap.c | 32 | ||||
-rw-r--r-- | mm/vmscan.c | 106 |
8 files changed, 252 insertions, 143 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index b21d78c941b5..508707704d2c 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -85,7 +85,7 @@ void free_huge_page(struct page *page) BUG_ON(page_count(page)); INIT_LIST_HEAD(&page->lru); - page[1].mapping = NULL; + page[1].lru.next = NULL; /* reset dtor */ spin_lock(&hugetlb_lock); enqueue_huge_page(page); @@ -105,9 +105,9 @@ struct page *alloc_huge_page(struct vm_area_struct *vma, unsigned long addr) } spin_unlock(&hugetlb_lock); set_page_count(page, 1); - page[1].mapping = (void *)free_huge_page; + page[1].lru.next = (void *)free_huge_page; /* set dtor */ for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i) - clear_highpage(&page[i]); + clear_user_highpage(&page[i], addr); return page; } @@ -391,12 +391,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, if (!new_page) { page_cache_release(old_page); - - /* Logically this is OOM, not a SIGBUS, but an OOM - * could cause the kernel to go killing other - * processes which won't help the hugepage situation - * at all (?) */ - return VM_FAULT_SIGBUS; + return VM_FAULT_OOM; } spin_unlock(&mm->page_table_lock); @@ -444,6 +439,7 @@ retry: page = alloc_huge_page(vma, address); if (!page) { hugetlb_put_quota(mapping); + ret = VM_FAULT_OOM; goto out; } diff --git a/mm/madvise.c b/mm/madvise.c index ae0ae3ea299a..af3d573b0141 100644 --- a/mm/madvise.c +++ b/mm/madvise.c @@ -22,16 +22,23 @@ static long madvise_behavior(struct vm_area_struct * vma, struct mm_struct * mm = vma->vm_mm; int error = 0; pgoff_t pgoff; - int new_flags = vma->vm_flags & ~VM_READHINTMASK; + int new_flags = vma->vm_flags; switch (behavior) { + case MADV_NORMAL: + new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ; + break; case MADV_SEQUENTIAL: - new_flags |= VM_SEQ_READ; + new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ; break; case MADV_RANDOM: - new_flags |= VM_RAND_READ; + new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ; break; - default: + case MADV_DONTFORK: + new_flags |= VM_DONTCOPY; + break; + case MADV_DOFORK: + new_flags &= ~VM_DONTCOPY; break; } @@ -177,6 +184,12 @@ madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev, long error; switch (behavior) { + case MADV_DOFORK: + if (vma->vm_flags & VM_IO) { + error = -EINVAL; + break; + } + case MADV_DONTFORK: case MADV_NORMAL: case MADV_SEQUENTIAL: case MADV_RANDOM: diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 27da6d5c77ba..3bd7fb7e4b75 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -1159,6 +1159,7 @@ static inline unsigned interleave_nid(struct mempolicy *pol, return interleave_nodes(pol); } +#ifdef CONFIG_HUGETLBFS /* Return a zonelist suitable for a huge page allocation. */ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr) { @@ -1172,6 +1173,7 @@ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr) } return zonelist_policy(GFP_HIGHUSER, pol); } +#endif /* Allocate a page in interleaved policy. Own path because it needs to do special accounting. */ diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 44b4eb4202d9..62c122528587 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -56,6 +56,7 @@ long nr_swap_pages; int percpu_pagelist_fraction; static void fastcall free_hot_cold_page(struct page *page, int cold); +static void __free_pages_ok(struct page *page, unsigned int order); /* * results with 256, 32 in the lowmem_reserve sysctl: @@ -169,20 +170,23 @@ static void bad_page(struct page *page) * All pages have PG_compound set. All pages have their ->private pointing at * the head page (even the head page has this). * - * The first tail page's ->mapping, if non-zero, holds the address of the - * compound page's put_page() function. - * - * The order of the allocation is stored in the first tail page's ->index - * This is only for debug at present. This usage means