aboutsummaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/async.c17
-rw-r--r--kernel/backtracetest.c18
-rw-r--r--kernel/bpf/cpumap.c2
-rw-r--r--kernel/bpf/verifier.c3
-rw-r--r--kernel/cgroup/cpuset.c9
-rw-r--r--kernel/context_tracking.c4
-rw-r--r--kernel/cpu.c26
-rw-r--r--kernel/exit.c31
-rw-r--r--kernel/fork.c148
-rw-r--r--kernel/irq/irq_sim.c28
-rw-r--r--kernel/irq/irqdesc.c112
-rw-r--r--kernel/irq/irqdomain.c28
-rw-r--r--kernel/irq/manage.c109
-rw-r--r--kernel/irq/matrix.c28
-rw-r--r--kernel/irq/msi.c184
-rw-r--r--kernel/locking/percpu-rwsem.c11
-rw-r--r--kernel/locking/qspinlock_paravirt.h2
-rw-r--r--kernel/locking/rtmutex.c9
-rw-r--r--kernel/locking/rwsem.c6
-rw-r--r--kernel/nsproxy.c2
-rw-r--r--kernel/pid.c57
-rw-r--r--kernel/power/swap.c28
-rw-r--r--kernel/rcu/Kconfig13
-rw-r--r--kernel/rcu/rcu.h19
-rw-r--r--kernel/rcu/rcuscale.c6
-rw-r--r--kernel/rcu/rcutorture.c13
-rw-r--r--kernel/rcu/srcutree.c24
-rw-r--r--kernel/rcu/sync.c16
-rw-r--r--kernel/rcu/tasks.h135
-rw-r--r--kernel/rcu/tiny.c1
-rw-r--r--kernel/rcu/tree.c237
-rw-r--r--kernel/rcu/tree.h20
-rw-r--r--kernel/rcu/tree_exp.h83
-rw-r--r--kernel/rcu/tree_nocb.h69
-rw-r--r--kernel/rcu/tree_plugin.h52
-rw-r--r--kernel/sched/core.c21
-rw-r--r--kernel/sched/fair.c110
-rw-r--r--kernel/sched/idle.c1
-rw-r--r--kernel/sched/sched.h2
-rw-r--r--kernel/sched/topology.c35
-rw-r--r--kernel/signal.c110
-rw-r--r--kernel/softirq.c5
-rw-r--r--kernel/time/Makefile3
-rw-r--r--kernel/time/clockevents.c2
-rw-r--r--kernel/time/clocksource-wdtest.c13
-rw-r--r--kernel/time/clocksource.c12
-rw-r--r--kernel/time/hrtimer.c25
-rw-r--r--kernel/time/tick-common.c31
-rw-r--r--kernel/time/tick-internal.h16
-rw-r--r--kernel/time/tick-sched.c361
-rw-r--r--kernel/time/tick-sched.h42
-rw-r--r--kernel/time/time_test.c2
-rw-r--r--kernel/time/timekeeping.c33
-rw-r--r--kernel/time/timer.c571
-rw-r--r--kernel/time/timer_list.c10
-rw-r--r--kernel/time/timer_migration.c1793
-rw-r--r--kernel/time/timer_migration.h140
-rw-r--r--kernel/trace/ring_buffer.c169
-rw-r--r--kernel/trace/trace.c31
-rw-r--r--kernel/trace/trace_output.c6
-rw-r--r--kernel/workqueue.c1845
61 files changed, 5253 insertions, 1686 deletions
diff --git a/kernel/async.c b/kernel/async.c
index 97f224a5257b..4c3e6a44595f 100644
--- a/kernel/async.c
+++ b/kernel/async.c
@@ -64,6 +64,7 @@ static async_cookie_t next_cookie = 1;
static LIST_HEAD(async_global_pending); /* pending from all registered doms */
static ASYNC_DOMAIN(async_dfl_domain);
static DEFINE_SPINLOCK(async_lock);
+static struct workqueue_struct *async_wq;
struct async_entry {
struct list_head domain_list;
@@ -174,7 +175,7 @@ static async_cookie_t __async_schedule_node_domain(async_func_t func,
spin_unlock_irqrestore(&async_lock, flags);
/* schedule for execution */
- queue_work_node(node, system_unbound_wq, &entry->work);
+ queue_work_node(node, async_wq, &entry->work);
return newcookie;
}
@@ -345,3 +346,17 @@ bool current_is_async(void)
return worker && worker->current_func == async_run_entry_fn;
}
EXPORT_SYMBOL_GPL(current_is_async);
+
+void __init async_init(void)
+{
+ /*
+ * Async can schedule a number of interdependent work items. However,
+ * unbound workqueues can handle only upto min_active interdependent
+ * work items. The default min_active of 8 isn't sufficient for async
+ * and can lead to stalls. Let's use a dedicated workqueue with raised
+ * min_active.
+ */
+ async_wq = alloc_workqueue("async", WQ_UNBOUND, 0);
+ BUG_ON(!async_wq);
+ workqueue_set_min_active(async_wq, WQ_DFL_ACTIVE);
+}
diff --git a/kernel/backtracetest.c b/kernel/backtracetest.c
index 370217dd7e39..a4181234232b 100644
--- a/kernel/backtracetest.c
+++ b/kernel/backtracetest.c
@@ -21,24 +21,20 @@ static void backtrace_test_normal(void)
dump_stack();
}
-static DECLARE_COMPLETION(backtrace_work);
-
-static void backtrace_test_irq_callback(unsigned long data)
+static void backtrace_test_bh_workfn(struct work_struct *work)
{
dump_stack();
- complete(&backtrace_work);
}
-static DECLARE_TASKLET_OLD(backtrace_tasklet, &backtrace_test_irq_callback);
+static DECLARE_WORK(backtrace_bh_work, &backtrace_test_bh_workfn);
-static void backtrace_test_irq(void)
+static void backtrace_test_bh(void)
{
- pr_info("Testing a backtrace from irq context.\n");
+ pr_info("Testing a backtrace from BH context.\n");
pr_info("The following trace is a kernel self test and not a bug!\n");
- init_completion(&backtrace_work);
- tasklet_schedule(&backtrace_tasklet);
- wait_for_completion(&backtrace_work);
+ queue_work(system_bh_wq, &backtrace_bh_work);
+ flush_work(&backtrace_bh_work);
}
#ifdef CONFIG_STACKTRACE
@@ -65,7 +61,7 @@ static int backtrace_regression_test(void)
pr_info("====[ backtrace testing ]===========\n");
backtrace_test_normal();
- backtrace_test_irq();
+ backtrace_test_bh();
backtrace_test_saved();
pr_info("====[ end of backtrace testing ]====\n");
diff --git a/kernel/bpf/cpumap.c b/kernel/bpf/cpumap.c
index 8a0bb80fe48a..ef82ffc90cbe 100644
--- a/kernel/bpf/cpumap.c
+++ b/kernel/bpf/cpumap.c
@@ -178,7 +178,7 @@ static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
void **frames, int n,
struct xdp_cpumap_stats *stats)
{
- struct xdp_rxq_info rxq;
+ struct xdp_rxq_info rxq = {};
struct xdp_buff xdp;
int i, nframes = 0;
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index b263f093ee76..ddea9567f755 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -16602,6 +16602,9 @@ static bool func_states_equal(struct bpf_verifier_env *env, struct bpf_func_stat
{
int i;
+ if (old->callback_depth > cur->callback_depth)
+ return false;
+
for (i = 0; i < MAX_BPF_REG; i++)
if (!regsafe(env, &old->regs[i], &cur->regs[i],
&env->idmap_scratch, exact))
diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c
index ba36c073304a..4237c8748715 100644
--- a/kernel/cgroup/cpuset.c
+++ b/kernel/cgroup/cpuset.c
@@ -2562,7 +2562,7 @@ static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
update_partition_sd_lb(cs, old_prs);
out_free:
free_cpumasks(NULL, &tmp);
- return 0;
+ return retval;
}
/**
@@ -2598,9 +2598,6 @@ static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
return 0;
- if (alloc_cpumasks(NULL, &tmp))
- return -ENOMEM;
-
if (*buf)
compute_effective_exclusive_cpumask(trialcs, NULL);
@@ -2615,6 +2612,9 @@ static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
if (retval)
return retval;
+ if (alloc_cpumasks(NULL, &tmp))
+ return -ENOMEM;
+
if (old_prs) {
if (cpumask_empty(trialcs->effective_xcpus)) {
invalidate = true;
@@ -3897,6 +3897,7 @@ static struct cftype legacy_files[] = {
},
{
+ /* obsolete, may be removed in the future */
.name = "memory_spread_slab",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
diff --git a/kernel/context_tracking.c b/kernel/context_tracking.c
index 6ef0b35fc28c..70ae70d03823 100644
--- a/kernel/context_tracking.c
+++ b/kernel/context_tracking.c
@@ -458,6 +458,8 @@ static __always_inline void context_tracking_recursion_exit(void)
* __ct_user_enter - Inform the context tracking that the CPU is going
* to enter user or guest space mode.
*
+ * @state: userspace context-tracking state to enter.
+ *
* This function must be called right before we switch from the kernel
* to user or guest space, when it's guaranteed the remaining kernel
* instructions to execute won't use any RCU read side critical section
@@ -595,6 +597,8 @@ NOKPROBE_SYMBOL(user_enter_callable);
* __ct_user_exit - Inform the context tracking that the CPU is
* exiting user or guest mode and entering the kernel.
*
+ * @state: userspace context-tracking state being exited from.
