diff options
Diffstat (limited to 'mm/migrate_device.c')
| -rw-r--r-- | mm/migrate_device.c | 773 | 
1 files changed, 773 insertions, 0 deletions
diff --git a/mm/migrate_device.c b/mm/migrate_device.c new file mode 100644 index 000000000000..70c7dc05bbfc --- /dev/null +++ b/mm/migrate_device.c @@ -0,0 +1,773 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Device Memory Migration functionality. + * + * Originally written by Jérôme Glisse. + */ +#include <linux/export.h> +#include <linux/memremap.h> +#include <linux/migrate.h> +#include <linux/mm_inline.h> +#include <linux/mmu_notifier.h> +#include <linux/oom.h> +#include <linux/pagewalk.h> +#include <linux/rmap.h> +#include <linux/swapops.h> +#include <asm/tlbflush.h> +#include "internal.h" + +static int migrate_vma_collect_skip(unsigned long start, +				    unsigned long end, +				    struct mm_walk *walk) +{ +	struct migrate_vma *migrate = walk->private; +	unsigned long addr; + +	for (addr = start; addr < end; addr += PAGE_SIZE) { +		migrate->dst[migrate->npages] = 0; +		migrate->src[migrate->npages++] = 0; +	} + +	return 0; +} + +static int migrate_vma_collect_hole(unsigned long start, +				    unsigned long end, +				    __always_unused int depth, +				    struct mm_walk *walk) +{ +	struct migrate_vma *migrate = walk->private; +	unsigned long addr; + +	/* Only allow populating anonymous memory. */ +	if (!vma_is_anonymous(walk->vma)) +		return migrate_vma_collect_skip(start, end, walk); + +	for (addr = start; addr < end; addr += PAGE_SIZE) { +		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE; +		migrate->dst[migrate->npages] = 0; +		migrate->npages++; +		migrate->cpages++; +	} + +	return 0; +} + +static int migrate_vma_collect_pmd(pmd_t *pmdp, +				   unsigned long start, +				   unsigned long end, +				   struct mm_walk *walk) +{ +	struct migrate_vma *migrate = walk->private; +	struct vm_area_struct *vma = walk->vma; +	struct mm_struct *mm = vma->vm_mm; +	unsigned long addr = start, unmapped = 0; +	spinlock_t *ptl; +	pte_t *ptep; + +again: +	if (pmd_none(*pmdp)) +		return migrate_vma_collect_hole(start, end, -1, walk); + +	if (pmd_trans_huge(*pmdp)) { +		struct page *page; + +		ptl = pmd_lock(mm, pmdp); +		if (unlikely(!pmd_trans_huge(*pmdp))) { +			spin_unlock(ptl); +			goto again; +		} + +		page = pmd_page(*pmdp); +		if (is_huge_zero_page(page)) { +			spin_unlock(ptl); +			split_huge_pmd(vma, pmdp, addr); +			if (pmd_trans_unstable(pmdp)) +				return migrate_vma_collect_skip(start, end, +								walk); +		} else { +			int ret; + +			get_page(page); +			spin_unlock(ptl); +			if (unlikely(!trylock_page(page))) +				return migrate_vma_collect_skip(start, end, +								walk); +			ret = split_huge_page(page); +			unlock_page(page); +			put_page(page); +			if (ret) +				return migrate_vma_collect_skip(start, end, +								walk); +			if (pmd_none(*pmdp)) +				return migrate_vma_collect_hole(start, end, -1, +								walk); +		} +	} + +	if (unlikely(pmd_bad(*pmdp))) +		return migrate_vma_collect_skip(start, end, walk); + +	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); +	arch_enter_lazy_mmu_mode(); + +	for (; addr < end; addr += PAGE_SIZE, ptep++) { +		unsigned long mpfn = 0, pfn; +		struct page *page; +		swp_entry_t entry; +		pte_t pte; + +		pte = *ptep; + +		if (pte_none(pte)) { +			if (vma_is_anonymous(vma)) { +				mpfn = MIGRATE_PFN_MIGRATE; +				migrate->cpages++; +			} +			goto next; +		} + +		if (!pte_present(pte)) { +			/* +			 * Only care about unaddressable device page special +			 * page table entry. Other special swap entries are not +			 * migratable, and we ignore regular swapped page. +			 */ +			entry = pte_to_swp_entry(pte); +			if (!is_device_private_entry(entry)) +				goto next; + +			page = pfn_swap_entry_to_page(entry); +			if (!(migrate->flags & +				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) || +			    page->pgmap->owner != migrate->pgmap_owner) +				goto next; + +			mpfn = migrate_pfn(page_to_pfn(page)) | +					MIGRATE_PFN_MIGRATE; +			if (is_writable_device_private_entry(entry)) +				mpfn |= MIGRATE_PFN_WRITE; +		} else { +			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) +				goto next; +			pfn = pte_pfn(pte); +			if (is_zero_pfn(pfn)) { +				mpfn = MIGRATE_PFN_MIGRATE; +				migrate->cpages++; +				goto next; +			} +			page = vm_normal_page(migrate->vma, addr, pte); +			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE; +			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0; +		} + +		/* FIXME support THP */ +		if (!page || !page->mapping || PageTransCompound(page)) { +			mpfn = 0; +			goto next; +		} + +		/* +		 * By getting a reference on the page we pin it and that blocks +		 * any kind of migration. Side effect is that it "freezes" the +		 * pte. +		 * +		 * We drop this reference after isolating the page from the lru +		 * for non device page (device page are not on the lru and thus +		 * can't be dropped from it). +		 */ +		get_page(page); + +		/* +		 * Optimize for the common case where page is only mapped once +		 * in one process. If we can lock the page, then we can safely +		 * set up a special migration page table entry now. +		 */ +		if (trylock_page(page)) { +			pte_t swp_pte; + +			migrate->cpages++; +			ptep_get_and_clear(mm, addr, ptep); + +			/* Setup special migration page table entry */ +			if (mpfn & MIGRATE_PFN_WRITE) +				entry = make_writable_migration_entry( +							page_to_pfn(page)); +			else +				entry = make_readable_migration_entry( +							page_to_pfn(page)); +			swp_pte = swp_entry_to_pte(entry); +			if (pte_present(pte)) { +				if (pte_soft_dirty(pte)) +					swp_pte = pte_swp_mksoft_dirty(swp_pte); +				if (pte_uffd_wp(pte)) +					swp_pte = pte_swp_mkuffd_wp(swp_pte); +			} else { +				if (pte_swp_soft_dirty(pte)) +					swp_pte = pte_swp_mksoft_dirty(swp_pte); +				if (pte_swp_uffd_wp(pte)) +					swp_pte = pte_swp_mkuffd_wp(swp_pte); +			} +			set_pte_at(mm, addr, ptep, swp_pte); + +			/* +			 * This is like regular unmap: we remove the rmap and +			 * drop page refcount. Page won't be freed, as we took +			 * a reference just above. +			 */ +			page_remove_rmap(page, vma, false); +			put_page(page); + +			if (pte_present(pte)) +				unmapped++; +		} else { +			put_page(page); +			mpfn = 0; +		} + +next: +		migrate->dst[migrate->npages] = 0; +		migrate->src[migrate->npages++] = mpfn; +	} +	arch_leave_lazy_mmu_mode(); +	pte_unmap_unlock(ptep - 1, ptl); + +	/* Only flush the TLB if we actually modified any entries */ +	if (unmapped) +		flush_tlb_range(walk->vma, start, end); + +	return 0; +} + +static const struct mm_walk_ops migrate_vma_walk_ops = { +	.pmd_entry		= migrate_vma_collect_pmd, +	.pte_hole		= migrate_vma_collect_hole, +}; + +/* + * migrate_vma_collect() - collect pages over a range of virtual addresses + * @migrate: migrate struct containing all migration information + * + * This will walk the CPU page table. For each virtual address backed by a + * valid page, it updates the src array and takes a reference on the page, in + * order to pin the page until we lock it and unmap it. + */ +static void migrate_vma_collect(struct migrate_vma *migrate) +{ +	struct mmu_notifier_range range; + +	/* +	 * Note that the pgmap_owner is passed to the mmu notifier callback so +	 * that the registered device driver can skip invalidating device +	 * private page mappings that won't be migrated. +	 */ +	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0, +		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end, +		migrate->pgmap_owner); +	mmu_notifier_invalidate_range_start(&range); + +	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end, +			&migrate_vma_walk_ops, migrate); + +	mmu_notifier_invalidate_range_end(&range); +	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT); +} + +/* + * migrate_vma_check_page() - check if page is pinned or not + * @page: struct page to check + * + * Pinned pages cannot be migrated. This is the same test as in + * folio_migrate_mapping(), except that here we allow migration of a + * ZONE_DEVICE page. + */ +static bool migrate_vma_check_page(struct page *page) +{ +	/* +	 * One extra ref because caller holds an extra reference, either from +	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for +	 * a device page. +	 */ +	int extra = 1; + +	/* +	 * FIXME support THP (transparent huge page), it is bit more complex to +	 * check them than regular pages, because they can be mapped with a pmd +	 * or with a pte (split pte mapping). +	 */ +	if (PageCompound(page)) +		return false; + +	/* Page from ZONE_DEVICE have one extra reference */ +	if (is_zone_device_page(page)) +		extra++; + +	/* For file back page */ +	if (page_mapping(page)) +		extra += 1 + page_has_private(page); + +	if ((page_count(page) - extra) > page_mapcount(page)) +		return false; + +	return true; +} + +/* + * migrate_vma_unmap() - replace page mapping with special migration pte entry + * @migrate: migrate struct containing all migration information + * + * Isolate pages from the LRU and replace mappings (CPU page table pte) with a + * special