that zero-order pages - * may not be compound. + * The first tail page's ->lru.next holds the address of the compound page's + * put_page() function. Its ->lru.prev holds the order of allocation. + * This usage means that zero-order pages may not be compound. */ + +static void free_compound_page(struct page *page) +{ + __free_pages_ok(page, (unsigned long)page[1].lru.prev); +} + static void prep_compound_page(struct page *page, unsigned long order) { int i; int nr_pages = 1 << order; - page[1].mapping = NULL; - page[1].index = order; + page[1].lru.next = (void *)free_compound_page; /* set dtor */ + page[1].lru.prev = (void *)order; for (i = 0; i < nr_pages; i++) { struct page *p = page + i; @@ -196,7 +200,7 @@ static void destroy_compound_page(struct page *page, unsigned long order) int i; int nr_pages = 1 << order; - if (unlikely(page[1].index != order)) + if (unlikely((unsigned long)page[1].lru.prev != order)) bad_page(page); for (i = 0; i < nr_pages; i++) { @@ -1213,18 +1217,21 @@ static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) { int cpu = 0; - memset(ret, 0, sizeof(*ret)); + memset(ret, 0, nr * sizeof(unsigned long)); cpus_and(*cpumask, *cpumask, cpu_online_map); cpu = first_cpu(*cpumask); while (cpu < NR_CPUS) { unsigned long *in, *out, off; + if (!cpu_isset(cpu, *cpumask)) + continue; + in = (unsigned long *)&per_cpu(page_states, cpu); cpu = next_cpu(cpu, *cpumask); - if (cpu < NR_CPUS) + if (likely(cpu < NR_CPUS)) prefetch(&per_cpu(page_states, cpu)); out = (unsigned long *)ret; @@ -1886,8 +1893,7 @@ static void setup_pagelist_highmark(struct per_cpu_pageset *p, * not check if the processor is online before following the pageset pointer. * Other parts of the kernel may not check if the zone is available. */ -static struct per_cpu_pageset - boot_pageset[NR_CPUS]; +static struct per_cpu_pageset boot_pageset[NR_CPUS]; /* * Dynamically allocate memory for the diff --git a/mm/slab.c b/mm/slab.c index 71370256a7eb..add05d808a4a 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -294,6 +294,7 @@ struct kmem_list3 { unsigned long next_reap; int free_touched; unsigned int free_limit; + unsigned int colour_next; /* Per-node cache coloring */ spinlock_t list_lock; struct array_cache *shared; /* shared per node */ struct array_cache **alien; /* on other nodes */ @@ -344,6 +345,7 @@ static void kmem_list3_init(struct kmem_list3 *parent) INIT_LIST_HEAD(&parent->slabs_free); parent->shared = NULL; parent->alien = NULL; + parent->colour_next = 0; spin_lock_init(&parent->list_lock); parent->free_objects = 0; parent->free_touched = 0; @@ -390,7 +392,6 @@ struct kmem_cache { size_t colour; /* cache colouring range */ unsigned int colour_off; /* colour offset */ - unsigned int colour_next; /* cache colouring */ struct kmem_cache *slabp_cache; unsigned int slab_size; unsigned int dflags; /* dynamic flags */ @@ -883,14 +884,14 @@ static void __drain_alien_cache(struct kmem_cache *cachep, } } -static void drain_alien_cache(struct kmem_cache *cachep, struct kmem_list3 *l3) +static void drain_alien_cache(struct kmem_cache *cachep, struct array_cache **alien) { int i = 0; struct array_cache *ac; unsigned long flags; for_each_online_node(i) { - ac = l3->alien[i]; + ac = alien[i]; if (ac) { spin_lock_irqsave(&ac->lock, flags); __drain_alien_cache(cachep, ac, i); @@ -899,9 +900,18 @@ static void drain_alien_cache(struct kmem_cache *cachep, struct kmem_list3 *l3) } } #else -#define alloc_alien_cache(node, limit) do { } while (0) -#define free_alien_cache(ac_ptr) do { } while (0) -#define drain_alien_cache(cachep, l3) do { } while (0) + +#define drain_alien_cache(cachep, alien) do { } while (0) + +static inline struct array_cache **alloc_alien_cache(int node, int limit) +{ + return (struct array_cache **) 0x01020304ul; +} + +static inline void free_alien_cache(struct array_cache **ac_ptr) +{ +} + #endif static int __devinit cpuup_callback(struct