+ *
* This function must be called after we entered the kernel from user or
* guest space before any use of RCU read side critical section. This
* potentially include any high level kernel code like syscalls, exceptions,
diff --git a/kernel/cpu.c b/kernel/cpu.c
index e6ec3ba4950b..8f6affd051f7 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -54,7 +54,6 @@
* @rollback: Perform a rollback
* @single: Single callback invocation
* @bringup: Single callback bringup or teardown selector
- * @cpu: CPU number
* @node: Remote CPU node; for multi-instance, do a
* single entry callback for install/remove
* @last: For multi-instance rollback, remember how far we got
@@ -1324,10 +1323,6 @@ static int take_cpu_down(void *_param)
*/
cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
- /* Give up timekeeping duties */
- tick_handover_do_timer();
- /* Remove CPU from timer broadcasting */
- tick_offline_cpu(cpu);
/* Park the stopper thread */
stop_machine_park(cpu);
return 0;
@@ -1403,6 +1398,7 @@ void cpuhp_report_idle_dead(void)
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
BUG_ON(st->state != CPUHP_AP_OFFLINE);
+ tick_assert_timekeeping_handover();
rcutree_report_cpu_dead();
st->state = CPUHP_AP_IDLE_DEAD;
/*
@@ -1909,14 +1905,14 @@ static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
#endif /* CONFIG_HOTPLUG_PARALLEL */
-void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
+void __init bringup_nonboot_cpus(unsigned int max_cpus)
{
/* Try parallel bringup optimization if enabled */
- if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
+ if (cpuhp_bringup_cpus_parallel(max_cpus))
return;
/* Full per CPU serialized bringup */
- cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
+ cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
}
#ifdef CONFIG_PM_SLEEP_SMP
@@ -2205,7 +2201,11 @@ static struct cpuhp_step cpuhp_hp_states[] = {
.startup.single = NULL,
.teardown.single = hrtimers_cpu_dying,
},
-
+ [CPUHP_AP_TICK_DYING] = {
+ .name = "tick:dying",
+ .startup.single = NULL,
+ .teardown.single = tick_cpu_dying,
+ },
/* Entry state on starting. Interrupts enabled from here on. Transient
* state for synchronsization */
[CPUHP_AP_ONLINE] = {
@@ -3005,7 +3005,7 @@ static ssize_t control_show(struct device *dev,
return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
#endif
- return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
+ return sysfs_emit(buf, "%s\n", state);
}
static ssize_t control_store(struct device *dev, struct device_attribute *attr,
@@ -3018,7 +3018,7 @@ static DEVICE_ATTR_RW(control);
static ssize_t active_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
- return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
+ return sysfs_emit(buf, "%d\n", sched_smt_active());
}
static DEVICE_ATTR_RO(active);
@@ -3107,10 +3107,10 @@ const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
EXPORT_SYMBOL(cpu_all_bits);
#ifdef CONFIG_INIT_ALL_POSSIBLE
-struct cpumask __cpu_possible_mask __read_mostly
+struct cpumask __cpu_possible_mask __ro_after_init
= {CPU_BITS_ALL};
#else
-struct cpumask __cpu_possible_mask __read_mostly;
+struct cpumask __cpu_possible_mask __ro_after_init;
#endif
EXPORT_SYMBOL(__cpu_possible_mask);
diff --git a/kernel/exit.c b/kernel/exit.c
index dfb963d2f862..41a12630cbbc 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -739,6 +739,13 @@ static void exit_notify(struct task_struct *tsk, int group_dead)
kill_orphaned_pgrp(tsk->group_leader, NULL);
tsk->exit_state = EXIT_ZOMBIE;
+ /*
+ * sub-thread or delay_group_leader(), wake up the
+ * PIDFD_THREAD waiters.
+ */
+ if (!thread_group_empty(tsk))
+ do_notify_pidfd(tsk);
+
if (unlikely(tsk->ptrace)) {
int sig = thread_group_leader(tsk) &&
thread_group_empty(tsk) &&
@@ -1889,30 +1896,6 @@ Efault:
}
#endif
-/**
- * thread_group_exited - check that a thread group has exited
- * @pid: tgid of thread group to be checked.
- *
- * Test if the thread group represented by tgid has exited (all
- * threads are zombies, dead or completely gone).
- *
- * Return: true if the thread group has exited. false otherwise.
- */
-bool thread_group_exited(struct pid *pid)
-{
- struct task_struct *task;
- bool exited;
-
- rcu_read_lock();
- task = pid_task(pid, PIDTYPE_PID);
- exited = !task ||
- (READ_ONCE(task->exit_state) && thread_group_empty(task));
- rcu_read_unlock();
-
- return exited;
-}
-EXPORT_SYMBOL(thread_group_exited);
-
/*
* This needs to be __function_aligned as GCC implicitly makes any
* implementation of abort() cold and drops alignment specified by
diff --git a/kernel/fork.c b/kernel/fork.c
index 0d944e92a43f..39a5046c2f0b 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -101,6 +101,8 @@
#include <linux/user_events.h>
#include <linux/iommu.h>
#include <linux/rseq.h>
+#include <uapi/linux/pidfd.h>
+#include <linux/pidfs.h>
#include <asm/pgalloc.h>
#include <linux/uaccess.h>
@@ -1976,6 +1978,7 @@ static inline void rcu_copy_process(struct task_struct *p)
p->rcu_tasks_holdout = false;
INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
p->rcu_tasks_idle_cpu = -1;
+ INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
#endif /* #ifdef CONFIG_TASKS_RCU */
#ifdef CONFIG_TASKS_TRACE_RCU
p->trc_reader_nesting = 0;
@@ -1985,119 +1988,6 @@ static inline void rcu_copy_process(struct task_struct *p)
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
}
-struct pid *pidfd_pid(const struct file *file)
-{
- if (file->f_op == &pidfd_fops)
- return file->private_data;
-
- return ERR_PTR(-EBADF);
-}
-
-static int pidfd_release(struct inode *inode, struct file *file)
-{
- struct pid *pid = file->private_data;
-
- file->private_data = NULL;
- put_pid(pid);
- return 0;
-}
-
-#ifdef CONFIG_PROC_FS
-/**
- * pidfd_show_fdinfo - print information about a pidfd
- * @m: proc fdinfo file
- * @f: file referencing a pidfd
- *
- * Pid:
- * This function will print the pid that a given pidfd refers to in the
- * pid namespace of the procfs instance.
- * If the pid namespace of the process is not a descendant of the pid
- * namespace of the procfs instance 0 will be shown as its pid. This is
- * similar to calling getppid() on a process whose parent is outside of
- * its pid namespace.
- *
- * NSpid:
- * If pid namespaces are supported then this function will also print
- * the pid of a given pidfd refers to for all descendant pid namespaces
- * starting from the current pid namespace of the instance, i.e. the
- * Pid field and the first entry in the NSpid field will be identical.
- * If the pid namespace of the process is not a descendant of the pid
- * namespace of the procfs instance 0 will be shown as its first NSpid
- * entry and no others will be shown.
- * Note that this differs from the Pid and NSpid fields in
- * /proc/<pid>/status where Pid and NSpid are always shown relative to
- * the pid namespace of the procfs instance. The difference becomes
- * obvious when sending around a pidfd between pid namespaces from a
- * different branch of the tree, i.e. where no ancestral relation is
- * present between the pid namespaces:
- * - create two new pid namespaces ns1 and ns2 in the initial pid
- * namespace (also take care to create new mount namespaces in the
- * new pid namespace and mount procfs)
- * - create a process with a pidfd in ns1
- * - send pidfd from ns1 to ns2
- * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
- * have exactly one entry, which is 0
- */
-static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
-{
- struct pid *pid = f->private_data;
- struct pid_namespace *ns;
- pid_t nr = -1;
-
- if (likely(pid_has_task(pid, PIDTYPE_PID))) {
- ns = proc_pid_ns(file_inode(m->file)->i_sb);
- nr = pid_nr_ns(pid, ns);
- }
-
- seq_put_decimal_ll(m, "Pid:\t", nr);
-
-#ifdef CONFIG_PID_NS
- seq_put_decimal_ll(m, "\nNSpid:\t", nr);
- if (nr > 0) {
- int i;
-
- /* If nr is non-zero it means that 'pid' is valid and that
- * ns, i.e. the pid namespace associated with the procfs
- * instance, is in the pid namespace hierarchy of pid.
- * Start at one below the already printed level.
- */
- for (i = ns->level + 1; i <= pid->level; i++)
- seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
- }
-#endif
- seq_putc(m, '\n');
-}
-#endif
-
-/*
- * Poll support for process exit notification.
- */
-static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
-{
- struct pid *pid = file->private_data;
- __poll_t poll_flags = 0;
-
- poll_wait(file, &pid->wait_pidfd, pts);
-
- /*
- * Inform pollers only when the whole thread group exits.
- * If the thread group leader exits before all other threads in the
- * group, then poll(2) should block, similar to the wait(2) family.
- */
- if (thread_group_exited(pid))
- poll_flags = EPOLLIN | EPOLLRDNORM;
-
- return poll_flags;
-}
-
-const struct file_operations pidfd_fops = {
- .release = pidfd_release,
- .poll = pidfd_poll,
-#ifdef CONFIG_PROC_FS
- .show_fdinfo = pidfd_show_fdinfo,
-#endif
-};
-
/**
* __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
* @pid: the struct pid for which to create a pidfd
@@ -2131,20 +2021,20 @@ static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **re
int pidfd;
struct file *pidfd_file;
- if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
- return -EINVAL;
-
- pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
+ pidfd = get_unused_fd_flags(O_CLOEXEC);
if (pidfd < 0)
return pidfd;
- pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
- flags | O_RDWR | O_CLOEXEC);
+ pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
if (IS_ERR(pidfd_file)) {
put_unused_fd(pidfd);
return PTR_ERR(pidfd_file);
}
- get_pid(pid); /* held by pidfd_file now */
+ /*
+ * anon_inode_getfile() ignores everything outside of the
+ * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
+ */
+ pidfd_file->f_flags |= (flags & PIDFD_THREAD);
*ret = pidfd_file;
return pidfd;
}
@@ -2158,7 +2048,8 @@ static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **re
* Allocate a new file that stashes @pid and reserve a new pidfd number in the
* caller's file descriptor table. The pidfd is reserved but not installed yet.
