diff options
Diffstat (limited to 'mm/hugetlb.c')
| -rw-r--r-- | mm/hugetlb.c | 1630 | 
1 files changed, 1240 insertions, 390 deletions
diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ab171274ef21..3be79dc18c5c 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -14,6 +14,8 @@  #include <linux/mempolicy.h>  #include <linux/cpuset.h>  #include <linux/mutex.h> +#include <linux/bootmem.h> +#include <linux/sysfs.h>  #include <asm/page.h>  #include <asm/pgtable.h> @@ -22,30 +24,340 @@  #include "internal.h"  const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; -static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages; -static unsigned long surplus_huge_pages; -static unsigned long nr_overcommit_huge_pages; -unsigned long max_huge_pages; -unsigned long sysctl_overcommit_huge_pages; -static struct list_head hugepage_freelists[MAX_NUMNODES]; -static unsigned int nr_huge_pages_node[MAX_NUMNODES]; -static unsigned int free_huge_pages_node[MAX_NUMNODES]; -static unsigned int surplus_huge_pages_node[MAX_NUMNODES];  static gfp_t htlb_alloc_mask = GFP_HIGHUSER;  unsigned long hugepages_treat_as_movable; -static int hugetlb_next_nid; + +static int max_hstate; +unsigned int default_hstate_idx; +struct hstate hstates[HUGE_MAX_HSTATE]; + +__initdata LIST_HEAD(huge_boot_pages); + +/* for command line parsing */ +static struct hstate * __initdata parsed_hstate; +static unsigned long __initdata default_hstate_max_huge_pages; +static unsigned long __initdata default_hstate_size; + +#define for_each_hstate(h) \ +	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)  /*   * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages   */  static DEFINE_SPINLOCK(hugetlb_lock); -static void clear_huge_page(struct page *page, unsigned long addr) +/* + * Region tracking -- allows tracking of reservations and instantiated pages + *                    across the pages in a mapping. + * + * The region data structures are protected by a combination of the mmap_sem + * and the hugetlb_instantion_mutex.  To access or modify a region the caller + * must either hold the mmap_sem for write, or the mmap_sem for read and + * the hugetlb_instantiation mutex: + * + * 	down_write(&mm->mmap_sem); + * or + * 	down_read(&mm->mmap_sem); + * 	mutex_lock(&hugetlb_instantiation_mutex); + */ +struct file_region { +	struct list_head link; +	long from; +	long to; +}; + +static long region_add(struct list_head *head, long f, long t) +{ +	struct file_region *rg, *nrg, *trg; + +	/* Locate the region we are either in or before. */ +	list_for_each_entry(rg, head, link) +		if (f <= rg->to) +			break; + +	/* Round our left edge to the current segment if it encloses us. */ +	if (f > rg->from) +		f = rg->from; + +	/* Check for and consume any regions we now overlap with. */ +	nrg = rg; +	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { +		if (&rg->link == head) +			break; +		if (rg->from > t) +			break; + +		/* If this area reaches higher then extend our area to +		 * include it completely.  If this is not the first area +		 * which we intend to reuse, free it. */ +		if (rg->to > t) +			t = rg->to; +		if (rg != nrg) { +			list_del(&rg->link); +			kfree(rg); +		} +	} +	nrg->from = f; +	nrg->to = t; +	return 0; +} + +static long region_chg(struct list_head *head, long f, long t) +{ +	struct file_region *rg, *nrg; +	long chg = 0; + +	/* Locate the region we are before or in. */ +	list_for_each_entry(rg, head, link) +		if (f <= rg->to) +			break; + +	/* If we are below the current region then a new region is required. +	 * Subtle, allocate a new region at the position but make it zero +	 * size such that we can guarantee to record the reservation. */ +	if (&rg->link == head || t < rg->from) { +		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); +		if (!nrg) +			return -ENOMEM; +		nrg->from = f; +		nrg->to   = f; +		INIT_LIST_HEAD(&nrg->link); +		list_add(&nrg->link, rg->link.prev); + +		return t - f; +	} + +	/* Round our left edge to the current segment if it encloses us. */ +	if (f > rg->from) +		f = rg->from; +	chg = t - f; + +	/* Check for and consume any regions we now overlap with. */ +	list_for_each_entry(rg, rg->link.prev, link) { +		if (&rg->link == head) +			break; +		if (rg->from > t) +			return chg; + +		/* We overlap with this area, if it extends futher than +		 * us then we must extend ourselves.  Account for its +		 * existing reservation. */ +		if (rg->to > t) { +			chg += rg->to - t; +			t = rg->to; +		} +		chg -= rg->to - rg->from; +	} +	return chg; +} + +static long region_truncate(struct list_head *head, long end) +{ +	struct file_region *rg, *trg; +	long chg = 0; + +	/* Locate the region we are either in or before. */ +	list_for_each_entry(rg, head, link) +		if (end <= rg->to) +			break; +	if (&rg->link == head) +		return 0; + +	/* If we are in the middle of a region then adjust it. */ +	if (end > rg->from) { +		chg = rg->to - end; +		rg->to = end; +		rg = list_entry(rg->link.next, typeof(*rg), link); +	} + +	/* Drop any remaining regions. */ +	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { +		if (&rg->link == head) +			break; +		chg += rg->to - rg->from; +		list_del(&rg->link); +		kfree(rg); +	} +	return chg; +} + +static long region_count(struct list_head *head, long f, long t) +{ +	struct file_region *rg; +	long chg = 0; + +	/* Locate each segment we overlap with, and count that overlap. */ +	list_for_each_entry(rg, head, link) { +		int seg_from; +		int seg_to; + +		if (rg->to <= f) +			continue; +		if (rg->from >= t) +			break; + +		seg_from = max(rg->from, f); +		seg_to = min(rg->to, t); + +		chg += seg_to - seg_from; +	} + +	return chg; +} + +/* + * Convert the address within this vma to the page offset within + * the mapping, in pagecache page units; huge pages here. + */ +static pgoff_t vma_hugecache_offset(struct hstate *h, +			struct vm_area_struct *vma, unsigned long address) +{ +	return ((address - vma->vm_start) >> huge_page_shift(h)) + +			(vma->vm_pgoff >> huge_page_order(h)); +} + +/* + * Flags for MAP_PRIVATE reservations.  These are stored in the bottom + * bits of the reservation map pointer, which are always clear due to + * alignment. + */ +#define HPAGE_RESV_OWNER    (1UL << 0) +#define HPAGE_RESV_UNMAPPED (1UL << 1) +#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) + +/* + * These helpers are used to track how many pages are reserved for + * faults in a MAP_PRIVATE mapping. Only the process that called mmap() + * is guaranteed to have their future faults succeed. + * + * With the exception of reset_vma_resv_huge_pages() which is called at fork(), + * the reserve counters are updated with the hugetlb_lock held. It is safe + * to reset the VMA at fork() time as it is not in use yet and there is no + * chance of the global counters getting corrupted as a result of the values. + * + * The private mapping reservation is represented in a subtly different + * manner to a shared mapping.  A shared mapping has a region map associated + * with the underlying file, this region map represents the backing file + * pages which have ever had a reservation assigned which this persists even + * after the page is instantiated.  A private mapping has a region map + * associated with the original mmap which is attached to all VMAs which + * reference it, this region map represents those offsets which have consumed + * reservation ie. where pages have been instantiated. + */ +static unsigned long get_vma_private_data(struct vm_area_struct *vma) +{ +	return (unsigned long)vma->vm_private_data; +} + +static void set_vma_private_data(struct vm_area_struct *vma, +							unsigned long value) +{ +	vma->vm_private_data = (void *)value; +} + +struct resv_map { +	struct kref refs; +	struct list_head regions; +}; + +struct resv_map *resv_map_alloc(void) +{ +	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); +	if (!resv_map) +		return NULL; + +	kref_init(&resv_map->refs); +	INIT_LIST_HEAD(&resv_map->regions); + +	return resv_map; +} + +void resv_map_release(struct kref *ref) +{ +	struct resv_map *resv_map = container_of(ref, struct resv_map, refs); + +	/* Clear out any active regions before we release the map. */ +	region_truncate(&resv_map->regions, 0); +	kfree(resv_map); +} + +static struct resv_map *vma_resv_map(struct vm_area_struct *vma) +{ +	VM_BUG_ON(!is_vm_hugetlb_page(vma)); +	if (!