notifier_block *nfb, @@ -935,6 +945,11 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + ((unsigned long)cachep) % REAPTIMEOUT_LIST3; + /* + * The l3s don't come and go as CPUs come and + * go. cache_chain_mutex is sufficient + * protection here. + */ cachep->nodelists[node] = l3; } @@ -949,26 +964,46 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, & array cache's */ list_for_each_entry(cachep, &cache_chain, next) { struct array_cache *nc; + struct array_cache *shared; + struct array_cache **alien; nc = alloc_arraycache(node, cachep->limit, - cachep->batchcount); + cachep->batchcount); if (!nc) goto bad; + shared = alloc_arraycache(node, + cachep->shared * cachep->batchcount, + 0xbaadf00d); + if (!shared) + goto bad; + + alien = alloc_alien_cache(node, cachep->limit); + if (!alien) + goto bad; cachep->array[cpu] = nc; l3 = cachep->nodelists[node]; BUG_ON(!l3); - if (!l3->shared) { - if (!(nc = alloc_arraycache(node, - cachep->shared * - cachep->batchcount, - 0xbaadf00d))) - goto bad; - /* we are serialised from CPU_DEAD or - CPU_UP_CANCELLED by the cpucontrol lock */ - l3->shared = nc; + spin_lock_irq(&l3->list_lock); + if (!l3->shared) { + /* + * We are serialised from CPU_DEAD or + * CPU_UP_CANCELLED by the cpucontrol lock + */ + l3->shared = shared; + shared = NULL; } +#ifdef CONFIG_NUMA + if (!l3->alien) { + l3->alien = alien; + alien = NULL; + } +#endif + spin_unlock_irq(&l3->list_lock); + + kfree(shared); + free_alien_cache(alien); } mutex_unlock(&cache_chain_mutex); break; @@ -977,25 +1012,34 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DEAD: + /* + * Even if all the cpus of a node are down, we don't free the + * kmem_list3 of any cache. This to avoid a race between + * cpu_down, and a kmalloc allocation from another cpu for + * memory from the node of the cpu going down. The list3 + * structure is usually allocated from kmem_cache_create() and + * gets destroyed at kmem_cache_destroy(). + */ /* fall thru */ case CPU_UP_CANCELED: mutex_lock(&cache_chain_mutex); list_for_each_entry(cachep, &cache_chain, next) { struct array_cache *nc; + struct array_cache *shared; + struct array_cache **alien; cpumask_t mask; mask = node_to_cpumask(node); - spin_lock_irq(&cachep->spinlock); /* cpu is dead; no one can alloc from it. */ nc = cachep->array[cpu]; cachep->array[cpu] = NULL; l3 = cachep->nodelists[node]; if (!l3) - goto unlock_cache; + goto free_array_cache; - spin_lock(&l3->list_lock); + spin_lock_irq(&l3->list_lock); /* Free limit for this kmem_list3 */ l3->free_limit -= cachep->batchcount; @@ -1003,34 +1047,44 @@ static int __devinit cpuup_callback(struct notifier_block *nfb, free_block(cachep, nc->entry, nc->avail, node); if (!cpus_empty(mask)) { - spin_unlock(&l3->list_lock); - goto unlock_cache; + spin_unlock_irq(&l3->list_lock); + goto free_array_cache; } - if (l3->shared) { + shared = l3->shared; + if (shared) { free_block(cachep, l3->shared->entry, l3->shared->avail, node); - kfree(l3->shared); l3->shared = NULL; } - if (l3->alien) { - drain_alien_cache(cachep, l3); - free_alien_cache(l3->alien); - l3->alien = NULL; - } - /* free slabs belonging to this node */ - if (__node_shrink(cachep, node)) { - cachep->nodelists[node] = NULL; - spin_unlock(&l3->list_lock); - kfree(l3); - } else { - spin_unlock(&l3->list_lock); + alien = l3->alien; + l3->alien = NULL; + + spin_unlock_irq(&l3->list_lock); + + kfree(shared); + if (alien) { + drain_alien_cache(cachep, alien); + free_alien_cache(alien); } - unlock_cache: - spin_unlock_irq(&cachep->spinlock); +free_array_cache: kfree(nc); } + /* + * In the previous loop, all the objects were freed to + * the respective cache's slabs, now we can go ahead and + * shrink each nodelist to its limit. + */ + list_for_each_entry(cachep, &cache_chain, next) { + l3 = cachep->nodelists[node]; + if (!l3) + continue; + spin_lock_irq(&l3->list_lock); + /* free slabs belonging to this node */ + __node_shrink(cachep, node); + spin_unlock_irq(&l3->list_lock); + } mutex_unlock(&cache_chain_mutex); break; #endif @@ -1119,7 +1173,6 @@ void __init kmem_cache_init(void) BUG(); cache_cache.colour = left_over / cache_cache.colour_off; - cache_cache.colour_next = 0; cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + sizeof(struct slab), cache_line_size()); @@ -1664,6 +1717,12 @@ kmem_cache_create (const char *name, size_t size, size_t align, BUG(); } + /* + * Prevent CPUs from coming and going. + * lock_cpu_hotplug() nests outside cache_chain_mutex + */ + lock_cpu_hotplug(); + mutex_lock(&cache_chain_mutex); list_for_each(p, &cache_chain) { @@ -1865,8 +1924,6 @@ kmem_cache_create (const char *name, size_t size, size_t align, cachep->dtor = dtor; cachep->name = name; - /* Don't let CPUs to come and go */ - lock_cpu_hotplug(); if (g_cpucache_up == FULL) { enable_cpucache(cachep); @@ -1925,12 +1982,12 @@ kmem_cache_create (const char *name, size_t size, size_t align, /* cache setup completed, link it into the list */ list_add(&cachep->next, &cache_chain); - unlock_cpu_hotplug(); oops: if (!cachep && (flags & SLAB_PANIC)) panic("kmem_cache_create(): failed to create slab `%s'\n", name); mutex_unlock(&cache_chain_mutex); + unlock_cpu_hotplug(); return cachep; } EXPORT_SYMBOL(kmem_cache_create); @@ -2011,18 +2068,16 @@ static void drain_cpu_caches(struct kmem_cache *cachep) smp_call_function_all_cpus(do_drain, cachep); check_irq_on(); - spin_lock_irq(&cachep->spinlock); for_each_online_node(node) { l3 = cachep->nodelists[node]; if (l3) { - spin_lock(&l3->list_lock); + spin_lock_irq(&l3->list_lock); drain_array_locked(cachep, l3->shared, 1, node); - spin_unlock(&l3->list_lock); + spin_unlock_irq(&l3->list_lock); if (l3->alien) - drain_alien_cache(cachep, l3); + drain_alien_cache(cachep, l3->alien); } } - spin_unlock_irq(&cachep->spinlock); } static int __node_shrink(struct kmem_cache *cachep, int node) @@ -2324,20 +2379,20 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid) */ ctor_flags |= SLAB_CTOR_ATOMIC; - /* About to mess with non-constant members - lock. */ + /* Take the l3 list lock to change the colour_next on this node */ check_irq_off(); - spin_lock(&cachep->spinlock); + l3 = cachep->nodelists[nodeid]; + spin_lock(&l3->list_lock); /* Get colour for the slab, and cal the next value. */ - offset = cachep->colour_next; - cachep->colour_next++; - if (cachep->colour_next >= cachep->colour) - cachep->colour_next = 0; - offset *= cachep->colour_off; + offset = l3->colour_next; + l3->colour_next++; + if (l3->colour_next >= cachep->colour) + l3->colour_next = 0; + spin_unlock(&l3->list_lock); - spin_unlock(&cachep->spinlock); + offset *= cachep->colour_off; - check_irq_off(); if (local_flags & __GFP_WAIT) local_irq_enable(); @@ -2367,7 +2422,6 @@ static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid) if (local_flags & __GFP_WAIT) local_irq_disable(); check_irq_off(); - l3 = cachep->nodelists[nodeid]; spin_lock(&l3->list_lock); /* Make slab active. */ @@ -2725,6 +2779,7 @@ static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int node BUG_ON(!l3); retry: + check_irq_off(); spin_lock(&l3->list_lock); entry = l3->slabs_partial.next; if (entry == &l3->slabs_partial) { @@ -3304,11 +3359,11 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount smp_call_function_all_cpus(do_ccupdate_local, (void *)&new); check_irq_on(); - spin_lock_irq(&cachep->spinlock); + spin_lock(&cachep->spinlock); cachep->batchcount = batchcount; cachep->limit = limit; cachep->shared = shared; - spin_unlock_irq(&cachep->spinlock); + spin_unlock(&cachep->spinlock); for_each_online_cpu(i) { struct array_cache *ccold = new.new[i]; @@ -3440,7 +3495,7 @@ static void cache_reap(void *unused) l3 = searchp->nodelists[numa_node_id()]; if (l3->alien) - drain_alien_cache(searchp, l3); + drain_alien_cache(searchp, l3->alien); spin_lock_irq(&l3->list_lock); drain_array_locked(searchp, cpu_cache_get(searchp), 