*
- * The helper verifies that @pid is used as a thread group leader.
+ * The helper verifies that @pid is still in use, without PIDFD_THREAD the
+ * task identified by @pid must be a thread-group leader.
*
* If this function returns successfully the caller is responsible to either
* call fd_install() passing the returned pidfd and pidfd file as arguments in
@@ -2177,7 +2068,9 @@ static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **re
*/
int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
{
- if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
+ bool thread = flags & PIDFD_THREAD;
+
+ if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
return -EINVAL;
return __pidfd_prepare(pid, flags, ret);
@@ -2299,9 +2192,8 @@ __latent_entropy struct task_struct *copy_process(
/*
* - CLONE_DETACHED is blocked so that we can potentially
* reuse it later for CLONE_PIDFD.
- * - CLONE_THREAD is blocked until someone really needs it.
*/
- if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
+ if (clone_flags & CLONE_DETACHED)
return ERR_PTR(-EINVAL);
}
@@ -2524,8 +2416,10 @@ __latent_entropy struct task_struct *copy_process(
* if the fd table isn't shared).
*/
if (clone_flags & CLONE_PIDFD) {
+ int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
+
/* Note that no task has been attached to @pid yet. */
- retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
+ retval = __pidfd_prepare(pid, flags, &pidfile);
if (retval < 0)
goto bad_fork_free_pid;
pidfd = retval;
@@ -2876,8 +2770,8 @@ pid_t kernel_clone(struct kernel_clone_args *args)
* here has the advantage that we don't need to have a separate helper
* to check for legacy clone().
*/
- if ((args->flags & CLONE_PIDFD) &&
- (args->flags & CLONE_PARENT_SETTID) &&
+ if ((clone_flags & CLONE_PIDFD) &&
+ (clone_flags & CLONE_PARENT_SETTID) &&
(args->pidfd == args->parent_tid))
return -EINVAL;
diff --git a/kernel/irq/irq_sim.c b/kernel/irq/irq_sim.c
index dd76323ea3fd..38d6ae651ac7 100644
--- a/kernel/irq/irq_sim.c
+++ b/kernel/irq/irq_sim.c
@@ -4,10 +4,11 @@
* Copyright (C) 2020 Bartosz Golaszewski <bgolaszewski@baylibre.com>
*/
+#include <linux/cleanup.h>
+#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irq_sim.h>
#include <linux/irq_work.h>
-#include <linux/interrupt.h>
#include <linux/slab.h>
struct irq_sim_work_ctx {
@@ -19,7 +20,6 @@ struct irq_sim_work_ctx {
};
struct irq_sim_irq_ctx {
- int irqnum;
bool enabled;
struct irq_sim_work_ctx *work_ctx;
};
@@ -164,33 +164,27 @@ static const struct irq_domain_ops irq_sim_domain_ops = {
struct irq_domain *irq_domain_create_sim(struct fwnode_handle *fwnode,
unsigned int num_irqs)
{
- struct irq_sim_work_ctx *work_ctx;
+ struct irq_sim_work_ctx *work_ctx __free(kfree) =
+ kmalloc(sizeof(*work_ctx), GFP_KERNEL);
- work_ctx = kmalloc(sizeof(*work_ctx), GFP_KERNEL);
if (!work_ctx)
- goto err_out;
+ return ERR_PTR(-ENOMEM);
- work_ctx->pending = bitmap_zalloc(num_irqs, GFP_KERNEL);
- if (!work_ctx->pending)
- goto err_free_work_ctx;
+ unsigned long *pending __free(bitmap) = bitmap_zalloc(num_irqs, GFP_KERNEL);
+ if (!pending)
+ return ERR_PTR(-ENOMEM);
work_ctx->domain = irq_domain_create_linear(fwnode, num_irqs,
&irq_sim_domain_ops,
work_ctx);
if (!work_ctx->domain)
- goto err_free_bitmap;
+ return ERR_PTR(-ENOMEM);
work_ctx->irq_count = num_irqs;
work_ctx->work = IRQ_WORK_INIT_HARD(irq_sim_handle_irq);
+ work_ctx->pending = no_free_ptr(pending);
- return work_ctx->domain;
-
-err_free_bitmap:
- bitmap_free(work_ctx->pending);
-err_free_work_ctx:
- kfree(work_ctx);
-err_out:
- return ERR_PTR(-ENOMEM);
+ return no_free_ptr(work_ctx)->domain;
}
EXPORT_SYMBOL_GPL(irq_domain_create_sim);
diff --git a/kernel/irq/irqdesc.c b/kernel/irq/irqdesc.c
index 371eb1711d34..4c6b32318ce3 100644
--- a/kernel/irq/irqdesc.c
+++ b/kernel/irq/irqdesc.c
@@ -92,11 +92,23 @@ static void desc_smp_init(struct irq_desc *desc, int node,
#endif
}
+static void free_masks(struct irq_desc *desc)
+{
+#ifdef CONFIG_GENERIC_PENDING_IRQ
+ free_cpumask_var(desc->pending_mask);
+#endif
+ free_cpumask_var(desc->irq_common_data.affinity);
+#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
+ free_cpumask_var(desc->irq_common_data.effective_affinity);
+#endif
+}
+
#else
static inline int
alloc_masks(struct irq_desc *desc, int node) { return 0; }
static inline void
desc_smp_init(struct irq_desc *desc, int node, const struct cpumask *affinity) { }
+static inline void free_masks(struct irq_desc *desc) { }
#endif
static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
@@ -166,6 +178,39 @@ static void delete_irq_desc(unsigned int irq)
}
#ifdef CONFIG_SPARSE_IRQ
+static const struct kobj_type irq_kobj_type;
+#endif
+
+static int init_desc(struct irq_desc *desc, int irq, int node,
+ unsigned int flags,
+ const struct cpumask *affinity,
+ struct module *owner)
+{
+ desc->kstat_irqs = alloc_percpu(unsigned int);
+ if (!desc->kstat_irqs)
+ return -ENOMEM;
+
+ if (alloc_masks(desc, node)) {
+ free_percpu(desc->kstat_irqs);
+ return -ENOMEM;
+ }
+
+ raw_spin_lock_init(&desc->lock);
+ lockdep_set_class(&desc->lock, &irq_desc_lock_class);
+ mutex_init(&desc->request_mutex);
+ init_waitqueue_head(&desc->wait_for_threads);
+ desc_set_defaults(irq, desc, node, affinity, owner);
+ irqd_set(&desc->irq_data, flags);
+ irq_resend_init(desc);
+#ifdef CONFIG_SPARSE_IRQ
+ kobject_init(&desc->kobj, &irq_kobj_type);
+ init_rcu_head(&desc->rcu);
+#endif
+
+ return 0;
+}
+
+#ifdef CONFIG_SPARSE_IRQ
static void irq_kobj_release(struct kobject *kobj);
@@ -384,21 +429,6 @@ struct irq_desc *irq_to_desc(unsigned int irq)
EXPORT_SYMBOL_GPL(irq_to_desc);
#endif
-#ifdef CONFIG_SMP
-static void free_masks(struct irq_desc *desc)
-{
-#ifdef CONFIG_GENERIC_PENDING_IRQ
- free_cpumask_var(desc->pending_mask);
-#endif
- free_cpumask_var(desc->irq_common_data.affinity);
-#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
- free_cpumask_var(desc->irq_common_data.effective_affinity);
-#endif
-}
-#else
-static inline void free_masks(struct irq_desc *desc) { }
-#endif
-
void irq_lock_sparse(void)
{
mutex_lock(&sparse_irq_lock);
@@ -414,36 +444,19 @@ static struct irq_desc *alloc_desc(int irq, int node, unsigned int flags,
struct module *owner)
{
struct irq_desc *desc;
+ int ret;
desc = kzalloc_node(sizeof(*desc), GFP_KERNEL, node);
if (!desc)
return NULL;
- /* allocate based on nr_cpu_ids */
- desc->kstat_irqs = alloc_percpu(unsigned int);
- if (!desc->kstat_irqs)
- goto err_desc;
-
- if (alloc_masks(desc, node))
- goto err_kstat;
- raw_spin_lock_init(&desc->lock);
- lockdep_set_class(&desc->lock, &irq_desc_lock_class);
- mutex_init(&desc->request_mutex);
- init_rcu_head(&desc->rcu);
- init_waitqueue_head(&desc->wait_for_threads);
-
- desc_set_defaults(irq, desc, node, affinity, owner);
- irqd_set(&desc->irq_data, flags);
- kobject_init(&desc->kobj, &irq_kobj_type);
- irq_resend_init(desc);
+ ret = init_desc(desc, irq, node, flags, affinity, owner);
+ if (unlikely(ret)) {
+ kfree(desc);
+ return NULL;
+ }
return desc;
-
-err_kstat:
- free_percpu(desc->kstat_irqs);
-err_desc:
- kfree(desc);
- return NULL;
}
static void irq_kobj_release(struct kobject *kobj)
@@ -583,26 +596,29 @@ struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
int __init early_irq_init(void)
{
int count, i, node = first_online_node;
- struct irq_desc *desc;
+ int ret;
init_irq_default_affinity();
printk(KERN_INFO "NR_IRQS: %d\n", NR_IRQS);
- desc = irq_desc;
count = ARRAY_SIZE(irq_desc);
for (i = 0; i < count; i++) {
- desc[i].kstat_irqs = alloc_percpu(unsigned int);
- alloc_masks(&desc[i], node);
- raw_spin_lock_init(&desc[i].lock);
- lockdep_set_class(&desc[i].lock, &irq_desc_lock_class);
- mutex_init(&desc[i].request_mutex);
- init_waitqueue_head(&desc[i].wait_for_threads);
- desc_set_defaults(i, &desc[i], node, NULL, NULL);
- irq_resend_init(&desc[i]);
+ ret = init_desc(irq_desc + i, i, node, 0, NULL, NULL);
+ if (unlikely(ret))
+ goto __free_desc_res;
}
+
return arch_early_irq_init();
+
+__free_desc_res:
+ while (--i >= 0) {
+ free_masks(irq_desc + i);
+ free_percpu(irq_desc[i].kstat_irqs);
+ }
+
+ return ret;
}
struct irq_desc *irq_to_desc(unsigned int irq)
diff --git a/kernel/irq/irqdomain.c b/kernel/irq/irqdomain.c
index 0bdef4fe925b..3dd1c871e091 100644
--- a/kernel/irq/irqdomain.c
+++ b/kernel/irq/irqdomain.c
@@ -29,6 +29,7 @@ static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
unsigned int nr_irqs, int node, void *arg,
bool realloc, const struct irq_affinity_desc *affinity);
static void irq_domain_check_hierarchy(struct irq_domain *domain);