migration pte entry and check if it has been pinned. Pinned pages are + * restored because we cannot migrate them. + * + * This is the last step before we call the device driver callback to allocate + * destination memory and copy contents of original page over to new page. + */ +static void migrate_vma_unmap(struct migrate_vma *migrate) +{ +	const unsigned long npages = migrate->npages; +	unsigned long i, restore = 0; +	bool allow_drain = true; + +	lru_add_drain(); + +	for (i = 0; i < npages; i++) { +		struct page *page = migrate_pfn_to_page(migrate->src[i]); +		struct folio *folio; + +		if (!page) +			continue; + +		/* ZONE_DEVICE pages are not on LRU */ +		if (!is_zone_device_page(page)) { +			if (!PageLRU(page) && allow_drain) { +				/* Drain CPU's pagevec */ +				lru_add_drain_all(); +				allow_drain = false; +			} + +			if (isolate_lru_page(page)) { +				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; +				migrate->cpages--; +				restore++; +				continue; +			} + +			/* Drop the reference we took in collect */ +			put_page(page); +		} + +		folio = page_folio(page); +		if (folio_mapped(folio)) +			try_to_migrate(folio, 0); + +		if (page_mapped(page) || !migrate_vma_check_page(page)) { +			if (!is_zone_device_page(page)) { +				get_page(page); +				putback_lru_page(page); +			} + +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; +			migrate->cpages--; +			restore++; +			continue; +		} +	} + +	for (i = 0; i < npages && restore; i++) { +		struct page *page = migrate_pfn_to_page(migrate->src[i]); +		struct folio *folio; + +		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE)) +			continue; + +		folio = page_folio(page); +		remove_migration_ptes(folio, folio, false); + +		migrate->src[i] = 0; +		folio_unlock(folio); +		folio_put(folio); +		restore--; +	} +} + +/** + * migrate_vma_setup() - prepare to migrate a range of memory + * @args: contains the vma, start, and pfns arrays for the migration + * + * Returns: negative errno on failures, 0 when 0 or more pages were migrated + * without an error. + * + * Prepare to migrate a range of memory virtual address range by collecting all + * the pages backing each virtual address in the range, saving them inside the + * src array.  Then lock those pages and unmap them. Once the pages are locked + * and unmapped, check whether each page is pinned or not.  Pages that aren't + * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the + * corresponding src array entry.  Then restores any pages that are pinned, by + * remapping and unlocking those pages. + * + * The caller should then allocate destination memory and copy source memory to + * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE + * flag set).  Once these are allocated and copied, the caller must update each + * corresponding entry in the dst array with the pfn value of the destination + * page and with MIGRATE_PFN_VALID. Destination pages must be locked via + * lock_page(). + * + * Note that the caller does not have to migrate all the pages that are marked + * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from + * device memory to system memory.  If the caller cannot migrate a device page + * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe + * consequences for the userspace process, so it must be avoided if at all + * possible. + * + * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we + * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus + * allowing the caller to allocate device memory for those unbacked virtual + * addresses.  For this the caller simply has to allocate device memory and + * properly set the destination entry like for regular migration.  Note that + * this can still fail, and thus inside the device driver you must check if the + * migration was successful for those entries after calling migrate_vma_pages(), + * just like for regular migration. + * + * After that, the callers must call migrate_vma_pages() to go over each entry + * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag + * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set, + * then migrate_vma_pages() to migrate struct page information from the source + * struct page to the destination struct page.  If it fails to migrate the + * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the + * src array. + * + * At this point all successfully migrated pages have an entry in the src + * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst + * array entry with MIGRATE_PFN_VALID flag set. + * + * Once migrate_vma_pages() returns the caller may inspect which pages were + * successfully migrated, and which were not.  