0, @@ -3564,8 +3619,7 @@ static int s_show(struct seq_file *m, void *p) int node; struct kmem_list3 *l3; - check_irq_on(); - spin_lock_irq(&cachep->spinlock); + spin_lock(&cachep->spinlock); active_objs = 0; num_slabs = 0; for_each_online_node(node) { @@ -3573,7 +3627,8 @@ static int s_show(struct seq_file *m, void *p) if (!l3) continue; - spin_lock(&l3->list_lock); + check_irq_on(); + spin_lock_irq(&l3->list_lock); list_for_each(q, &l3->slabs_full) { slabp = list_entry(q, struct slab, list); @@ -3598,9 +3653,10 @@ static int s_show(struct seq_file *m, void *p) num_slabs++; } free_objects += l3->free_objects; - shared_avail += l3->shared->avail; + if (l3->shared) + shared_avail += l3->shared->avail; - spin_unlock(&l3->list_lock); + spin_unlock_irq(&l3->list_lock); } num_slabs += active_slabs; num_objs = num_slabs * cachep->num; @@ -3644,7 +3700,7 @@ static int s_show(struct seq_file *m, void *p) } #endif seq_putc(m, '\n'); - spin_unlock_irq(&cachep->spinlock); + spin_unlock(&cachep->spinlock); return 0; } diff --git a/mm/slob.c b/mm/slob.c index 1c240c4b71d9..a1f42bdc0245 100644 --- a/mm/slob.c +++ b/mm/slob.c @@ -336,7 +336,7 @@ EXPORT_SYMBOL(slab_reclaim_pages); #ifdef CONFIG_SMP -void *__alloc_percpu(size_t size, size_t align) +void *__alloc_percpu(size_t size) { int i; struct percpu_data *pdata = kmalloc(sizeof (*pdata), GFP_KERNEL); diff --git a/mm/swap.c b/mm/swap.c index bc2442a7b0ee..cce3dda59c59 100644 --- a/mm/swap.c +++ b/mm/swap.c @@ -34,19 +34,22 @@ /* How many pages do we try to swap or page in/out together? */ int page_cluster; -void put_page(struct page *page) +static void put_compound_page(struct page *page) { - if (unlikely(PageCompound(page))) { - page = (struct page *)page_private(page); - if (put_page_testzero(page)) { - void (*dtor)(struct page *page); + page = (struct page *)page_private(page); + if (put_page_testzero(page)) { + void (*dtor)(struct page *page); - dtor = (void (*)(struct page *))page[1].mapping; - (*dtor)(page); - } - return; + dtor = (void (*)(struct page *))page[1].lru.next; + (*dtor)(page); } - if (put_page_testzero(page)) +} + +void put_page(struct page *page) +{ + if (unlikely(PageCompound(page))) + put_compound_page(page); + else if (put_page_testzero(page)) __page_cache_release(page); } EXPORT_SYMBOL(put_page); @@ -244,6 +247,15 @@ void release_pages(struct page **pages, int nr, int cold) struct page *page = pages[i]; struct zone *pagezone; + if (unlikely(PageCompound(page))) { + if (zone) { + spin_unlock_irq(&zone->lru_lock); + zone = NULL; + } + put_compound_page(page); + continue; + } + if (!put_page_testzero(page)) continue; diff --git a/mm/vmscan.c b/mm/vmscan.c index 5a610804cd06..1838c15ca4fd 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -443,6 +443,10 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc) BUG_ON(PageActive(page)); sc->nr_scanned++; + + if (!sc->may_swap && page_mapped(page)) + goto keep_locked; + /* Double the slab pressure for mapped and swapcache pages */ if (page_mapped(page) || PageSwapCache(page)) sc->nr_scanned++; @@ -632,7 +636,7 @@ static int swap_page(struct page *page) struct address_space *mapping = page_mapping(page); if (page_mapped(page) && mapping) - if (try_to_unmap(page, 0) != SWAP_SUCCESS) + if (try_to_unmap(page, 1) != SWAP_SUCCESS) goto unlock_retry; if (PageDirty(page)) { @@ -839,7 +843,7 @@ EXPORT_SYMBOL(migrate_page); * pages are swapped out. * * The function returns after 10 attempts or if no pages - * are movable anymore because t has become empty + * are movable anymore because to has become empty * or no retryable pages exist anymore. * * Return: Number of pages not migrated when "to" ran empty. @@ -928,12 +932,21 @@ redo: goto unlock_both; if (mapping->a_ops->migratepage) { + /* + * Most pages have a mapping and most filesystems + * should provide a migration function. Anonymous + * pages are part of swap space