(vma->vm_flags & VM_SHARED)) +		return (struct resv_map *)(get_vma_private_data(vma) & +							~HPAGE_RESV_MASK); +	return 0; +} + +static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) +{ +	VM_BUG_ON(!is_vm_hugetlb_page(vma)); +	VM_BUG_ON(vma->vm_flags & VM_SHARED); + +	set_vma_private_data(vma, (get_vma_private_data(vma) & +				HPAGE_RESV_MASK) | (unsigned long)map); +} + +static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) +{ +	VM_BUG_ON(!is_vm_hugetlb_page(vma)); +	VM_BUG_ON(vma->vm_flags & VM_SHARED); + +	set_vma_private_data(vma, get_vma_private_data(vma) | flags); +} + +static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) +{ +	VM_BUG_ON(!is_vm_hugetlb_page(vma)); + +	return (get_vma_private_data(vma) & flag) != 0; +} + +/* Decrement the reserved pages in the hugepage pool by one */ +static void decrement_hugepage_resv_vma(struct hstate *h, +			struct vm_area_struct *vma) +{ +	if (vma->vm_flags & VM_NORESERVE) +		return; + +	if (vma->vm_flags & VM_SHARED) { +		/* Shared mappings always use reserves */ +		h->resv_huge_pages--; +	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { +		/* +		 * Only the process that called mmap() has reserves for +		 * private mappings. +		 */ +		h->resv_huge_pages--; +	} +} + +/* Reset counters to 0 and clear all HPAGE_RESV_* flags */ +void reset_vma_resv_huge_pages(struct vm_area_struct *vma) +{ +	VM_BUG_ON(!is_vm_hugetlb_page(vma)); +	if (!(vma->vm_flags & VM_SHARED)) +		vma->vm_private_data = (void *)0; +} + +/* Returns true if the VMA has associated reserve pages */ +static int vma_has_reserves(struct vm_area_struct *vma) +{ +	if (vma->vm_flags & VM_SHARED) +		return 1; +	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) +		return 1; +	return 0; +} + +static void clear_huge_page(struct page *page, +			unsigned long addr, unsigned long sz)  {  	int i;  	might_sleep(); -	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) { +	for (i = 0; i < sz/PAGE_SIZE; i++) {  		cond_resched();  		clear_user_highpage(page + i, addr + i * PAGE_SIZE);  	} @@ -55,42 +367,44 @@ static void copy_huge_page(struct page *dst, struct page *src,  			   unsigned long addr, struct vm_area_struct *vma)  {  	int i; +	struct hstate *h = hstate_vma(vma);  	might_sleep(); -	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) { +	for (i = 0; i < pages_per_huge_page(h); i++) {  		cond_resched();  		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);  	}  } -static void enqueue_huge_page(struct page *page) +static void enqueue_huge_page(struct hstate *h, struct page *page)  {  	int nid = page_to_nid(page); -	list_add(&page->lru, &hugepage_freelists[nid]); -	free_huge_pages++; -	free_huge_pages_node[nid]++; +	list_add(&page->lru, &h->hugepage_freelists[nid]); +	h->free_huge_pages++; +	h->free_huge_pages_node[nid]++;  } -static struct page *dequeue_huge_page(void) +static struct page *dequeue_huge_page(struct hstate *h)  {  	int nid;  	struct page *page = NULL;  	for (nid = 0; nid < MAX_NUMNODES; ++nid) { -		if (!list_empty(&hugepage_freelists[nid])) { -			page = list_entry(hugepage_freelists[nid].next, +		if (!list_empty(&h->hugepage_freelists[nid])) { +			page = list_entry(h->hugepage_freelists[nid].next,  					  struct page, lru);  			list_del(&page->lru); -			free_huge_pages--; -			free_huge_pages_node[nid]--; +			h->free_huge_pages--; +			h->free_huge_pages_node[nid]--;  			break;  		}  	}  	return page;  } -static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma, -				unsigned long address) +static struct page *dequeue_huge_page_vma(struct hstate *h, +				struct vm_area_struct *vma, +				unsigned long address, int avoid_reserve)  {  	int nid;  	struct page *page = NULL; @@ -101,18 +415,33 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,  	struct zone *zone;  	struct zoneref *z; +	/* +	 * A child process with MAP_PRIVATE mappings created by their parent +	 * have no page reserves. This check ensures that reservations are +	 * not "stolen". The child may still get SIGKILLed +	 */ +	if (!vma_has_reserves(vma) && +			h->free_huge_pages - h->resv_huge_pages == 0) +		return NULL; + +	/* If reserves cannot be used, ensure enough pages are in the pool */ +	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) +		return NULL; +  	for_each_zone_zonelist_nodemask(zone, z, zonelist,  						MAX_NR_ZONES - 1, nodemask) {  		nid = zone_to_nid(zone);  		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && -		    !list_empty(&hugepage_freelists[nid])) { -			page = list_entry(hugepage_freelists[nid].next, +		    !list_empty(&h->hugepage_freelists[nid])) { +			page = list_entry(h->hugepage_freelists[nid].next,  					  struct page, lru);  			list_del(&page->lru); -			free_huge_pages--; -			free_huge_pages_node[nid]--; -			if (vma && vma->vm_flags & VM_MAYSHARE) -				resv_huge_pages--; +			h->free_huge_pages--; +			h->free_huge_pages_node[nid]--; + +			if (!avoid_reserve) +				decrement_hugepage_resv_vma(h, vma); +  			break;  		}  	} @@ -120,12 +449,13 @@ static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,  	return page;  } -static void update_and_free_page(struct page *page) +static void update_and_free_page(struct hstate *h, struct page *page)  {  	int i; -	nr_huge_pages--; -	nr_huge_pages_node[page_to_nid(page)]--; -	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) { + +	h->nr_huge_pages--; +	h->nr_huge_pages_node[page_to_nid(page)]--; +	for (i = 0; i < pages_per_huge_page(h); i++) {  		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |  				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |  				1 << PG_private | 1<< PG_writeback); @@ -133,11 +463,27 @@ static void update_and_free_page(struct page *page)  	set_compound_page_dtor(page, NULL);  	set_page_refcounted(page);  	arch_release_hugepage(page); -	__free_pages(page, HUGETLB_PAGE_ORDER); +	__free_pages(page, huge_page_order(h)); +} + +struct hstate *size_to_hstate(unsigned long size) +{ +	struct hstate *h; + +	for_each_hstate(h) { +		if (huge_page_size(h) == size) +			return h; +	} +	return NULL;  }  static void free_huge_page(struct page *page)  { +	/* +	 * Can't pass hstate in here because it is called from the +	 * compound page destructor. +	 */ +	struct hstate *h = page_hstate(page);  	int nid = page_to_nid(page);  	struct address_space *mapping; @@ -147,12 +493,12 @@ static void free_huge_page(struct page *page)  	INIT_LIST_HEAD(&page->lru);  	spin_lock(&hugetlb_lock); -	if (surplus_huge_pages_node[nid]) { -		update_and_free_page(page); -		surplus_huge_pages--; -		surplus_huge_pages_node[nid]--; +	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { +		update_and_free_page(h, page); +		h->surplus_huge_pages--; +		h->surplus_huge_pages_node[nid]--;  	} else { -		enqueue_huge_page(page); +		enqueue_huge_page(h, page);  	}  	spin_unlock(&hugetlb_lock);  	if (mapping) @@ -164,7 +510,7 @@ static void free_huge_page(struct page *page)   * balanced by operating on them in a round-robin fashion.   * Returns 1 if an adjustment was made.   */ -static int adjust_pool_surplus(int delta) +static int adjust_pool_surplus(struct hstate *h, int delta)  {  	static int prev_nid;  	int nid = prev_nid; @@ -177,15 +523,15 @@ static int adjust_pool_surplus(int delta)  			nid = first_node(node_online_map);  		/* To shrink on this node, there must be a surplus page */ -		if (delta < 0 && !surplus_huge_pages_node[nid]) +		if (delta < 0 && !h->surplus_huge_pages_node[nid])  			continue;  		/* Surplus cannot exceed the total number of pages */ -		if (delta > 0 && surplus_huge_pages_node[nid] >= -						nr_huge_pages_node[nid]) +		if (delta > 0 && h->surplus_huge_pages_node[nid] >= +						h->nr_huge_pages_node[nid])  			continue; -		surplus_huge_pages += delta; -		surplus_huge_pages_node[nid] += delta; +		h->surplus_huge_pages += delta; +		h->surplus_huge_pages_node[nid] += delta;  		ret = 1;  		break;  	} while (nid != prev_nid); @@ -194,59 +540,74 @@ static int adjust_pool_surplus(int delta)  	return ret;  } -static struct page *alloc_fresh_huge_page_node(int nid) +static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) +{ +	set_compound_page_dtor(page, free_huge_page); +	spin_lock(&hugetlb_lock); +	h->nr_huge_pages++; +	h->nr_huge_pages_node[nid]++; +	spin_unlock(&hugetlb_lock); +	put_page(page); /* free it into the hugepage allocator */ +} + +static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)  {  	struct page *page; +	if (h->order >= MAX_ORDER) +		return NULL; +  	page = alloc_pages_node(nid,  		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|  						__GFP_REPEAT|__GFP_NOWARN, -		HUGETLB_PAGE_ORDER); +		huge_page_order(h));  	if (page) {  		if (arch_prepare_hugepage(page)) {  			__free_pages(page, HUGETLB_PAGE_ORDER);  			return NULL;  		} -		set_compound_page_dtor(page, free_huge_page); -		spin_lock(&hugetlb_lock); -		nr_huge_pages++; -		nr_huge_pages_node[nid]++; -		spin_unlock(&hugetlb_lock); -		put_page(page); /* free it into the hugepage allocator */ +		prep_new_huge_page(h, page, nid);  	}  	return page;  } -static int alloc_fresh_huge_page(void) +/* + * Use a helper variable to find the next node and then + * copy it back to hugetlb_next_nid afterwards: + * otherwise there's a window in which a racer might + * pass invalid nid MAX_NUMNODES to alloc_pages_node. + * But we don't need to use a spin_lock here: it really + * doesn't matter if occasionally a racer chooses the + * same nid as we do.  Move nid forward in the mask even + * if we just successfully allocated a hugepage so that + * the next caller gets hugepages on the next node. + */ +static int hstate_next_node(struct hstate *h) +{ +	int next_nid; +	next_nid = next_node(h->hugetlb_next_nid, node_online_map); +	if (next_nid == MAX_NUMNODES) +		next_nid = first_node(node_online_map); +	h->hugetlb_next_nid = next_nid; +	return next_nid; +} + +static int alloc_fresh_huge_page(struct hstate *h)  {  	struct page *page;  	int start_nid;  	int next_nid;  	int ret = 0; -	start_nid = hugetlb_next_nid; +	start_nid = h->hugetlb_next_nid;  	do { -		page = alloc_fresh_huge_page_node(hugetlb_next_nid); +		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);  		if (page)  			ret = 1; -		/* -		 * Use a helper variable to find the next node and then -		 * copy it back to hugetlb_next_nid afterwards: -		 * otherwise there's a window in which a racer might -		 * pass invalid nid MAX_NUMNODES to alloc_pages_node. -		 * But we don't need to use a spin_lock here: it really -		 * doesn't matter if occasionally a racer chooses the -		 * same nid as we do.  Move nid forward in the mask even -		 * if we just successfully allocated a hugepage so that -		 * the next caller gets hugepages on the next node. -		 */ -		next_nid = next_node(hugetlb_next_nid, node_online_map); -		if (next_nid == MAX_NUMNODES) -			next_nid = first_node(node_online_map); -		hugetlb_next_nid = next_nid; -	} while (!page && hugetlb_next_nid != start_nid); +		next_nid = hstate_next_node(h); +	} while (!page && h->hugetlb_next_nid != start_nid);  	if (ret)  		count_vm_event(HTLB_BUDDY_PGALLOC); @@ -256,12 +617,15 @@ static int alloc_fresh_huge_page(void)  	return ret;  } -static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma, -						unsigned long address) +static struct page *alloc_buddy_huge_page(struct hstate *h, +			struct vm_area_struct *vma, unsigned long address)  {  	struct page *page;  	unsigned int nid; +	if (h->order >= MAX_ORDER) +		return NULL; +  	/*  	 * Assume we will successfully allocate the surplus page to  	 * prevent racing processes from causing the surplus to exceed @@ -286,18 +650,18 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,  	 * per-node value is checked there.  	 */  	spin_lock(&hugetlb_lock); -	if (surplus_huge_pages >= nr_overcommit_huge_pages) { +	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {  		spin_unlock(&hugetlb_lock);  		return NULL;  	} else { -		nr_huge_pages++; -		surplus_huge_pages++; +		h->nr_huge_pages++; +		h->surplus_huge_pages++;  	}  	spin_unlock(&hugetlb_lock);  	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|  					__GFP_REPEAT|__GFP_NOWARN, -					HUGETLB_PAGE_ORDER); +					huge_page_order(h));  	spin_lock(&hugetlb_lock);  	if (page) { @@ -312,12 +676,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,  		/*  		 * We incremented the global counters already  		 */ -		nr_huge_pages_node[nid]++; -		surplus_huge_pages_node[nid]++; +		h->nr_huge_pages_node[nid]++; +		h->surplus_huge_pages_node[nid]++;  		__count_vm_event(HTLB_BUDDY_PGALLOC);  	} else { -		nr_huge_pages--; -		surplus_huge_pages--; +		h->nr_huge_pages--; +		h->surplus_huge_pages--;  		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);  	}  	spin_unlock(&hugetlb_lock); @@ -329,16 +693,16 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,   * Increase the hugetlb pool such that it can accomodate a reservation   * of size 'delta'.   */ -static int gather_surplus_pages(int delta) +static int gather_surplus_pages(struct hstate *h, int delta)  {  	struct list_head surplus_list;  	struct page *page, *tmp;  	int ret, i;  	int needed, allocated; -	needed = (resv_huge_pages + delta) - free_huge_pages; +	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;  	if (needed <= 0) { -		resv_huge_pages += delta; +		h->resv_huge_pages += delta;  		return 0;  	} @@ -349,7 +713,7 @@ static int gather_surplus_pages(int delta)  retry:  	spin_unlock(&hugetlb_lock);  	for (i = 0; i < needed; i++) { -		page = alloc_buddy_huge_page(NULL, 0); +		page = alloc_buddy_huge_page(h, NULL, 0);  		if (!page) {  			/*  			 * We were not able to allocate enough pages to @@ -370,7 +734,8 @@ retry:  	 * because either resv_huge_pages or free_huge_pages may have changed.  	 */  	spin_lock(&hugetlb_lock); -	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated); +	needed = (h->resv_huge_pages + delta) - +			(h->free_huge_pages + allocated);  	if (needed > 0)  		goto retry; @@ -383,7 +748,7 @@ retry:  	 * before they are reserved.  	 */  	needed += allocated; -	resv_huge_pages += delta; +	h->resv_huge_pages += delta;  	ret = 0;  free:  	/* Free the needed pages to the hugetlb pool */ @@ -391,7 +756,7 @@ free:  		if ((--needed) < 0)  			break;  		list_del(&page->lru); -		enqueue_huge_page(page); +		enqueue_huge_page(h, page);  	}  	/* Free unnecessary surplus pages to the buddy allocator */ @@ -419,7 +784,8 @@ free:   * allocated to satisfy the reservation must be explicitly freed if they were   * never used.   */ -static void return_unused_surplus_pages(unsigned long unused_resv_pages) +static void return_unused_surplus_pages(struct hstate *h, +					unsigned long unused_resv_pages)  {  	static int nid = -1;  	struct page *page; @@ -434,157 +800,269 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages)  	unsigned long remaining_iterations = num_online_nodes();  	/* Uncommit the reservation */ -	resv_huge_pages -= unused_resv_pages; +	h->resv_huge_pages -= unused_resv_pages; + +	/* Cannot return gigantic pages currently */ +	if (h->order >= MAX_ORDER) +		return; -	nr_pages = min(unused_resv_pages, surplus_huge_pages); +	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);  	while (remaining_iterations-- && nr_pages) {  		nid = next_node(nid, node_online_map);  		if (nid == MAX_NUMNODES)  			nid = first_node(node_online_map); -		if (!surplus_huge_pages_node[nid]) +		if (!h->surplus_huge_pages_node[nid])  			continue; -		if (!list_empty(&hugepage_freelists[nid])) { -			page = list_entry(hugepage_freelists[nid].next, +		if (!list_empty(&h->hugepage_freelists[nid])) { +			page = list_entry(h->hugepage_freelists[nid].next,  					  struct page, lru);  			list_del(&page->lru); -			update_and_free_page(page); -			free_huge_pages--; -			free_huge_pages_node[nid]--; -			surplus_huge_pages--; -			surplus_huge_pages_node[nid]--; +			update_and_free_page(h, page); +			h->free_huge_pages--; +			h->free_huge_pages_node[nid]--; +			h->surplus_huge_pages--; +			h->surplus_huge_pages_node[nid]--;  			nr_pages--;  			remaining_iterations = num_online_nodes();  		}  	}  } +/* + * Determine if the huge page at addr within the vma has an associated + * reservation.  Where it does not we will need to logically increase + * reservation and actually increase quota before an allocation can occur. + * Where any new reservation would be required the reservation change is + * prepared, but not committed.  