+static void irq_domain_free_one_irq(struct irq_domain *domain, unsigned int virq);
struct irqchip_fwid {
struct fwnode_handle fwnode;
@@ -448,7 +449,7 @@ struct irq_domain *irq_find_matching_fwspec(struct irq_fwspec *fwspec,
*/
mutex_lock(&irq_domain_mutex);
list_for_each_entry(h, &irq_domain_list, link) {
- if (h->ops->select && fwspec->param_count)
+ if (h->ops->select && bus_token != DOMAIN_BUS_ANY)
rc = h->ops->select(h, fwspec, bus_token);
else if (h->ops->match)
rc = h->ops->match(h, to_of_node(fwnode), bus_token);
@@ -858,8 +859,13 @@ unsigned int irq_create_fwspec_mapping(struct irq_fwspec *fwspec)
}
if (irq_domain_is_hierarchy(domain)) {
- virq = irq_domain_alloc_irqs_locked(domain, -1, 1, NUMA_NO_NODE,
- fwspec, false, NULL);
+ if (irq_domain_is_msi_device(domain)) {
+ mutex_unlock(&domain->root->mutex);
+ virq = msi_device_domain_alloc_wired(domain, hwirq, type);
+ mutex_lock(&domain->root->mutex);
+ } else
+ virq = irq_domain_alloc_irqs_locked(domain, -1, 1, NUMA_NO_NODE,
+ fwspec, false, NULL);
if (virq <= 0) {
virq = 0;
goto out;
@@ -914,7 +920,7 @@ void irq_dispose_mapping(unsigned int virq)
return;
if (irq_domain_is_hierarchy(domain)) {
- irq_domain_free_irqs(virq, 1);
+ irq_domain_free_one_irq(domain, virq);
} else {
irq_domain_disassociate(domain, virq);
irq_free_desc(virq);
@@ -1755,6 +1761,14 @@ void irq_domain_free_irqs(unsigned int virq, unsigned int nr_irqs)
irq_free_descs(virq, nr_irqs);
}
+static void irq_domain_free_one_irq(struct irq_domain *domain, unsigned int virq)
+{
+ if (irq_domain_is_msi_device(domain))
+ msi_device_domain_free_wired(domain, virq);
+ else
+ irq_domain_free_irqs(virq, 1);
+}
+
/**
* irq_domain_alloc_irqs_parent - Allocate interrupts from parent domain
* @domain: Domain below which interrupts must be allocated
@@ -1907,9 +1921,9 @@ static int irq_domain_alloc_irqs_locked(struct irq_domain *domain, int irq_base,
return -EINVAL;
}
-static void irq_domain_check_hierarchy(struct irq_domain *domain)
-{
-}
+static void irq_domain_check_hierarchy(struct irq_domain *domain) { }
+static void irq_domain_free_one_irq(struct irq_domain *domain, unsigned int virq) { }
+
#endif /* CONFIG_IRQ_DOMAIN_HIERARCHY */
#ifdef CONFIG_GENERIC_IRQ_DEBUGFS
diff --git a/kernel/irq/manage.c b/kernel/irq/manage.c
index 1782f90cd8c6..ad3eaf2ab959 100644
--- a/kernel/irq/manage.c
+++ b/kernel/irq/manage.c
@@ -192,10 +192,14 @@ void irq_set_thread_affinity(struct irq_desc *desc)
struct irqaction *action;
for_each_action_of_desc(desc, action) {
- if (action->thread)
+ if (action->thread) {
set_bit(IRQTF_AFFINITY, &action->thread_flags);
- if (action->secondary && action->secondary->thread)
+ wake_up_process(action->thread);
+ }
+ if (action->secondary && action->secondary->thread) {
set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
+ wake_up_process(action->secondary->thread);
+ }
}
}
@@ -1049,10 +1053,57 @@ static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
return IRQ_NONE;
}
-static int irq_wait_for_interrupt(struct irqaction *action)
+#ifdef CONFIG_SMP
+/*
+ * Check whether we need to change the affinity of the interrupt thread.
+ */
+static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
+{
+ cpumask_var_t mask;
+ bool valid = false;
+
+ if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
+ return;
+
+ __set_current_state(TASK_RUNNING);
+
+ /*
+ * In case we are out of memory we set IRQTF_AFFINITY again and
+ * try again next time
+ */
+ if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
+ set_bit(IRQTF_AFFINITY, &action->thread_flags);
+ return;
+ }
+
+ raw_spin_lock_irq(&desc->lock);
+ /*
+ * This code is triggered unconditionally. Check the affinity
+ * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
+ */
+ if (cpumask_available(desc->irq_common_data.affinity)) {
+ const struct cpumask *m;
+
+ m = irq_data_get_effective_affinity_mask(&desc->irq_data);
+ cpumask_copy(mask, m);
+ valid = true;
+ }
+ raw_spin_unlock_irq(&desc->lock);
+
+ if (valid)
+ set_cpus_allowed_ptr(current, mask);
+ free_cpumask_var(mask);
+}
+#else
+static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
+#endif
+
+static int irq_wait_for_interrupt(struct irq_desc *desc,
+ struct irqaction *action)
{
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
+ irq_thread_check_affinity(desc, action);
if (kthread_should_stop()) {
/* may need to run one last time */
@@ -1129,52 +1180,6 @@ out_unlock:
chip_bus_sync_unlock(desc);
}
-#ifdef CONFIG_SMP
-/*
- * Check whether we need to change the affinity of the interrupt thread.
- */
-static void
-irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
-{
- cpumask_var_t mask;
- bool valid = true;
-
- if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
- return;
-
- /*
- * In case we are out of memory we set IRQTF_AFFINITY again and
- * try again next time
- */
- if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
- set_bit(IRQTF_AFFINITY, &action->thread_flags);
- return;
- }
-
- raw_spin_lock_irq(&desc->lock);
- /*
- * This code is triggered unconditionally. Check the affinity
- * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
- */
- if (cpumask_available(desc->irq_common_data.affinity)) {
- const struct cpumask *m;
-
- m = irq_data_get_effective_affinity_mask(&desc->irq_data);
- cpumask_copy(mask, m);
- } else {
- valid = false;
- }
- raw_spin_unlock_irq(&desc->lock);
-
- if (valid)
- set_cpus_allowed_ptr(current, mask);
- free_cpumask_var(mask);
-}
-#else
-static inline void
-irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
-#endif
-
/*
* Interrupts which are not explicitly requested as threaded
* interrupts rely on the implicit bh/preempt disable of the hard irq
@@ -1312,13 +1317,9 @@ static int irq_thread(void *data)
init_task_work(&on_exit_work, irq_thread_dtor);
task_work_add(current, &on_exit_work, TWA_NONE);
- irq_thread_check_affinity(desc, action);
-
- while (!irq_wait_for_interrupt(action)) {
+ while (!irq_wait_for_interrupt(desc, action)) {
irqreturn_t action_ret;
- irq_thread_check_affinity(desc, action);
-
action_ret = handler_fn(desc, action);
if (action_ret == IRQ_WAKE_THREAD)
irq_wake_secondary(desc, action);
diff --git a/kernel/irq/matrix.c b/kernel/irq/matrix.c
index 75d0ae490e29..8f222d1cccec 100644
--- a/kernel/irq/matrix.c
+++ b/kernel/irq/matrix.c
@@ -8,8 +8,6 @@
#include <linux/cpu.h>
#include <linux/irq.h>
-#define IRQ_MATRIX_SIZE (BITS_TO_LONGS(IRQ_MATRIX_BITS))
-
struct cpumap {
unsigned int available;
unsigned int allocated;
@@ -17,8 +15,8 @@ struct cpumap {
unsigned int managed_allocated;
bool initialized;
bool online;
- unsigned long alloc_map[IRQ_MATRIX_SIZE];
- unsigned long managed_map[IRQ_MATRIX_SIZE];
+ unsigned long *managed_map;
+ unsigned long alloc_map[];
};
struct irq_matrix {
@@ -32,8 +30,8 @@ struct irq_matrix {
unsigned int total_allocated;
unsigned int online_maps;
struct cpumap __percpu *maps;
- unsigned long scratch_map[IRQ_MATRIX_SIZE];
- unsigned long system_map[IRQ_MATRIX_SIZE];
+ unsigned long *system_map;
+ unsigned long scratch_map[];
};
#define CREATE_TRACE_POINTS
@@ -50,24 +48,32 @@ __init struct irq_matrix *irq_alloc_matrix(unsigned int matrix_bits,
unsigned int alloc_start,
unsigned int alloc_end)
{
+ unsigned int cpu, matrix_size = BITS_TO_LONGS(matrix_bits);
struct irq_matrix *m;
- if (matrix_bits > IRQ_MATRIX_BITS)
- return NULL;
-
- m = kzalloc(sizeof(*m), GFP_KERNEL);
+ m = kzalloc(struct_size(m, scratch_map, matrix_size * 2), GFP_KERNEL);
if (!m)
return NULL;
+ m->system_map = &m->scratch_map[matrix_size];
+
m->matrix_bits = matrix_bits;
m->alloc_start = alloc_start;
m->alloc_end = alloc_end;
m->alloc_size = alloc_end - alloc_start;
- m->maps = alloc_percpu(*m->maps);
+ m->maps = __alloc_percpu(struct_size(m->maps, alloc_map, matrix_size * 2),
+ __alignof__(*m->maps));
if (!m->maps) {
kfree(m);
return NULL;
}
+
+ for_each_possible_cpu(cpu) {
+ struct cpumap *cm = per_cpu_ptr(m->maps, cpu);
+
+ cm->managed_map = &cm->alloc_map[matrix_size];
+ }
+
return m;
}
diff --git a/kernel/irq/msi.c b/kernel/irq/msi.c
index 79b4a58ba9c3..f90952ebc494 100644
--- a/kernel/irq/msi.c
+++ b/kernel/irq/msi.c
@@ -726,11 +726,26 @@ static void msi_domain_free(struct irq_domain *domain, unsigned int virq,
irq_domain_free_irqs_top(domain, virq, nr_irqs);
}
+static int msi_domain_translate(struct irq_domain *domain, struct irq_fwspec *fwspec,
+ irq_hw_number_t *hwirq, unsigned int *type)
+{
+ struct msi_domain_info *info = domain->host_data;
+
+ /*
+ * This will catch allocations through the regular irqdomain path except
+ * for MSI domains which really support this, e.g. MBIGEN.