which also has its + * own migration function. This is the most common + * path for page migration. + */ rc = mapping->a_ops->migratepage(newpage, page); goto unlock_both; } /* - * Trigger writeout if page is dirty + * Default handling if a filesystem does not provide + * a migration function. We can only migrate clean + * pages so try to write out any dirty pages first. */ if (PageDirty(page)) { switch (pageout(page, mapping)) { @@ -949,9 +962,10 @@ redo: ; /* try to migrate the page below */ } } + /* - * If we have no buffer or can release the buffer - * then do a simple migration. + * Buffers are managed in a filesystem specific way. + * We must have no buffers or drop them. */ if (!page_has_buffers(page) || try_to_release_page(page, GFP_KERNEL)) { @@ -966,6 +980,11 @@ redo: * swap them out. */ if (pass > 4) { + /* + * Persistently unable to drop buffers..... As a + * measure of last resort we fall back to + * swap_page(). + */ unlock_page(newpage); newpage = NULL; rc = swap_page(page); @@ -1176,9 +1195,47 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc) struct page *page; struct pagevec pvec; int reclaim_mapped = 0; - long mapped_ratio; - long distress; - long swap_tendency; + + if (unlikely(sc->may_swap)) { + long mapped_ratio; + long distress; + long swap_tendency; + + /* + * `distress' is a measure of how much trouble we're having + * reclaiming pages. 0 -> no problems. 100 -> great trouble. + */ + distress = 100 >> zone->prev_priority; + + /* + * The point of this algorithm is to decide when to start + * reclaiming mapped memory instead of just pagecache. Work out + * how much memory + * is mapped. + */ + mapped_ratio = (sc->nr_mapped * 100) / total_memory; + + /* + * Now decide how much we really want to unmap some pages. The + * mapped ratio is downgraded - just because there's a lot of + * mapped memory doesn't necessarily mean that page reclaim + * isn't succeeding. + * + * The distress ratio is important - we don't want to start + * going oom. + * + * A 100% value of vm_swappiness overrides this algorithm + * altogether. + */ + swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; + + /* + * Now use this metric to decide whether to start moving mapped + * memory onto the inactive list. + */ + if (swap_tendency >= 100) + reclaim_mapped = 1; + } lru_add_drain(); spin_lock_irq(&zone->lru_lock); @@ -1188,37 +1245,6 @@ refill_inactive_zone(struct zone *zone, struct scan_control *sc) zone->nr_active -= pgmoved; spin_unlock_irq(&zone->lru_lock); - /* - * `distress' is a measure of how much trouble we're having reclaiming - * pages. 0 -> no problems. 100 -> great trouble. - */ - distress = 100 >> zone->prev_priority; - - /* - * The point of this algorithm is to decide when to start reclaiming - * mapped memory instead of just pagecache. Work out how much memory - * is mapped. - */ - mapped_ratio = (sc->nr_mapped * 100) / total_memory; - - /* - * Now decide how much we really want to unmap some pages. The mapped - * ratio is downgraded - just because there's a lot of mapped memory - * doesn't necessarily mean that page reclaim isn't succeeding. - * - * The distress ratio is important - we don't want to start going oom. - * - * A 100% value of vm_swappiness overrides this algorithm altogether. - */ - swap_tendency = mapped_ratio / 2 + distress + vm_swappiness; - - /* - * Now use this metric to decide whether to start moving mapped memory - * onto the inactive list. - */ - if (swap_tendency >= 100) - reclaim_mapped = 1; - while (!list_empty(&l_hold)) { cond_resched(); page = lru_to_page(&l_hold); @@ -1595,9 +1621,7 @@ scan: sc.nr_reclaimed = 0; sc.priority = priority; sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX; - atomic_inc(&zone->reclaim_in_progress); shrink_zone(zone, &sc); - atomic_dec(&zone->reclaim_in_progress); reclaim_state->reclaimed_slab = 0; nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, lru_pages); |