Once the page has been quota'd allocated + * an instantiated the change should be committed via vma_commit_reservation. + * No action is required on failure. + */ +static int vma_needs_reservation(struct hstate *h, +			struct vm_area_struct *vma, unsigned long addr) +{ +	struct address_space *mapping = vma->vm_file->f_mapping; +	struct inode *inode = mapping->host; + +	if (vma->vm_flags & VM_SHARED) { +		pgoff_t idx = vma_hugecache_offset(h, vma, addr); +		return region_chg(&inode->i_mapping->private_list, +							idx, idx + 1); -static struct page *alloc_huge_page_shared(struct vm_area_struct *vma, -						unsigned long addr) +	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { +		return 1; + +	} else  { +		int err; +		pgoff_t idx = vma_hugecache_offset(h, vma, addr); +		struct resv_map *reservations = vma_resv_map(vma); + +		err = region_chg(&reservations->regions, idx, idx + 1); +		if (err < 0) +			return err; +		return 0; +	} +} +static void vma_commit_reservation(struct hstate *h, +			struct vm_area_struct *vma, unsigned long addr)  { -	struct page *page; +	struct address_space *mapping = vma->vm_file->f_mapping; +	struct inode *inode = mapping->host; -	spin_lock(&hugetlb_lock); -	page = dequeue_huge_page_vma(vma, addr); -	spin_unlock(&hugetlb_lock); -	return page ? page : ERR_PTR(-VM_FAULT_OOM); +	if (vma->vm_flags & VM_SHARED) { +		pgoff_t idx = vma_hugecache_offset(h, vma, addr); +		region_add(&inode->i_mapping->private_list, idx, idx + 1); + +	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { +		pgoff_t idx = vma_hugecache_offset(h, vma, addr); +		struct resv_map *reservations = vma_resv_map(vma); + +		/* Mark this page used in the map. */ +		region_add(&reservations->regions, idx, idx + 1); +	}  } -static struct page *alloc_huge_page_private(struct vm_area_struct *vma, -						unsigned long addr) +static struct page *alloc_huge_page(struct vm_area_struct *vma, +				    unsigned long addr, int avoid_reserve)  { -	struct page *page = NULL; +	struct hstate *h = hstate_vma(vma); +	struct page *page; +	struct address_space *mapping = vma->vm_file->f_mapping; +	struct inode *inode = mapping->host; +	unsigned int chg; -	if (hugetlb_get_quota(vma->vm_file->f_mapping, 1)) -		return ERR_PTR(-VM_FAULT_SIGBUS); +	/* +	 * Processes that did not create the mapping will have no reserves and +	 * will not have accounted against quota. Check that the quota can be +	 * made before satisfying the allocation +	 * MAP_NORESERVE mappings may also need pages and quota allocated +	 * if no reserve mapping overlaps. +	 */ +	chg = vma_needs_reservation(h, vma, addr); +	if (chg < 0) +		return ERR_PTR(chg); +	if (chg) +		if (hugetlb_get_quota(inode->i_mapping, chg)) +			return ERR_PTR(-ENOSPC);  	spin_lock(&hugetlb_lock); -	if (free_huge_pages > resv_huge_pages) -		page = dequeue_huge_page_vma(vma, addr); +	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);  	spin_unlock(&hugetlb_lock); +  	if (!page) { -		page = alloc_buddy_huge_page(vma, addr); +		page = alloc_buddy_huge_page(h, vma, addr);  		if (!page) { -			hugetlb_put_quota(vma->vm_file->f_mapping, 1); +			hugetlb_put_quota(inode->i_mapping, chg);  			return ERR_PTR(-VM_FAULT_OOM);  		}  	} + +	set_page_refcounted(page); +	set_page_private(page, (unsigned long) mapping); + +	vma_commit_reservation(h, vma, addr); +  	return page;  } -static struct page *alloc_huge_page(struct vm_area_struct *vma, -				    unsigned long addr) +__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)  { -	struct page *page; -	struct address_space *mapping = vma->vm_file->f_mapping; +	struct huge_bootmem_page *m; +	int nr_nodes = nodes_weight(node_online_map); -	if (vma->vm_flags & VM_MAYSHARE) -		page = alloc_huge_page_shared(vma, addr); -	else -		page = alloc_huge_page_private(vma, addr); +	while (nr_nodes) { +		void *addr; + +		addr = __alloc_bootmem_node_nopanic( +				NODE_DATA(h->hugetlb_next_nid), +				huge_page_size(h), huge_page_size(h), 0); -	if (!IS_ERR(page)) { -		set_page_refcounted(page); -		set_page_private(page, (unsigned long) mapping); +		if (addr) { +			/* +			 * Use the beginning of the huge page to store the +			 * huge_bootmem_page struct (until gather_bootmem +			 * puts them into the mem_map). +			 */ +			m = addr; +			if (m) +				goto found; +		} +		hstate_next_node(h); +		nr_nodes--;  	} -	return page; +	return 0; + +found: +	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); +	/* Put them into a private list first because mem_map is not up yet */ +	list_add(&m->list, &huge_boot_pages); +	m->hstate = h; +	return 1;  } -static int __init hugetlb_init(void) +/* Put bootmem huge pages into the standard lists after mem_map is up */ +static void __init gather_bootmem_prealloc(void)  { -	unsigned long i; - -	if (HPAGE_SHIFT == 0) -		return 0; - -	for (i = 0; i < MAX_NUMNODES; ++i) -		INIT_LIST_HEAD(&hugepage_freelists[i]); +	struct huge_bootmem_page *m; + +	list_for_each_entry(m, &huge_boot_pages, list) { +		struct page *page = virt_to_page(m); +		struct hstate *h = m->hstate; +		__ClearPageReserved(page); +		WARN_ON(page_count(page) != 1); +		prep_compound_page(page, h->order); +		prep_new_huge_page(h, page, page_to_nid(page)); +	} +} -	hugetlb_next_nid = first_node(node_online_map); +static void __init hugetlb_hstate_alloc_pages(struct hstate *h) +{ +	unsigned long i; -	for (i = 0; i < max_huge_pages; ++i) { -		if (!alloc_fresh_huge_page()) +	for (i = 0; i < h->max_huge_pages; ++i) { +		if (h->order >= MAX_ORDER) { +			if (!alloc_bootmem_huge_page(h)) +				break; +		} else if (!alloc_fresh_huge_page(h))  			break;  	} -	max_huge_pages = free_huge_pages = nr_huge_pages = i; -	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages); -	return 0; +	h->max_huge_pages = i;  } -module_init(hugetlb_init); -static int __init hugetlb_setup(char *s) +static void __init hugetlb_init_hstates(void)  { -	if (sscanf(s, "%lu", &max_huge_pages) <= 0) -		max_huge_pages = 0; -	return 1; +	struct hstate *h; + +	for_each_hstate(h) { +		/* oversize hugepages were init'ed in early boot */ +		if (h->order < MAX_ORDER) +			hugetlb_hstate_alloc_pages(h); +	}  } -__setup("hugepages=", hugetlb_setup); -static unsigned int cpuset_mems_nr(unsigned int *array) +static char * __init memfmt(char *buf, unsigned long n)  { -	int node; -	unsigned int nr = 0; - -	for_each_node_mask(node, cpuset_current_mems_allowed) -		nr += array[node]; +	if (n >= (1UL << 30)) +		sprintf(buf, "%lu GB", n >> 30); +	else if (n >= (1UL << 20)) +		sprintf(buf, "%lu MB", n >> 20); +	else +		sprintf(buf, "%lu KB", n >> 10); +	return buf; +} -	return nr; +static void __init report_hugepages(void) +{ +	struct hstate *h; + +	for_each_hstate(h) { +		char buf[32]; +		printk(KERN_INFO "HugeTLB registered %s page size, " +				 "pre-allocated %ld pages\n", +			memfmt(buf, huge_page_size(h)), +			h->free_huge_pages); +	}  } -#ifdef CONFIG_SYSCTL  #ifdef CONFIG_HIGHMEM -static void try_to_free_low(unsigned long count) +static void try_to_free_low(struct hstate *h, unsigned long count)  {  	int i; +	if (h->order >= MAX_ORDER) +		return; +  	for (i = 0; i < MAX_NUMNODES; ++i) {  		struct page *page, *next; -		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) { -			if (count >= nr_huge_pages) +		struct list_head *freel = &h->hugepage_freelists[i]; +		list_for_each_entry_safe(page, next, freel, lru) { +			if (count >= h->nr_huge_pages)  				return;  			if (PageHighMem(page))  				continue;  			list_del(&page->lru); -			update_and_free_page(page); -			free_huge_pages--; -			free_huge_pages_node[page_to_nid(page)]--; +			update_and_free_page(h, page); +			h->free_huge_pages--; +			h->free_huge_pages_node[page_to_nid(page)]--;  		}  	}  }  #else -static inline void try_to_free_low(unsigned long count) +static inline void try_to_free_low(struct hstate *h, unsigned long count)  {  }  #endif -#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages) -static unsigned long set_max_huge_pages(unsigned long count) +#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) +static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)  {  	unsigned long min_count, ret; +	if (h->order >= MAX_ORDER) +		return h->max_huge_pages; +  	/*  	 * Increase the pool size  	 * First take pages out of surplus state.  