+ */
+ if (!info->ops->msi_translate)
+ return -ENOTSUPP;
+ return info->ops->msi_translate(domain, fwspec, hwirq, type);
+}
+
static const struct irq_domain_ops msi_domain_ops = {
.alloc = msi_domain_alloc,
.free = msi_domain_free,
.activate = msi_domain_activate,
.deactivate = msi_domain_deactivate,
+ .translate = msi_domain_translate,
};
static irq_hw_number_t msi_domain_ops_get_hwirq(struct msi_domain_info *info,
@@ -830,8 +845,11 @@ static struct irq_domain *__msi_create_irq_domain(struct fwnode_handle *fwnode,
domain = irq_domain_create_hierarchy(parent, flags | IRQ_DOMAIN_FLAG_MSI, 0,
fwnode, &msi_domain_ops, info);
- if (domain)
+ if (domain) {
irq_domain_update_bus_token(domain, info->bus_token);
+ if (info->flags & MSI_FLAG_PARENT_PM_DEV)
+ domain->pm_dev = parent->pm_dev;
+ }
return domain;
}
@@ -945,9 +963,9 @@ bool msi_create_device_irq_domain(struct device *dev, unsigned int domid,
void *chip_data)
{
struct irq_domain *domain, *parent = dev->msi.domain;
- const struct msi_parent_ops *pops;
+ struct fwnode_handle *fwnode, *fwnalloced = NULL;
struct msi_domain_template *bundle;
- struct fwnode_handle *fwnode;
+ const struct msi_parent_ops *pops;
if (!irq_domain_is_msi_parent(parent))
return false;
@@ -970,7 +988,19 @@ bool msi_create_device_irq_domain(struct device *dev, unsigned int domid,
pops->prefix ? : "", bundle->chip.name, dev_name(dev));
bundle->chip.name = bundle->name;
- fwnode = irq_domain_alloc_named_fwnode(bundle->name);
+ /*
+ * Using the device firmware node is required for wire to MSI
+ * device domains so that the existing firmware results in a domain
+ * match.
+ * All other device domains like PCI/MSI use the named firmware
+ * node as they are not guaranteed to have a fwnode. They are never
+ * looked up and always handled in the context of the device.
+ */
+ if (bundle->info.flags & MSI_FLAG_USE_DEV_FWNODE)
+ fwnode = dev->fwnode;
+ else
+ fwnode = fwnalloced = irq_domain_alloc_named_fwnode(bundle->name);
+
if (!fwnode)
goto free_bundle;
@@ -997,7 +1027,7 @@ bool msi_create_device_irq_domain(struct device *dev, unsigned int domid,
fail:
msi_unlock_descs(dev);
free_fwnode:
- irq_domain_free_fwnode(fwnode);
+ irq_domain_free_fwnode(fwnalloced);
free_bundle:
kfree(bundle);
return false;
@@ -1431,34 +1461,10 @@ int msi_domain_alloc_irqs_all_locked(struct device *dev, unsigned int domid, int
return msi_domain_alloc_locked(dev, &ctrl);
}
-/**
- * msi_domain_alloc_irq_at - Allocate an interrupt from a MSI interrupt domain at
- * a given index - or at the next free index
- *
- * @dev: Pointer to device struct of the device for which the interrupts
- * are allocated
- * @domid: Id of the interrupt domain to operate on
- * @index: Index for allocation. If @index == %MSI_ANY_INDEX the allocation
- * uses the next free index.
- * @affdesc: Optional pointer to an interrupt affinity descriptor structure
- * @icookie: Optional pointer to a domain specific per instance cookie. If
- * non-NULL the content of the cookie is stored in msi_desc::data.
- * Must be NULL for MSI-X allocations
- *
- * This requires a MSI interrupt domain which lets the core code manage the
- * MSI descriptors.
- *
- * Return: struct msi_map
- *
- * On success msi_map::index contains the allocated index number and
- * msi_map::virq the corresponding Linux interrupt number
- *
- * On failure msi_map::index contains the error code and msi_map::virq
- * is %0.
- */
-struct msi_map msi_domain_alloc_irq_at(struct device *dev, unsigned int domid, unsigned int index,
- const struct irq_affinity_desc *affdesc,
- union msi_instance_cookie *icookie)
+static struct msi_map __msi_domain_alloc_irq_at(struct device *dev, unsigned int domid,
+ unsigned int index,
+ const struct irq_affinity_desc *affdesc,
+ union msi_instance_cookie *icookie)
{
struct msi_ctrl ctrl = { .domid = domid, .nirqs = 1, };
struct irq_domain *domain;
@@ -1466,17 +1472,16 @@ struct msi_map msi_domain_alloc_irq_at(struct device *dev, unsigned int domid, u
struct msi_desc *desc;
int ret;
- msi_lock_descs(dev);
domain = msi_get_device_domain(dev, domid);
if (!domain) {
map.index = -ENODEV;
- goto unlock;
+ return map;
}
desc = msi_alloc_desc(dev, 1, affdesc);
if (!desc) {
map.index = -ENOMEM;
- goto unlock;
+ return map;
}
if (icookie)
@@ -1485,7 +1490,7 @@ struct msi_map msi_domain_alloc_irq_at(struct device *dev, unsigned int domid, u
ret = msi_insert_desc(dev, desc, domid, index);
if (ret) {
map.index = ret;
- goto unlock;
+ return map;
}
ctrl.first = ctrl.last = desc->msi_index;
@@ -1498,11 +1503,90 @@ struct msi_map msi_domain_alloc_irq_at(struct device *dev, unsigned int domid, u
map.index = desc->msi_index;
map.virq = desc->irq;
}
-unlock:
+ return map;
+}
+
+/**
+ * msi_domain_alloc_irq_at - Allocate an interrupt from a MSI interrupt domain at
+ * a given index - or at the next free index
+ *
+ * @dev: Pointer to device struct of the device for which the interrupts
+ * are allocated
+ * @domid: Id of the interrupt domain to operate on
+ * @index: Index for allocation. If @index == %MSI_ANY_INDEX the allocation
+ * uses the next free index.
+ * @affdesc: Optional pointer to an interrupt affinity descriptor structure
+ * @icookie: Optional pointer to a domain specific per instance cookie. If
+ * non-NULL the content of the cookie is stored in msi_desc::data.
+ * Must be NULL for MSI-X allocations
+ *
+ * This requires a MSI interrupt domain which lets the core code manage the
+ * MSI descriptors.
+ *
+ * Return: struct msi_map
+ *
+ * On success msi_map::index contains the allocated index number and
+ * msi_map::virq the corresponding Linux interrupt number
+ *
+ * On failure msi_map::index contains the error code and msi_map::virq
+ * is %0.
+ */
+struct msi_map msi_domain_alloc_irq_at(struct device *dev, unsigned int domid, unsigned int index,
+ const struct irq_affinity_desc *affdesc,
+ union msi_instance_cookie *icookie)
+{
+ struct msi_map map;
+
+ msi_lock_descs(dev);
+ map = __msi_domain_alloc_irq_at(dev, domid, index, affdesc, icookie);
msi_unlock_descs(dev);
return map;
}
+/**
+ * msi_device_domain_alloc_wired - Allocate a "wired" interrupt on @domain
+ * @domain: The domain to allocate on
+ * @hwirq: The hardware interrupt number to allocate for
+ * @type: The interrupt type
+ *
+ * This weirdness supports wire to MSI controllers like MBIGEN.
+ *
+ * @hwirq is the hardware interrupt number which is handed in from
+ * irq_create_fwspec_mapping(). As the wire to MSI domain is sparse, but
+ * sized in firmware, the hardware interrupt number cannot be used as MSI
+ * index. For the underlying irq chip the MSI index is irrelevant and
+ * all it needs is the hardware interrupt number.
+ *
+ * To handle this the MSI index is allocated with MSI_ANY_INDEX and the
+ * hardware interrupt number is stored along with the type information in
+ * msi_desc::cookie so the underlying interrupt chip and domain code can
+ * retrieve it.