Successfully migrated pages will + * have the MIGRATE_PFN_MIGRATE flag set for their src array entry. + * + * It is safe to update device page table after migrate_vma_pages() because + * both destination and source page are still locked, and the mmap_lock is held + * in read mode (hence no one can unmap the range being migrated). + * + * Once the caller is done cleaning up things and updating its page table (if it + * chose to do so, this is not an obligation) it finally calls + * migrate_vma_finalize() to update the CPU page table to point to new pages + * for successfully migrated pages or otherwise restore the CPU page table to + * point to the original source pages. + */ +int migrate_vma_setup(struct migrate_vma *args) +{ +	long nr_pages = (args->end - args->start) >> PAGE_SHIFT; + +	args->start &= PAGE_MASK; +	args->end &= PAGE_MASK; +	if (!args->vma || is_vm_hugetlb_page(args->vma) || +	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma)) +		return -EINVAL; +	if (nr_pages <= 0) +		return -EINVAL; +	if (args->start < args->vma->vm_start || +	    args->start >= args->vma->vm_end) +		return -EINVAL; +	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end) +		return -EINVAL; +	if (!args->src || !args->dst) +		return -EINVAL; + +	memset(args->src, 0, sizeof(*args->src) * nr_pages); +	args->cpages = 0; +	args->npages = 0; + +	migrate_vma_collect(args); + +	if (args->cpages) +		migrate_vma_unmap(args); + +	/* +	 * At this point pages are locked and unmapped, and thus they have +	 * stable content and can safely be copied to destination memory that +	 * is allocated by the drivers. +	 */ +	return 0; + +} +EXPORT_SYMBOL(migrate_vma_setup); + +/* + * This code closely matches the code in: + *   __handle_mm_fault() + *     handle_pte_fault() + *       do_anonymous_page() + * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE + * private page. + */ +static void migrate_vma_insert_page(struct migrate_vma *migrate, +				    unsigned long addr, +				    struct page *page, +				    unsigned long *src) +{ +	struct vm_area_struct *vma = migrate->vma; +	struct mm_struct *mm = vma->vm_mm; +	bool flush = false; +	spinlock_t *ptl; +	pte_t entry; +	pgd_t *pgdp; +	p4d_t *p4dp; +	pud_t *pudp; +	pmd_t *pmdp; +	pte_t *ptep; + +	/* Only allow populating anonymous memory */ +	if (!vma_is_anonymous(vma)) +		goto abort; + +	pgdp = pgd_offset(mm, addr); +	p4dp = p4d_alloc(mm, pgdp, addr); +	if (!p4dp) +		goto abort; +	pudp = pud_alloc(mm, p4dp, addr); +	if (!pudp) +		goto abort; +	pmdp = pmd_alloc(mm, pudp, addr); +	if (!pmdp) +		goto abort; + +	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp)) +		goto abort; + +	/* +	 * Use pte_alloc() instead of pte_alloc_map().  We can't run +	 * pte_offset_map() on pmds where a huge pmd might be created +	 * from a different thread. +	 * +	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when +	 * parallel threads are excluded by other means. +	 * +	 * Here we only have mmap_read_lock(mm). +	 */ +	if (pte_alloc(mm, pmdp)) +		goto abort; + +	/* See the comment in pte_alloc_one_map() */ +	if (unlikely(pmd_trans_unstable(pmdp))) +		goto abort; + +	if (unlikely(anon_vma_prepare(vma))) +		goto abort; +	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL)) +		goto abort; + +	/* +	 * The memory barrier inside __SetPageUptodate makes sure that +	 * preceding stores to the page contents become visible before +	 * the set_pte_at() write. +	 */ +	__SetPageUptodate(page); + +	if (is_device_private_page(page)) { +		swp_entry_t swp_entry; + +		if (vma->vm_flags & VM_WRITE) +			swp_entry = make_writable_device_private_entry( +						page_to_pfn(page)); +		else +			swp_entry = make_readable_device_private_entry( +						page_to_pfn(page)); +		entry = swp_entry_to_pte(swp_entry); +	} else { +		/* +		 * For now we only support migrating to un-addressable device +		 * memory. +		 */ +		if (is_zone_device_page(page)) { +			pr_warn_once("Unsupported ZONE_DEVICE page type.