Then make up the @@ -597,20 +1075,19 @@ static unsigned long set_max_huge_pages(unsigned long count)  	 * within all the constraints specified by the sysctls.  	 */  	spin_lock(&hugetlb_lock); -	while (surplus_huge_pages && count > persistent_huge_pages) { -		if (!adjust_pool_surplus(-1)) +	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { +		if (!adjust_pool_surplus(h, -1))  			break;  	} -	while (count > persistent_huge_pages) { -		int ret; +	while (count > persistent_huge_pages(h)) {  		/*  		 * If this allocation races such that we no longer need the  		 * page, free_huge_page will handle it by freeing the page  		 * and reducing the surplus.  		 */  		spin_unlock(&hugetlb_lock); -		ret = alloc_fresh_huge_page(); +		ret = alloc_fresh_huge_page(h);  		spin_lock(&hugetlb_lock);  		if (!ret)  			goto out; @@ -632,31 +1109,300 @@ static unsigned long set_max_huge_pages(unsigned long count)  	 * and won't grow the pool anywhere else. Not until one of the  	 * sysctls are changed, or the surplus pages go out of use.  	 */ -	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages; +	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;  	min_count = max(count, min_count); -	try_to_free_low(min_count); -	while (min_count < persistent_huge_pages) { -		struct page *page = dequeue_huge_page(); +	try_to_free_low(h, min_count); +	while (min_count < persistent_huge_pages(h)) { +		struct page *page = dequeue_huge_page(h);  		if (!page)  			break; -		update_and_free_page(page); +		update_and_free_page(h, page);  	} -	while (count < persistent_huge_pages) { -		if (!adjust_pool_surplus(1)) +	while (count < persistent_huge_pages(h)) { +		if (!adjust_pool_surplus(h, 1))  			break;  	}  out: -	ret = persistent_huge_pages; +	ret = persistent_huge_pages(h);  	spin_unlock(&hugetlb_lock);  	return ret;  } +#define HSTATE_ATTR_RO(_name) \ +	static struct kobj_attribute _name##_attr = __ATTR_RO(_name) + +#define HSTATE_ATTR(_name) \ +	static struct kobj_attribute _name##_attr = \ +		__ATTR(_name, 0644, _name##_show, _name##_store) + +static struct kobject *hugepages_kobj; +static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; + +static struct hstate *kobj_to_hstate(struct kobject *kobj) +{ +	int i; +	for (i = 0; i < HUGE_MAX_HSTATE; i++) +		if (hstate_kobjs[i] == kobj) +			return &hstates[i]; +	BUG(); +	return NULL; +} + +static ssize_t nr_hugepages_show(struct kobject *kobj, +					struct kobj_attribute *attr, char *buf) +{ +	struct hstate *h = kobj_to_hstate(kobj); +	return sprintf(buf, "%lu\n", h->nr_huge_pages); +} +static ssize_t nr_hugepages_store(struct kobject *kobj, +		struct kobj_attribute *attr, const char *buf, size_t count) +{ +	int err; +	unsigned long input; +	struct hstate *h = kobj_to_hstate(kobj); + +	err = strict_strtoul(buf, 10, &input); +	if (err) +		return 0; + +	h->max_huge_pages = set_max_huge_pages(h, input); + +	return count; +} +HSTATE_ATTR(nr_hugepages); + +static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, +					struct kobj_attribute *attr, char *buf) +{ +	struct hstate *h = kobj_to_hstate(kobj); +	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); +} +static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, +		struct kobj_attribute *attr, const char *buf, size_t count) +{ +	int err; +	unsigned long input; +	struct hstate *h = kobj_to_hstate(kobj); + +	err = strict_strtoul(buf, 10, &input); +	if (err) +		return 0; + +	spin_lock(&hugetlb_lock); +	h->nr_overcommit_huge_pages = input; +	spin_unlock(&hugetlb_lock); + +	return count; +} +HSTATE_ATTR(nr_overcommit_hugepages); + +static ssize_t free_hugepages_show(struct kobject *kobj, +					struct kobj_attribute *attr, char *buf) +{ +	struct hstate *h = kobj_to_hstate(kobj); +	return sprintf(buf, "%lu\n", h->free_huge_pages); +} +HSTATE_ATTR_RO(free_hugepages); + +static ssize_t resv_hugepages_show(struct kobject *kobj, +					struct kobj_attribute *attr, char *buf) +{ +	struct hstate *h = kobj_to_hstate(kobj); +	return sprintf(buf, "%lu\n", h->resv_huge_pages); +} +HSTATE_ATTR_RO(resv_hugepages); + +static ssize_t surplus_hugepages_show(struct kobject *kobj, +					struct kobj_attribute *attr, char *buf) +{ +	struct hstate *h = kobj_to_hstate(kobj); +	return sprintf(buf, "%lu\n", h->surplus_huge_pages); +} +HSTATE_ATTR_RO(surplus_hugepages); + +static struct attribute *hstate_attrs[] = { +	&nr_hugepages_attr.attr, +	&nr_overcommit_hugepages_attr.attr, +	&free_hugepages_attr.attr, +	&resv_hugepages_attr.attr, +	&surplus_hugepages_attr.attr, +	NULL, +}; + +static struct attribute_group hstate_attr_group = { +	.attrs = hstate_attrs, +}; + +static int __init hugetlb_sysfs_add_hstate(struct hstate *h) +{ +	int retval; + +	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, +							hugepages_kobj); +	if (!hstate_kobjs[h - hstates]) +		return -ENOMEM; + +	retval = sysfs_create_group(hstate_kobjs[h - hstates], +							&hstate_attr_group); +	if (retval) +		kobject_put(hstate_kobjs[h - hstates]); + +	return retval; +} + +static void __init hugetlb_sysfs_init(void) +{ +	struct hstate *h; +	int err; + +	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); +	if (!hugepages_kobj) +		return; + +	for_each_hstate(h) { +		err = hugetlb_sysfs_add_hstate(h); +		if (err) +			printk(KERN_ERR "Hugetlb: Unable to add hstate %s", +								h->name); +	} +} + +static void __exit hugetlb_exit(void) +{ +	struct hstate *h; + +	for_each_hstate(h) { +		kobject_put(hstate_kobjs[h - hstates]); +	} + +	kobject_put(hugepages_kobj); +} +module_exit(hugetlb_exit); + +static int __init hugetlb_init(void) +{ +	BUILD_BUG_ON(HPAGE_SHIFT == 0); + +	if (!size_to_hstate(default_hstate_size)) { +		default_hstate_size = HPAGE_SIZE; +		if (!size_to_hstate(default_hstate_size)) +			hugetlb_add_hstate(HUGETLB_PAGE_ORDER); +	} +	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; +	if (default_hstate_max_huge_pages) +		default_hstate.max_huge_pages = default_hstate_max_huge_pages; + +	hugetlb_init_hstates(); + +	gather_bootmem_prealloc(); + +	report_hugepages(); + +	hugetlb_sysfs_init(); + +	return 0; +} +module_init(hugetlb_init); + +/* Should be called on processing a hugepagesz=... option */ +void __init hugetlb_add_hstate(unsigned order) +{ +	struct hstate *h; +	unsigned long i; + +	if (size_to_hstate(PAGE_SIZE << order)) { +		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); +		return; +	} +	BUG_ON(max_hstate >= HUGE_MAX_HSTATE); +	BUG_ON(order == 0); +	h = &hstates[max_hstate++]; +	h->order = order; +	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); +	h->nr_huge_pages = 0; +	h->free_huge_pages = 0; +	for (i = 0; i < MAX_NUMNODES; ++i) +		INIT_LIST_HEAD(&h->hugepage_freelists[i]); +	h->hugetlb_next_nid = first_node(node_online_map); +	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", +					huge_page_size(h)/1024); + +	parsed_hstate = h; +} + +static int __init hugetlb_nrpages_setup(char *s) +{ +	unsigned long *mhp; +	static unsigned long *last_mhp; + +	/* +	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet, +	 * so this hugepages= parameter goes to the "default hstate". +	 */ +	if (!max_hstate) +		mhp = &default_hstate_max_huge_pages; +	else +		mhp = &parsed_hstate->max_huge_pages; + +	if (mhp == last_mhp) { +		printk(KERN_WARNING "hugepages= specified twice without " +			"interleaving hugepagesz=, ignoring\n"); +		return 1; +	} + +	if (sscanf(s, "%lu", mhp) <= 0) +		*mhp = 0; + +	/* +	 * Global state is always initialized later in hugetlb_init. +	 * But we need to allocate >= MAX_ORDER hstates here early to still +	 * use the bootmem allocator. +	 */ +	if (max_hstate && parsed_hstate->order >= MAX_ORDER) +		hugetlb_hstate_alloc_pages(parsed_hstate); + +	last_mhp = mhp; + +	return 1; +} +__setup("hugepages=", hugetlb_nrpages_setup); + +static int __init hugetlb_default_setup(char *s) +{ +	default_hstate_size = memparse(s, &s); +	return 1; +} +__setup("default_hugepagesz=", hugetlb_default_setup); + +static unsigned int cpuset_mems_nr(unsigned int *array) +{ +	int node; +	unsigned int nr = 0; + +	for_each_node_mask(node, cpuset_current_mems_allowed) +		nr += array[node]; + +	return nr; +} + +#ifdef CONFIG_SYSCTL  int hugetlb_sysctl_handler(struct ctl_table *table, int write,  			   