+ *
+ * Return: The Linux interrupt number (> 0) or an error code
+ */
+int msi_device_domain_alloc_wired(struct irq_domain *domain, unsigned int hwirq,
+ unsigned int type)
+{
+ unsigned int domid = MSI_DEFAULT_DOMAIN;
+ union msi_instance_cookie icookie = { };
+ struct device *dev = domain->dev;
+ struct msi_map map = { };
+
+ if (WARN_ON_ONCE(!dev || domain->bus_token != DOMAIN_BUS_WIRED_TO_MSI))
+ return -EINVAL;
+
+ icookie.value = ((u64)type << 32) | hwirq;
+
+ msi_lock_descs(dev);
+ if (WARN_ON_ONCE(msi_get_device_domain(dev, domid) != domain))
+ map.index = -EINVAL;
+ else
+ map = __msi_domain_alloc_irq_at(dev, domid, MSI_ANY_INDEX, NULL, &icookie);
+ msi_unlock_descs(dev);
+
+ return map.index >= 0 ? map.virq : map.index;
+}
+
static void __msi_domain_free_irqs(struct device *dev, struct irq_domain *domain,
struct msi_ctrl *ctrl)
{
@@ -1629,6 +1713,30 @@ void msi_domain_free_irqs_all(struct device *dev, unsigned int domid)
}
/**
+ * msi_device_domain_free_wired - Free a wired interrupt in @domain
+ * @domain: The domain to free the interrupt on
+ * @virq: The Linux interrupt number to free
+ *
+ * This is the counterpart of msi_device_domain_alloc_wired() for the
+ * weird wired to MSI converting domains.
+ */
+void msi_device_domain_free_wired(struct irq_domain *domain, unsigned int virq)
+{
+ struct msi_desc *desc = irq_get_msi_desc(virq);
+ struct device *dev = domain->dev;
+
+ if (WARN_ON_ONCE(!dev || !desc || domain->bus_token != DOMAIN_BUS_WIRED_TO_MSI))
+ return;
+
+ msi_lock_descs(dev);
+ if (!WARN_ON_ONCE(msi_get_device_domain(dev, MSI_DEFAULT_DOMAIN) != domain)) {
+ msi_domain_free_irqs_range_locked(dev, MSI_DEFAULT_DOMAIN, desc->msi_index,
+ desc->msi_index);
+ }
+ msi_unlock_descs(dev);
+}
+
+/**
* msi_get_domain_info - Get the MSI interrupt domain info for @domain
* @domain: The interrupt domain to retrieve data from
*
diff --git a/kernel/locking/percpu-rwsem.c b/kernel/locking/percpu-rwsem.c
index 185bd1c906b0..6083883c4fe0 100644
--- a/kernel/locking/percpu-rwsem.c
+++ b/kernel/locking/percpu-rwsem.c
@@ -223,9 +223,10 @@ static bool readers_active_check(struct percpu_rw_semaphore *sem)
void __sched percpu_down_write(struct percpu_rw_semaphore *sem)
{
+ bool contended = false;
+
might_sleep();
rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
- trace_contention_begin(sem, LCB_F_PERCPU | LCB_F_WRITE);
/* Notify readers to take the slow path. */
rcu_sync_enter(&sem->rss);
@@ -234,8 +235,11 @@ void __sched percpu_down_write(struct percpu_rw_semaphore *sem)
* Try set sem->block; this provides writer-writer exclusion.
* Having sem->block set makes new readers block.
*/
- if (!__percpu_down_write_trylock(sem))
+ if (!__percpu_down_write_trylock(sem)) {
+ trace_contention_begin(sem, LCB_F_PERCPU | LCB_F_WRITE);
percpu_rwsem_wait(sem, /* .reader = */ false);
+ contended = true;
+ }
/* smp_mb() implied by __percpu_down_write_trylock() on success -- D matches A */
@@ -247,7 +251,8 @@ void __sched percpu_down_write(struct percpu_rw_semaphore *sem)
/* Wait for all active readers to complete. */
rcuwait_wait_event(&sem->writer, readers_active_check(sem), TASK_UNINTERRUPTIBLE);
- trace_contention_end(sem, 0);
+ if (contended)
+ trace_contention_end(sem, 0);
}
EXPORT_SYMBOL_GPL(percpu_down_write);
diff --git a/kernel/locking/qspinlock_paravirt.h b/kernel/locking/qspinlock_paravirt.h
index 6a0184e9c234..ae2b12f68b90 100644
--- a/kernel/locking/qspinlock_paravirt.h
+++ b/kernel/locking/qspinlock_paravirt.h
@@ -294,8 +294,8 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
{
struct pv_node *pn = (struct pv_node *)node;
struct pv_node *pp = (struct pv_node *)prev;
+ bool __maybe_unused wait_early;
int loop;
- bool wait_early;
for (;;) {
for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index 4a10e8c16fd2..88d08eeb8bc0 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -237,12 +237,13 @@ static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
*/
static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
{
- unsigned long owner, *p = (unsigned long *) &lock->owner;
+ unsigned long *p = (unsigned long *) &lock->owner;
+ unsigned long owner, new;
+ owner = READ_ONCE(*p);
do {
- owner = *p;
- } while (cmpxchg_relaxed(p, owner,
- owner | RT_MUTEX_HAS_WAITERS) != owner);
+ new = owner | RT_MUTEX_HAS_WAITERS;
+ } while (!try_cmpxchg_relaxed(p, &owner, new));
/*
* The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c
index 2340b6d90ec6..c6d17aee4209 100644
--- a/kernel/locking/rwsem.c
+++ b/kernel/locking/rwsem.c
@@ -35,7 +35,7 @@
/*
* The least significant 2 bits of the owner value has the following
* meanings when set.
- * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
+ * - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
* - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
*
* When the rwsem is reader-owned and a spinning writer has timed out,
@@ -1002,8 +1002,8 @@ rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int stat
/*
* To prevent a constant stream of readers from starving a sleeping
- * waiter, don't attempt optimistic lock stealing if the lock is
- * currently owned by readers.
+ * writer, don't attempt optimistic lock stealing if the lock is
+ * very likely owned by readers.
*/
if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
(rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c
index 15781acaac1c..6ec3deec68c2 100644
--- a/kernel/nsproxy.c
+++ b/kernel/nsproxy.c
@@ -573,7 +573,7 @@ SYSCALL_DEFINE2(setns, int, fd, int, flags)
if (proc_ns_file(f.file))
err = validate_ns(&nsset, ns);
else
- err = validate_nsset(&nsset, f.file->private_data);
+ err = validate_nsset(&nsset, pidfd_pid(f.file));
if (!err) {
commit_nsset(&nsset);
perf_event_namespaces(current);
diff --git a/kernel/pid.c b/kernel/pid.c
index b52b10865454..99a0c5eb24b8 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -42,6 +42,7 @@
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/idr.h>
+#include <linux/pidfs.h>
#include <net/sock.h>
#include <uapi/linux/pidfd.h>
@@ -65,6 +66,13 @@ int pid_max = PID_MAX_DEFAULT;
int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;
+#ifdef CONFIG_FS_PID
+/*
+ * Pseudo filesystems start inode numbering after one. We use Reserved
+ * PIDs as a natural offset.
+ */
+static u64 pidfs_ino = RESERVED_PIDS;
+#endif
/*
* PID-map pages start out as NULL, they get allocated upon
@@ -272,6 +280,10 @@ struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
spin_lock_irq(&pidmap_lock);
if (!(ns->pid_allocated & PIDNS_ADDING))
goto out_unlock;
+#ifdef CONFIG_FS_PID
+ pid->stashed = NULL;
+ pid->ino = ++pidfs_ino;
+#endif
for ( ; upid >= pid->numbers; --upid) {
/* Make the PID visible to find_pid_ns. */
idr_replace(&upid->ns->idr, pid, upid->nr);
@@ -349,6 +361,11 @@ static void __change_pid(struct task_struct *task, enum pid_type type,
hlist_del_rcu(&task->pid_links[type]);
*pid_ptr = new;
+ if (type == PIDTYPE_PID) {
+ WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
+ wake_up_all(&pid->wait_pidfd);
+ }
+
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
if (pid_has_task(pid, tmp))
return;
@@ -391,8 +408,7 @@ void exchange_tids(struct task_struct *left, struct task_struct *right)
void transfer_pid(struct task_struct *old, struct task_struct *new,
enum pid_type type)
{
- if (type == PIDTYPE_PID)
- new->thread_pid = old->thread_pid;
+ WARN_ON_ONCE(type == PIDTYPE_PID);
hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
}
@@ -552,11 +568,6 @@ struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
* Return the task associated with @pidfd. The function takes a reference on
* the returned task. The caller is responsible for releasing that reference.
*
- * Currently, the process identified by @pidfd is always a thread-group leader.
- * This restriction currently exists for all aspects of pidfds including pidfd
- * creation (CLONE_PIDFD cannot be used with CLONE_THREAD) and pidfd polling
- * (only supports thread group leaders).
- *
* Return: On success, the task_struct associated with the pidfd.
* On error, a negative errno number will be returned.
*/
@@ -595,7 +606,7 @@ struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
* Return: On success, a cloexec pidfd is returned.
* On error, a negative errno number will be returned.
*/
-int pidfd_create(struct pid *pid, unsigned int flags)
+static int pidfd_create(struct pid *pid, unsigned int flags)
{
int pidfd;
struct file *pidfd_file;
@@ -615,11 +626,8 @@ int pidfd_create(struct pid *pid, unsigned int flags)
* @flags: flags to pass
*
* This creates a new pid file descriptor with the O_CLOEXEC flag set for
- * the process identified by @pid. Currently, the process identified by
- * @pid must be a thread-group leader. This restriction currently exists
- * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
- * be used with CLONE_THREAD) and pidfd polling (only supports thread group
- * leaders).
+ * the task identified by @pid. Without PIDFD_THREAD flag the target task
+ * must be a thread-group leader.
*
* Return: On success, a cloexec pidfd is returned.
* On error, a negative errno number will be returned.