\n"); +			goto abort; +		} +		entry = mk_pte(page, vma->vm_page_prot); +		if (vma->vm_flags & VM_WRITE) +			entry = pte_mkwrite(pte_mkdirty(entry)); +	} + +	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl); + +	if (check_stable_address_space(mm)) +		goto unlock_abort; + +	if (pte_present(*ptep)) { +		unsigned long pfn = pte_pfn(*ptep); + +		if (!is_zero_pfn(pfn)) +			goto unlock_abort; +		flush = true; +	} else if (!pte_none(*ptep)) +		goto unlock_abort; + +	/* +	 * Check for userfaultfd but do not deliver the fault. Instead, +	 * just back off. +	 */ +	if (userfaultfd_missing(vma)) +		goto unlock_abort; + +	inc_mm_counter(mm, MM_ANONPAGES); +	page_add_new_anon_rmap(page, vma, addr, false); +	if (!is_zone_device_page(page)) +		lru_cache_add_inactive_or_unevictable(page, vma); +	get_page(page); + +	if (flush) { +		flush_cache_page(vma, addr, pte_pfn(*ptep)); +		ptep_clear_flush_notify(vma, addr, ptep); +		set_pte_at_notify(mm, addr, ptep, entry); +		update_mmu_cache(vma, addr, ptep); +	} else { +		/* No need to invalidate - it was non-present before */ +		set_pte_at(mm, addr, ptep, entry); +		update_mmu_cache(vma, addr, ptep); +	} + +	pte_unmap_unlock(ptep, ptl); +	*src = MIGRATE_PFN_MIGRATE; +	return; + +unlock_abort: +	pte_unmap_unlock(ptep, ptl); +abort: +	*src &= ~MIGRATE_PFN_MIGRATE; +} + +/** + * migrate_vma_pages() - migrate meta-data from src page to dst page + * @migrate: migrate struct containing all migration information + * + * This migrates struct page meta-data from source struct page to destination + * struct page. This effectively finishes the migration from source page to the + * destination page. + */ +void migrate_vma_pages(struct migrate_vma *migrate) +{ +	const unsigned long npages = migrate->npages; +	const unsigned long start = migrate->start; +	struct mmu_notifier_range range; +	unsigned long addr, i; +	bool notified = false; + +	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) { +		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); +		struct page *page = migrate_pfn_to_page(migrate->src[i]); +		struct address_space *mapping; +		int r; + +		if (!newpage) { +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; +			continue; +		} + +		if (!page) { +			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) +				continue; +			if (!notified) { +				notified = true; + +				mmu_notifier_range_init_owner(&range, +					MMU_NOTIFY_MIGRATE, 0, migrate->vma, +					migrate->vma->vm_mm, addr, migrate->end, +					migrate->pgmap_owner); +				mmu_notifier_invalidate_range_start(&range); +			} +			migrate_vma_insert_page(migrate, addr, newpage, +						&migrate->src[i]); +			continue; +		} + +		mapping = page_mapping(page); + +		if (is_device_private_page(newpage)) { +			/* +			 * For now only support private anonymous when migrating +			 * to un-addressable device memory. +			 */ +			if (mapping) { +				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; +				continue; +			} +		} else if (is_zone_device_page(newpage)) { +			/* +			 * Other types of ZONE_DEVICE page are not supported. +			 */ +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; +			continue; +		} + +		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY); +		if (r != MIGRATEPAGE_SUCCESS) +			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE; +	} + +	/* +	 * No need to double call mmu_notifier->invalidate_range() callback as +	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page() +	 * did already call it. +	 */ +	if (notified) +		mmu_notifier_invalidate_range_only_end(&range); +} +EXPORT_SYMBOL(migrate_vma_pages); + +/** + * migrate_vma_finalize() - restore CPU page table entry + * @migrate: migrate struct containing all migration information + * + * This replaces the special migration pte entry with either a mapping to the + * new page if migration was successful for that page, or to the original page + * otherwise. + * + * This also unlocks the pages and puts them back on the lru, or drops the extra + * refcount, for device pages. + */ +void migrate_vma_finalize(struct migrate_vma *migrate) +{ +	const unsigned long npages = migrate->npages; +	unsigned long i; + +	for (i = 0; i < npages; i++) { +		struct folio *dst, *src; +		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]); +		struct page *page = migrate_pfn_to_page(migrate->src[i]); + +		if (!page) { +			if (newpage) { +				unlock_page(newpage); +				put_page(newpage); +			} +			continue; +		} + +		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) { +			if (newpage) { +				unlock_page(newpage); +				put_page(newpage); +			} +			newpage = page; +		} + +		src = page_folio(page); +		dst = page_folio(newpage); +		remove_migration_ptes(src, dst, false); +		folio_unlock(src); + +		if (is_zone_device_page(page)) +			put_page(page); +		else +			putback_lru_page(page); + +		if (newpage != page) { +			unlock_page(newpage); +			if (is_zone_device_page(newpage)) +				put_page(newpage); +			else +				putback_lru_page(newpage); +		} +	} +} +EXPORT_SYMBOL(migrate_vma_finalize);  |