struct file *file, void __user *buffer,  			   size_t *length, loff_t *ppos)  { +	struct hstate *h = &default_hstate; +	unsigned long tmp; + +	if (!write) +		tmp = h->max_huge_pages; + +	table->data = &tmp; +	table->maxlen = sizeof(unsigned long);  	proc_doulongvec_minmax(table, write, file, buffer, length, ppos); -	max_huge_pages = set_max_huge_pages(max_huge_pages); + +	if (write) +		h->max_huge_pages = set_max_huge_pages(h, tmp); +  	return 0;  } @@ -676,10 +1422,22 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write,  			struct file *file, void __user *buffer,  			size_t *length, loff_t *ppos)  { +	struct hstate *h = &default_hstate; +	unsigned long tmp; + +	if (!write) +		tmp = h->nr_overcommit_huge_pages; + +	table->data = &tmp; +	table->maxlen = sizeof(unsigned long);  	proc_doulongvec_minmax(table, write, file, buffer, length, ppos); -	spin_lock(&hugetlb_lock); -	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages; -	spin_unlock(&hugetlb_lock); + +	if (write) { +		spin_lock(&hugetlb_lock); +		h->nr_overcommit_huge_pages = tmp; +		spin_unlock(&hugetlb_lock); +	} +  	return 0;  } @@ -687,34 +1445,118 @@ int hugetlb_overcommit_handler(struct ctl_table *table, int write,  int hugetlb_report_meminfo(char *buf)  { +	struct hstate *h = &default_hstate;  	return sprintf(buf,  			"HugePages_Total: %5lu\n"  			"HugePages_Free:  %5lu\n"  			"HugePages_Rsvd:  %5lu\n"  			"HugePages_Surp:  %5lu\n"  			"Hugepagesize:    %5lu kB\n", -			nr_huge_pages, -			free_huge_pages, -			resv_huge_pages, -			surplus_huge_pages, -			HPAGE_SIZE/1024); +			h->nr_huge_pages, +			h->free_huge_pages, +			h->resv_huge_pages, +			h->surplus_huge_pages, +			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));  }  int hugetlb_report_node_meminfo(int nid, char *buf)  { +	struct hstate *h = &default_hstate;  	return sprintf(buf,  		"Node %d HugePages_Total: %5u\n"  		"Node %d HugePages_Free:  %5u\n"  		"Node %d HugePages_Surp:  %5u\n", -		nid, nr_huge_pages_node[nid], -		nid, free_huge_pages_node[nid], -		nid, surplus_huge_pages_node[nid]); +		nid, h->nr_huge_pages_node[nid], +		nid, h->free_huge_pages_node[nid], +		nid, h->surplus_huge_pages_node[nid]);  }  /* Return the number pages of memory we physically have, in PAGE_SIZE units. */  unsigned long hugetlb_total_pages(void)  { -	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE); +	struct hstate *h = &default_hstate; +	return h->nr_huge_pages * pages_per_huge_page(h); +} + +static int hugetlb_acct_memory(struct hstate *h, long delta) +{ +	int ret = -ENOMEM; + +	spin_lock(&hugetlb_lock); +	/* +	 * When cpuset is configured, it breaks the strict hugetlb page +	 * reservation as the accounting is done on a global variable. Such +	 * reservation is completely rubbish in the presence of cpuset because +	 * the reservation is not checked against page availability for the +	 * current cpuset. Application can still potentially OOM'ed by kernel +	 * with lack of free htlb page in cpuset that the task is in. +	 * Attempt to enforce strict accounting with cpuset is almost +	 * impossible (or too ugly) because cpuset is too fluid that +	 * task or memory node can be dynamically moved between cpusets. +	 * +	 * The change of semantics for shared hugetlb mapping with cpuset is +	 * undesirable. However, in order to preserve some of the semantics, +	 * we fall back to check against current free page availability as +	 * a best attempt and hopefully to minimize the impact of changing +	 * semantics that cpuset has. +	 */ +	if (delta > 0) { +		if (gather_surplus_pages(h, delta) < 0) +			goto out; + +		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { +			return_unused_surplus_pages(h, delta); +			goto out; +		} +	} + +	ret = 0; +	if (delta < 0) +		return_unused_surplus_pages(h, (unsigned long) -delta); + +out: +	spin_unlock(&hugetlb_lock); +	return ret; +} + +static void hugetlb_vm_op_open(struct vm_area_struct *vma) +{ +	struct resv_map *reservations = vma_resv_map(vma); + +	/* +	 * This new VMA should share its siblings reservation map if present. +	 * The VMA will only ever have a valid reservation map pointer where +	 * it is being copied for another still existing VMA.  As that VMA +	 * has a reference to the reservation map it cannot dissappear until +	 * after this open call completes.  It is therefore safe to take a +	 * new reference here without additional locking. +	 */ +	if (reservations) +		kref_get(&reservations->refs); +} + +static void hugetlb_vm_op_close(struct vm_area_struct *vma) +{ +	struct hstate *h = hstate_vma(vma); +	struct resv_map *reservations = vma_resv_map(vma); +	unsigned long reserve; +	unsigned long start; +	unsigned long end; + +	if (reservations) { +		start = vma_hugecache_offset(h, vma, vma->vm_start); +		end = vma_hugecache_offset(h, vma, vma->vm_end); + +		reserve = (end - start) - +			region_count(&reservations->regions, start, end); + +		kref_put(&reservations->refs, resv_map_release); + +		if (reserve) { +			hugetlb_acct_memory(h, -reserve); +			hugetlb_put_quota(vma->vm_file->f_mapping, reserve); +		} +	}  }  /* @@ -731,6 +1573,8 @@ static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)  struct vm_operations_struct hugetlb_vm_ops = {  	.fault = hugetlb_vm_op_fault, +	.open = hugetlb_vm_op_open, +	.close = hugetlb_vm_op_close,  };  static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, @@ -769,14 +1613,16 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,  	struct page *ptepage;  	unsigned long addr;  	int cow; +	struct hstate *h = hstate_vma(vma); +	unsigned long sz = huge_page_size(h);  	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; -	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) { +	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {  		src_pte = huge_pte_offset(src, addr);  		if (!src_pte)  			continue; -		dst_pte = huge_pte_alloc(dst, addr); +		dst_pte = huge_pte_alloc(dst, addr, sz);  		if (!dst_pte)  			goto nomem; @@ -804,7 +1650,7 @@ nomem:  }  void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, -			    unsigned long end) +			    unsigned long end, struct page *ref_page)  {  	struct mm_struct *mm = vma->vm_mm;  	unsigned long address; @@ -812,6 +1658,9 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,  	pte_t pte;  	struct page *page;  	struct page *tmp; +	struct hstate *h = hstate_vma(vma); +	unsigned long sz = huge_page_size(h); +  	/*  	 * A page gathering list, protected by per file i_mmap_lock. The  	 * lock is used to avoid list corruption from multiple unmapping @@ -820,11 +1669,11 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,  	LIST_HEAD(page_list);  	WARN_ON(!is_vm_hugetlb_page(vma)); -	BUG_ON(start & ~HPAGE_MASK); -	BUG_ON(end & ~HPAGE_MASK); +	BUG_ON(start & ~huge_page_mask(h)); +	BUG_ON(end & ~huge_page_mask(h));  	spin_lock(&mm->page_table_lock); -	for (address = start; address < end; address += HPAGE_SIZE) { +	for (address = start; address < end; address += sz) {  		ptep = huge_pte_offset(mm, address);  		if (!ptep)  			continue; @@ -832,6 +1681,27 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,  		if (huge_pmd_unshare(mm, &address, ptep))  			continue; +		/* +		 * If a reference page is supplied, it is because a specific +		 * page is being unmapped, not a range. Ensure the page we +		 * are about to unmap is the actual page of interest. +		 */ +		if (ref_page) { +			pte = huge_ptep_get(ptep); +			if (huge_pte_none(pte)) +				continue; +			page = pte_page(pte); +			if (page != ref_page) +				continue; + +			/* +			 * Mark the VMA as having unmapped its page so that +			 * future faults in this VMA will fail rather than +			 * looking like data was lost +			 */ +			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); +		} +  		pte = huge_ptep_get_and_clear(mm, address, ptep);  		if (huge_pte_none(pte))  			continue; @@ -850,31 +1720,71 @@ void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,  }  void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, -			  unsigned long end) +			  unsigned long end, struct page *ref_page) +{ +	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); +	__unmap_hugepage_range(vma, start, end, ref_page); +	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); +} + +/* + * This is called when the original mapper is failing to COW a MAP_PRIVATE + * mappping it owns the reserve page for. The intention is to unmap the page + * from other VMAs and let the children be SIGKILLed if they are faulting the + * same region. + */ +int unmap_ref_private(struct mm_struct *mm, +					struct vm_area_struct *vma, +					struct page *page, +					unsigned long address)  { +	struct vm_area_struct *iter_vma; +	struct address_space *mapping; +	struct prio_tree_iter iter; +	pgoff_t pgoff; +  	/* -	 * It is undesirable to test vma->vm_file as it should be non-null -	 * for valid hugetlb area. However, vm_file will be NULL in the error -	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails, -	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function -	 * to clean up. Since no pte has actually been setup, it is safe to -	 * do nothing in this case. +	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation +	 * from page cache lookup which is in HPAGE_SIZE units.  	 */ -	if (vma->vm_file) { -		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); -		__unmap_hugepage_range(vma, start, end); -		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); +	address = address & huge_page_mask(hstate_vma(vma)); +	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +		+ (vma->vm_pgoff >> PAGE_SHIFT); +	mapping = (struct address_space *)page_private(page); + +	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { +		/* Do not unmap the current VMA */ +		if (iter_vma == vma) +			continue; + +		/* +		 * Unmap the page from other VMAs without their own reserves. +		 * They get marked to be SIGKILLed if they fault in these +		 * areas. This is because a future no-page fault on this VMA +		 * could insert a zeroed page instead of the data existing +		 * from the time of fork. This would look like data corruption +		 */ +		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) +			unmap_hugepage_range(iter_vma, +				address, address + HPAGE_SIZE, +				page);  	} + +	return 1;  }  static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, -			unsigned long address, pte_t *ptep, pte_t pte) +			unsigned long address, pte_t *ptep, pte_t pte, +			struct page *pagecache_page)  { +	struct hstate *h = hstate_vma(vma);  	struct page *old_page, *new_page;  	int avoidcopy; +	int outside_reserve = 0;  	old_page = pte_page(pte); +retry_avoidcopy:  	/* If no-one else is actually using this page, avoid the copy  	 * and just make the page writable */  	avoidcopy = (page_count(old_page) == 1); @@ -883,11 +1793,43 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,  		return 0;  	} +	/* +	 * If the process that created a MAP_PRIVATE mapping is about to +	 * perform a COW due to a shared page count, attempt to satisfy +	 * the allocation without using the existing reserves. The pagecache +	 * page is used to determine if the reserve at this address was +	 * consumed or not. If reserves were used, a partial faulted mapping +	 * at the time of fork() could consume its reserves on COW instead +	 * of the full address range. +	 */ +	if (!(vma->vm_flags & VM_SHARED) && +			is_vma_resv_set(vma, HPAGE_RESV_OWNER) && +			old_page != pagecache_page) +		outside_reserve = 1; +  	page_cache_get(old_page); -	new_page = alloc_huge_page(vma, address); +	new_page = alloc_huge_page(vma, address, outside_reserve);  	if (IS_ERR(new_page)) {  		page_cache_release(old_page); + +		/* +		 * If a process owning a MAP_PRIVATE mapping fails to COW, +		 * it is due to references held by a child and an insufficient +		 * huge page pool. To guarantee the original mappers +		 * reliability, unmap the page from child processes. The child +		 * may get SIGKILLed if it later faults. +		 */ +		if (outside_reserve) { +			BUG_ON(huge_pte_none(pte)); +			if (unmap_ref_private(mm, vma, old_page, address)) { +				BUG_ON(page_count(old_page) != 1); +				BUG_ON(huge_pte_none(pte)); +				goto retry_avoidcopy; +			} +			WARN_ON_ONCE(1); +		} +  		return -PTR_ERR(new_page);  	} @@ -896,7 +1838,7 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,  	__SetPageUptodate(new_page);  	spin_lock(&mm->page_table_lock); -	ptep = huge_pte_offset(mm, address & HPAGE_MASK); +	ptep = huge_pte_offset(mm, address & huge_page_mask(h));  	if (likely(pte_same(huge_ptep_get(ptep), pte))) {  		/* Break COW */  		huge_ptep_clear_flush(vma, address, ptep); @@ -910,19 +1852,44 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,  	return 0;  } +/* Return the pagecache page at a given address within a VMA */ +static struct page *hugetlbfs_pagecache_page(struct hstate *h, +			struct vm_area_struct *vma, unsigned long address) +{ +	struct address_space *mapping; +	pgoff_t idx; + +	mapping = vma->vm_file->f_mapping; +	idx = vma_hugecache_offset(h, vma, address); + +	return find_lock_page(mapping, idx); +} +  static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,  			unsigned long address, pte_t *ptep, int write_access)  { +	struct hstate *h = hstate_vma(vma);  	int ret = VM_FAULT_SIGBUS; -	unsigned long idx; +	pgoff_t idx;  	unsigned long size;  	struct page *page;  	struct address_space *mapping;  	pte_t new_pte; +	/* +	 * Currently, we are forced to kill the process in the event the +	 * original mapper has unmapped pages from the child due to a failed +	 * COW. Warn that such a situation has occured as it may not be obvious +	 */ +	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { +		printk(KERN_WARNING +			"PID %d killed due to inadequate hugepage pool\n", +			current->pid); +		return ret; +	} +  	mapping = vma->vm_file->f_mapping; -	idx = ((address - vma->vm_start) >> HPAGE_SHIFT) -		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT)); +	idx = vma_hugecache_offset(h, vma, address);  	/*  	 * Use page lock to guard against racing truncation @@ -931,15 +1898,15 @@ static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,  retry:  	page = find_lock_page(mapping, idx);  	if (!page) { -		size = i_size_read(mapping->host) >> HPAGE_SHIFT; +		size = i_size_read(mapping->host) >> huge_page_shift(h);  		if (idx >= size)  			goto out; -		page = alloc_huge_page(vma, address); +		page = alloc_huge_page(vma, address, 0);  		if (IS_ERR(page)) {  			ret = -PTR_ERR(page);  			goto out;  		} -		clear_huge_page(page, address); +		clear_huge_page(page, address, huge_page_size(h));  		__SetPageUptodate(page);  		if (vma->vm_flags & VM_SHARED) { @@ -955,14 +1922,14 @@ retry:  			}  			spin_lock(&inode->i_lock); -			inode->i_blocks += BLOCKS_PER_HUGEPAGE; +			inode->i_blocks += blocks_per_huge_page(h);  			spin_unlock(&inode->i_lock);  		} else  			lock_page(page);  	}  	spin_lock(&mm->page_table_lock); -	size = i_size_read(mapping->host) >> HPAGE_SHIFT; +	size = i_size_read(mapping->host) >> huge_page_shift(h);  	if (idx >= size)  		goto backout; @@ -976,7 +1943,7 @@ retry:  	if (write_access && !(vma->vm_flags & VM_SHARED)) {  		/* Optimization, do the COW without a second fault */ -		ret = hugetlb_cow(mm, vma, address, ptep, new_pte); +		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);  	}  	spin_unlock(&mm->page_table_lock); @@ -998,8 +1965,9 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,  	pte_t entry;  	int ret;  	static DEFINE_MUTEX(hugetlb_instantiation_mutex); +	struct hstate *h = hstate_vma(vma); -	ptep = huge_pte_alloc(mm, address); +	ptep = huge_pte_alloc(mm, address, huge_page_size(h));  	if (!ptep)  		return VM_FAULT_OOM; @@ -1021,14 +1989,30 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,  	spin_lock(&mm->page_table_lock);  	/* Check for a racing update before calling hugetlb_cow */  	if (likely(pte_same(entry, huge_ptep_get(ptep)))) -		if (write_access && !pte_write(entry)) -			ret = hugetlb_cow(mm, vma, address, ptep, entry); +		if (write_access && !pte_write(entry)) { +			struct page *page; +			page = hugetlbfs_pagecache_page(h, vma, address); +			ret = hugetlb_cow(mm, vma, address, ptep, entry, page); +			if (page) { +				unlock_page(page); +				put_page(page); +			} +		}  	spin_unlock(&mm->page_table_lock);  	mutex_unlock(&hugetlb_instantiation_mutex);  	return ret;  } +/* Can be overriden by architectures */ +__attribute__((weak)) struct page * +follow_huge_pud(struct mm_struct *mm, unsigned long address, +	       pud_t *pud, int write) +{ +	BUG(); +	return NULL; +} +  int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,  			struct page **pages, struct vm_area_struct **vmas,  			unsigned long *position, int *length, int i, @@ -1037,6 +2021,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,  	unsigned long pfn_offset;  	unsigned long vaddr = *position;  	int remainder = *length; +	struct hstate *h = hstate_vma(vma);  	spin_lock(&mm->page_table_lock);  	while (vaddr < vma->vm_end && remainder) { @@ -1048,7 +2033,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,  		 * each hugepage.  