@@ -629,7 +637,7 @@ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
int fd;
struct pid *p;
- if (flags & ~PIDFD_NONBLOCK)
+ if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
return -EINVAL;
if (pid <= 0)
@@ -682,7 +690,26 @@ static struct file *__pidfd_fget(struct task_struct *task, int fd)
up_read(&task->signal->exec_update_lock);
- return file ?: ERR_PTR(-EBADF);
+ if (!file) {
+ /*
+ * It is possible that the target thread is exiting; it can be
+ * either:
+ * 1. before exit_signals(), which gives a real fd
+ * 2. before exit_files() takes the task_lock() gives a real fd
+ * 3. after exit_files() releases task_lock(), ->files is NULL;
+ * this has PF_EXITING, since it was set in exit_signals(),
+ * __pidfd_fget() returns EBADF.
+ * In case 3 we get EBADF, but that really means ESRCH, since
+ * the task is currently exiting and has freed its files
+ * struct, so we fix it up.
+ */
+ if (task->flags & PF_EXITING)
+ file = ERR_PTR(-ESRCH);
+ else
+ file = ERR_PTR(-EBADF);
+ }
+
+ return file;
}
static int pidfd_getfd(struct pid *pid, int fd)
diff --git a/kernel/power/swap.c b/kernel/power/swap.c
index 6053ddddaf65..692f12fe60c1 100644
--- a/kernel/power/swap.c
+++ b/kernel/power/swap.c
@@ -222,7 +222,7 @@ int swsusp_swap_in_use(void)
*/
static unsigned short root_swap = 0xffff;
-static struct bdev_handle *hib_resume_bdev_handle;
+static struct file *hib_resume_bdev_file;
struct hib_bio_batch {
atomic_t count;
@@ -276,7 +276,7 @@ static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
struct bio *bio;
int error = 0;
- bio = bio_alloc(hib_resume_bdev_handle->bdev, 1, opf,
+ bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
GFP_NOIO | __GFP_HIGH);
bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
@@ -357,14 +357,14 @@ static int swsusp_swap_check(void)
return res;
root_swap = res;
- hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
+ hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
BLK_OPEN_WRITE, NULL, NULL);
- if (IS_ERR(hib_resume_bdev_handle))
- return PTR_ERR(hib_resume_bdev_handle);
+ if (IS_ERR(hib_resume_bdev_file))
+ return PTR_ERR(hib_resume_bdev_file);
- res = set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
+ res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
if (res < 0)
- bdev_release(hib_resume_bdev_handle);
+ fput(hib_resume_bdev_file);
return res;
}
@@ -1523,10 +1523,10 @@ int swsusp_check(bool exclusive)
void *holder = exclusive ? &swsusp_holder : NULL;
int error;
- hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
+ hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
BLK_OPEN_READ, holder, NULL);
- if (!IS_ERR(hib_resume_bdev_handle)) {
- set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
+ if (!IS_ERR(hib_resume_bdev_file)) {
+ set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE);
clear_page(swsusp_header);
error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
swsusp_header, NULL);
@@ -1551,11 +1551,11 @@ int swsusp_check(bool exclusive)
put:
if (error)
- bdev_release(hib_resume_bdev_handle);
+ fput(hib_resume_bdev_file);
else
pr_debug("Image signature found, resuming\n");
} else {
- error = PTR_ERR(hib_resume_bdev_handle);
+ error = PTR_ERR(hib_resume_bdev_file);
}
if (error)
@@ -1570,12 +1570,12 @@ put:
void swsusp_close(void)
{
- if (IS_ERR(hib_resume_bdev_handle)) {
+ if (IS_ERR(hib_resume_bdev_file)) {
pr_debug("Image device not initialised\n");
return;
}
- bdev_release(hib_resume_bdev_handle);
+ fput(hib_resume_bdev_file);
}
/**
diff --git a/kernel/rcu/Kconfig b/kernel/rcu/Kconfig
index bdd7eadb33d8..e7d2dd267593 100644
--- a/kernel/rcu/Kconfig
+++ b/kernel/rcu/Kconfig
@@ -314,6 +314,19 @@ config RCU_LAZY
To save power, batch RCU callbacks and flush after delay, memory
pressure, or callback list growing too big.
+ Requires rcu_nocbs=all to be set.
+
+ Use rcutree.enable_rcu_lazy=0 to turn it off at boot time.
+
+config RCU_LAZY_DEFAULT_OFF
+ bool "Turn RCU lazy invocation off by default"
+ depends on RCU_LAZY
+ default n
+ help
+ Allows building the kernel with CONFIG_RCU_LAZY=y yet keep it default
+ off. Boot time param rcutree.enable_rcu_lazy=1 can be used to switch
+ it back on.
+
config RCU_DOUBLE_CHECK_CB_TIME
bool "RCU callback-batch backup time check"
depends on RCU_EXPERT
diff --git a/kernel/rcu/rcu.h b/kernel/rcu/rcu.h
index f94f65877f2b..86fce206560e 100644
--- a/kernel/rcu/rcu.h
+++ b/kernel/rcu/rcu.h
@@ -528,6 +528,12 @@ struct task_struct *get_rcu_tasks_gp_kthread(void);
struct task_struct *get_rcu_tasks_rude_gp_kthread(void);
#endif // # ifdef CONFIG_TASKS_RUDE_RCU
+#ifdef CONFIG_TASKS_RCU_GENERIC
+void tasks_cblist_init_generic(void);
+#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
+static inline void tasks_cblist_init_generic(void) { }
+#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
+
#define RCU_SCHEDULER_INACTIVE 0
#define RCU_SCHEDULER_INIT 1
#define RCU_SCHEDULER_RUNNING 2
@@ -543,11 +549,11 @@ enum rcutorture_type {
};
#if defined(CONFIG_RCU_LAZY)
-unsigned long rcu_lazy_get_jiffies_till_flush(void);
-void rcu_lazy_set_jiffies_till_flush(unsigned long j);
+unsigned long rcu_get_jiffies_lazy_flush(void);
+void rcu_set_jiffies_lazy_flush(unsigned long j);
#else
-static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
-static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
+static inline unsigned long rcu_get_jiffies_lazy_flush(void) { return 0; }
+static inline void rcu_set_jiffies_lazy_flush(unsigned long j) { }
#endif
#if defined(CONFIG_TREE_RCU)
@@ -623,12 +629,7 @@ int rcu_get_gp_kthreads_prio(void);
void rcu_fwd_progress_check(unsigned long j);
void rcu_force_quiescent_state(void);
extern struct workqueue_struct *rcu_gp_wq;
-#ifdef CONFIG_RCU_EXP_KTHREAD
extern struct kthread_worker *rcu_exp_gp_kworker;
-extern struct kthread_worker *rcu_exp_par_gp_kworker;
-#else /* !CONFIG_RCU_EXP_KTHREAD */
-extern struct workqueue_struct *rcu_par_gp_wq;
-#endif /* CONFIG_RCU_EXP_KTHREAD */
void rcu_gp_slow_register(atomic_t *rgssp);
void rcu_gp_slow_unregister(atomic_t *rgssp);
#endif /* #else #ifdef CONFIG_TINY_RCU */
diff --git a/kernel/rcu/rcuscale.c b/kernel/rcu/rcuscale.c
index ffdb30495e3c..8db4fedaaa1e 100644
--- a/kernel/rcu/rcuscale.c
+++ b/kernel/rcu/rcuscale.c
@@ -764,9 +764,9 @@ kfree_scale_init(void)
if (kfree_by_call_rcu) {
/* do a test to check the timeout. */
- orig_jif = rcu_lazy_get_jiffies_till_flush();
+ orig_jif = rcu_get_jiffies_lazy_flush();
- rcu_lazy_set_jiffies_till_flush(2 * HZ);
+ rcu_set_jiffies_lazy_flush(2 * HZ);
rcu_barrier();
jif_start = jiffies;
@@ -775,7 +775,7 @@ kfree_scale_init(void)
smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
- rcu_lazy_set_jiffies_till_flush(orig_jif);
+ rcu_set_jiffies_lazy_flush(orig_jif);
if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index 7567ca8e743c..45d6b4c3d199 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -1368,9 +1368,13 @@ rcu_torture_writer(void *arg)
struct rcu_torture *rp;
struct rcu_torture *old_rp;
static DEFINE_TORTURE_RANDOM(rand);
+ unsigned long stallsdone = jiffies;
bool stutter_waited;
unsigned long ulo[NUM_ACTIVE_RCU_POLL_OLDSTATE];
+ // If a new stall test is added, this must be adjusted.
+ if (stall_cpu_holdoff + stall_gp_kthread + stall_cpu)
+ stallsdone += (stall_cpu_holdoff + stall_gp_kthread + stall_cpu + 60) * HZ;
VERBOSE_TOROUT_STRING("rcu_torture_writer task started");
if (!can_expedite)
pr_alert("%s" TORTURE_FLAG
@@ -1576,11 +1580,11 @@ rcu_torture_writer(void *arg)
!atomic_read(&rcu_fwd_cb_nodelay) &&
!cur_ops->slow_gps &&
!torture_must_stop() &&
- boot_ended)
+ boot_ended &&
+ time_after(jiffies, stallsdone))
for (i = 0; i < ARRAY_SIZE(rcu_tortures); i++)
if (list_empty(&rcu_tortures[i].rtort_free) &&
- rcu_access_pointer(rcu_torture_current) !=
- &rcu_tortures[i]) {
+ rcu_access_pointer(rcu_torture_current) != &rcu_tortures[i]) {
tracing_off();
show_rcu_gp_kthreads();
WARN(1, "%s: rtort_pipe_count: %d\n", __func__, rcu_tortures[i].rtort_pipe_count);
@@ -2441,7 +2445,8 @@ static struct notifier_block rcu_torture_stall_block = {
/*
* CPU-stall kthread. It waits as specified by stall_cpu_holdoff, then
- * induces a CPU stall for the time specified by stall_cpu.
+ * induces a CPU stall for the time specified by stall_cpu. If a new
+ * stall test is added, stallsdone in rcu_torture_writer() must be adjusted.