We have to make * sure we get the  		 * first, for the page indexing below to work.  		 */ -		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK); +		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));  		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||  		    (write && !pte_write(huge_ptep_get(pte)))) { @@ -1066,7 +2051,7 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,  			break;  		} -		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT; +		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;  		page = pte_page(huge_ptep_get(pte));  same_page:  		if (pages) { @@ -1082,7 +2067,7 @@ same_page:  		--remainder;  		++i;  		if (vaddr < vma->vm_end && remainder && -				pfn_offset < HPAGE_SIZE/PAGE_SIZE) { +				pfn_offset < pages_per_huge_page(h)) {  			/*  			 * We use pfn_offset to avoid touching the pageframes  			 * of this compound page. @@ -1104,13 +2089,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma,  	unsigned long start = address;  	pte_t *ptep;  	pte_t pte; +	struct hstate *h = hstate_vma(vma);  	BUG_ON(address >= end);  	flush_cache_range(vma, address, end);  	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);  	spin_lock(&mm->page_table_lock); -	for (; address < end; address += HPAGE_SIZE) { +	for (; address < end; address += huge_page_size(h)) {  		ptep = huge_pte_offset(mm, address);  		if (!ptep)  			continue; @@ -1128,195 +2114,59 @@ void hugetlb_change_protection(struct vm_area_struct *vma,  	flush_tlb_range(vma, start, end);  } -struct file_region { -	struct list_head link; -	long from; -	long to; -}; - -static long region_add(struct list_head *head, long f, long t) -{ -	struct file_region *rg, *nrg, *trg; - -	/* Locate the region we are either in or before. */ -	list_for_each_entry(rg, head, link) -		if (f <= rg->to) -			break; - -	/* Round our left edge to the current segment if it encloses us. */ -	if (f > rg->from) -		f = rg->from; - -	/* Check for and consume any regions we now overlap with. */ -	nrg = rg; -	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { -		if (&rg->link == head) -			break; -		if (rg->from > t) -			break; - -		/* If this area reaches higher then extend our area to -		 * include it completely.  If this is not the first area -		 * which we intend to reuse, free it. */ -		if (rg->to > t) -			t = rg->to; -		if (rg != nrg) { -			list_del(&rg->link); -			kfree(rg); -		} -	} -	nrg->from = f; -	nrg->to = t; -	return 0; -} - -static long region_chg(struct list_head *head, long f, long t) +int hugetlb_reserve_pages(struct inode *inode, +					long from, long to, +					struct vm_area_struct *vma)  { -	struct file_region *rg, *nrg; -	long chg = 0; - -	/* Locate the region we are before or in. */ -	list_for_each_entry(rg, head, link) -		if (f <= rg->to) -			break; - -	/* If we are below the current region then a new region is required. -	 * Subtle, allocate a new region at the position but make it zero -	 * size such that we can guarantee to record the reservation. */ -	if (&rg->link == head || t < rg->from) { -		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); -		if (!nrg) -			return -ENOMEM; -		nrg->from = f; -		nrg->to   = f; -		INIT_LIST_HEAD(&nrg->link); -		list_add(&nrg->link, rg->link.prev); - -		return t - f; -	} - -	/* Round our left edge to the current segment if it encloses us. */ -	if (f > rg->from) -		f = rg->from; -	chg = t - f; - -	/* Check for and consume any regions we now overlap with. */ -	list_for_each_entry(rg, rg->link.prev, link) { -		if (&rg->link == head) -			break; -		if (rg->from > t) -			return chg; - -		/* We overlap with this area, if it extends futher than -		 * us then we must extend ourselves.  Account for its -		 * existing reservation. */ -		if (rg->to > t) { -			chg += rg->to - t; -			t = rg->to; -		} -		chg -= rg->to - rg->from; -	} -	return chg; -} - -static long region_truncate(struct list_head *head, long end) -{ -	struct file_region *rg, *trg; -	long chg = 0; +	long ret, chg; +	struct hstate *h = hstate_inode(inode); -	/* Locate the region we are either in or before. */ -	list_for_each_entry(rg, head, link) -		if (end <= rg->to) -			break; -	if (&rg->link == head) +	if (vma && vma->vm_flags & VM_NORESERVE)  		return 0; -	/* If we are in the middle of a region then adjust it. */ -	if (end > rg->from) { -		chg = rg->to - end; -		rg->to = end; -		rg = list_entry(rg->link.next, typeof(*rg), link); -	} - -	/* Drop any remaining regions. */ -	list_for_each_entry_safe(rg, trg, rg->link.prev, link) { -		if (&rg->link == head) -			break; -		chg += rg->to - rg->from; -		list_del(&rg->link); -		kfree(rg); -	} -	return chg; -} - -static int hugetlb_acct_memory(long delta) -{ -	int ret = -ENOMEM; - -	spin_lock(&hugetlb_lock);  	/* -	 * When cpuset is configured, it breaks the strict hugetlb page -	 * reservation as the accounting is done on a global variable. Such -	 * reservation is completely rubbish in the presence of cpuset because -	 * the reservation is not checked against page availability for the -	 * current cpuset. Application can still potentially OOM'ed by kernel -	 * with lack of free htlb page in cpuset that the task is in. -	 * Attempt to enforce strict accounting with cpuset is almost -	 * impossible (or too ugly) because cpuset is too fluid that -	 * task or memory node can be dynamically moved between cpusets. -	 * -	 * The change of semantics for shared hugetlb mapping with cpuset is -	 * undesirable. However, in order to preserve some of the semantics, -	 * we fall back to check against current free page availability as -	 * a best attempt and hopefully to minimize the impact of changing -	 * semantics that cpuset has. +	 * Shared mappings base their reservation on the number of pages that +	 * are already allocated on behalf of the file. Private mappings need +	 * to reserve the full area even if read-only as mprotect() may be +	 * called to make the mapping read-write. Assume !vma is a shm mapping  	 */ -	if (delta > 0) { -		if (gather_surplus_pages(delta) < 0) -			goto out; - -		if (delta > cpuset_mems_nr(free_huge_pages_node)) { -			return_unused_surplus_pages(delta); -			goto out; -		} -	} - -	ret = 0; -	if (delta < 0) -		return_unused_surplus_pages((unsigned long) -delta); +	if (!vma || vma->vm_flags & VM_SHARED) +		chg = region_chg(&inode->i_mapping->private_list, from, to); +	else { +		struct resv_map *resv_map = resv_map_alloc(); +		if (!resv_map) +			return -ENOMEM; -out: -	spin_unlock(&hugetlb_lock); -	return ret; -} +		chg = to - from; -int hugetlb_reserve_pages(struct inode *inode, long from, long to) -{ -	long ret, chg; +		set_vma_resv_map(vma, resv_map); +		set_vma_resv_flags(vma, HPAGE_RESV_OWNER); +	} -	chg = region_chg(&inode->i_mapping->private_list, from, to);  	if (chg < 0)  		return chg;  	if (hugetlb_get_quota(inode->i_mapping, chg))  		return -ENOSPC; -	ret = hugetlb_acct_memory(chg); +	ret = hugetlb_acct_memory(h, chg);  	if (ret < 0) {  		hugetlb_put_quota(inode->i_mapping, chg);  		return ret;  	} -	region_add(&inode->i_mapping->private_list, from, to); +	if (!vma || vma->vm_flags & VM_SHARED) +		region_add(&inode->i_mapping->private_list, from, to);  	return 0;  }  void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)  { +	struct hstate *h = hstate_inode(inode);  	long chg = region_truncate(&inode->i_mapping->private_list, offset);  	spin_lock(&inode->i_lock); -	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed; +	inode->i_blocks -= blocks_per_huge_page(h);  	spin_unlock(&inode->i_lock);  	hugetlb_put_quota(inode->i_mapping, (chg - freed)); -	hugetlb_acct_memory(-(chg - freed)); +	hugetlb_acct_memory(h, -(chg - freed));  }  |