*/
static int rcu_torture_stall(void *args)
{
diff --git a/kernel/rcu/srcutree.c b/kernel/rcu/srcutree.c
index 0351a4e83529..e4d673fc30f4 100644
--- a/kernel/rcu/srcutree.c
+++ b/kernel/rcu/srcutree.c
@@ -1234,11 +1234,20 @@ static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
if (rhp)
rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
/*
- * The snapshot for acceleration must be taken _before_ the read of the
- * current gp sequence used for advancing, otherwise advancing may fail
- * and acceleration may then fail too.
+ * It's crucial to capture the snapshot 's' for acceleration before
+ * reading the current gp_seq that is used for advancing. This is
+ * essential because if the acceleration snapshot is taken after a
+ * failed advancement attempt, there's a risk that a grace period may
+ * conclude and a new one may start in the interim. If the snapshot is
+ * captured after this sequence of events, the acceleration snapshot 's'
+ * could be excessively advanced, leading to acceleration failure.
+ * In such a scenario, an 'acceleration leak' can occur, where new
+ * callbacks become indefinitely stuck in the RCU_NEXT_TAIL segment.
+ * Also note that encountering advancing failures is a normal
+ * occurrence when the grace period for RCU_WAIT_TAIL is in progress.
*
- * This could happen if:
+ * To see this, consider the following events which occur if
+ * rcu_seq_snap() were to be called after advance:
*
* 1) The RCU_WAIT_TAIL segment has callbacks (gp_num = X + 4) and the
* RCU_NEXT_READY_TAIL also has callbacks (gp_num = X + 8).
@@ -1264,6 +1273,13 @@ static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
if (rhp) {
rcu_segcblist_advance(&sdp->srcu_cblist,
rcu_seq_current(&ssp->srcu_sup->srcu_gp_seq));
+ /*
+ * Acceleration can never fail because the base current gp_seq
+ * used for acceleration is <= the value of gp_seq used for
+ * advancing. This means that RCU_NEXT_TAIL segment will
+ * always be able to be emptied by the acceleration into the
+ * RCU_NEXT_READY_TAIL or RCU_WAIT_TAIL segments.
+ */
WARN_ON_ONCE(!rcu_segcblist_accelerate(&sdp->srcu_cblist, s));
}
if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
diff --git a/kernel/rcu/sync.c b/kernel/rcu/sync.c
index e550f97779b8..86df878a2fee 100644
--- a/kernel/rcu/sync.c
+++ b/kernel/rcu/sync.c
@@ -24,22 +24,6 @@ void rcu_sync_init(struct rcu_sync *rsp)
init_waitqueue_head(&rsp->gp_wait);
}
-/**
- * rcu_sync_enter_start - Force readers onto slow path for multiple updates
- * @rsp: Pointer to rcu_sync structure to use for synchronization
- *
- * Must be called after rcu_sync_init() and before first use.
- *
- * Ensures rcu_sync_is_idle() returns false and rcu_sync_{enter,exit}()
- * pairs turn into NO-OPs.
- */
-void rcu_sync_enter_start(struct rcu_sync *rsp)
-{
- rsp->gp_count++;
- rsp->gp_state = GP_PASSED;
-}
-
-
static void rcu_sync_func(struct rcu_head *rhp);
static void rcu_sync_call(struct rcu_sync *rsp)
diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h
index 732ad5b39946..147b5945d67a 100644
--- a/kernel/rcu/tasks.h
+++ b/kernel/rcu/tasks.h
@@ -32,6 +32,7 @@ typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
* @rtp_irq_work: IRQ work queue for deferred wakeups.
* @barrier_q_head: RCU callback for barrier operation.
* @rtp_blkd_tasks: List of tasks blocked as readers.
+ * @rtp_exit_list: List of tasks in the latter portion of do_exit().
* @cpu: CPU number corresponding to this entry.
* @rtpp: Pointer to the rcu_tasks structure.
*/
@@ -46,6 +47,7 @@ struct rcu_tasks_percpu {
struct irq_work rtp_irq_work;
struct rcu_head barrier_q_head;
struct list_head rtp_blkd_tasks;
+ struct list_head rtp_exit_list;
int cpu;
struct rcu_tasks *rtpp;
};
@@ -144,8 +146,6 @@ static struct rcu_tasks rt_name = \
}
#ifdef CONFIG_TASKS_RCU
-/* Track exiting tasks in order to allow them to be waited for. */
-DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
/* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
@@ -240,7 +240,6 @@ static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
static void cblist_init_generic(struct rcu_tasks *rtp)
{
int cpu;
- unsigned long flags;
int lim;
int shift;
@@ -266,15 +265,15 @@ static void cblist_init_generic(struct rcu_tasks *rtp)
WARN_ON_ONCE(!rtpcp);
if (cpu)
raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
- local_irq_save(flags); // serialize initialization
if (rcu_segcblist_empty(&rtpcp->cblist))
rcu_segcblist_init(&rtpcp->cblist);
- local_irq_restore(flags);
INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
rtpcp->cpu = cpu;
rtpcp->rtpp = rtp;
if (!rtpcp->rtp_blkd_tasks.next)
INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
+ if (!rtpcp->rtp_exit_list.next)
+ INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
}
pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name,
@@ -851,10 +850,12 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
// number of voluntary context switches, and add that task to the
// holdout list.
// rcu_tasks_postscan():
-// Invoke synchronize_srcu() to ensure that all tasks that were
-// in the process of exiting (and which thus might not know to
-// synchronize with this RCU Tasks grace period) have completed
-// exiting.
+// Gather per-CPU lists of tasks in do_exit() to ensure that all
+// tasks that were in the process of exiting (and which thus might
+// not know to synchronize with this RCU Tasks grace period) have
+// completed exiting. The synchronize_rcu() in rcu_tasks_postgp()
+// will take care of any tasks stuck in the non-preemptible region
+// of do_exit() following its call to exit_tasks_rcu_stop().
// check_all_holdout_tasks(), repeatedly until holdout list is empty:
// Scans the holdout list, attempting to identify a quiescent state
// for each task on the list. If there is a quiescent state, the
@@ -867,8 +868,10 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
// with interrupts disabled.
//
// For each exiting task, the exit_tasks_rcu_start() and
-// exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
-// read-side critical sections waited for by rcu_tasks_postscan().
+// exit_tasks_rcu_finish() functions add and remove, respectively, the
+// current task to a per-CPU list of tasks that rcu_tasks_postscan() must
+// wait on. This is necessary because rcu_tasks_postscan() must wait on
+// tasks that have already been removed from the global list of tasks.
//
// Pre-grace-period update-side code is ordered before the grace
// via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
@@ -932,9 +935,13 @@ static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
}
}
+void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
+DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
+
/* Processing between scanning taskslist and draining the holdout list. */
static void rcu_tasks_postscan(struct list_head *hop)
{
+ int cpu;
int rtsi = READ_ONCE(rcu_task_stall_info);
if (!IS_ENABLED(CONFIG_TINY_RCU)) {
@@ -948,9 +955,9 @@ static void rcu_tasks_postscan(struct list_head *hop)
* this, divide the fragile exit path part in two intersecting
* read side critical sections:
*
- * 1) An _SRCU_ read side starting before calling exit_notify(),
- * which may remove the task from the tasklist, and ending after
- * the final preempt_disable() call in do_exit().
+ * 1) A task_struct list addition before calling exit_notify(),
+ * which may remove the task from the tasklist, with the
+ * removal after the final preempt_disable() call in do_exit().
*
* 2) An _RCU_ read side starting with the final preempt_disable()
* call in do_exit() and ending with the final call to schedule()
@@ -959,7 +966,37 @@ static void rcu_tasks_postscan(struct list_head *hop)
* This handles the part 1). And postgp will handle part 2) with a
* call to synchronize_rcu().
*/
- synchronize_srcu(&tasks_rcu_exit_srcu);
+
+ for_each_possible_cpu(cpu) {
+ unsigned long j = jiffies + 1;
+ struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
+ struct task_struct *t;
+ struct task_struct *t1;
+ struct list_head tmp;
+
+ raw_spin_lock_irq_rcu_node(rtpcp);
+ list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
+ if (list_empty(&t->rcu_tasks_holdout_list))
+ rcu_tasks_pertask(t, hop);
+
+ // RT kernels need frequent pauses, otherwise
+ // pause at least once per pair of jiffies.
+ if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
+ continue;
+
+ // Keep our place in the list while pausing.
+ // Nothing else traverses this list, so adding a
+ // bare list_head is OK.
+ list_add(&tmp, &t->rcu_tasks_exit_list);
+ raw_spin_unlock_irq_rcu_node(rtpcp);
+ cond_resched(); // For CONFIG_PREEMPT=n kernels
+ raw_spin_lock_irq_rcu_node(rtpcp);
+ t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
+ list_del(&tmp);
+ j = jiffies + 1;
+ }
+ raw_spin_unlock_irq_rcu_node(rtpcp);
+ }
if (!IS_ENABLED(CONFIG_TINY_RCU))
del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
@@ -1027,7 +1064,6 @@ static void rcu_tasks_postgp(struct rcu_tasks *rtp)
*
* In addition, this synchronize_rcu() waits for exiting tasks
* to complete their final preempt_disable() region of execution,
- * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu),
* enforcing the whole region before tasklist removal until
* the final schedule() with TASK_DEAD state to be an RCU TASKS
* read side critical section.
@@ -1035,9 +1071,6 @@ static void rcu_tasks_postgp(struct rcu_tasks *rtp)
synchronize_rcu();
}
-void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
-DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
-
static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
{
#ifndef CONFIG_TINY_RCU
@@ -1118,7 +1151,6 @@ module_param(rcu_tasks_lazy_ms, int, 0444);
static int __init rcu_spawn_tasks_kthread(void)
{
- cblist_init_generic(&rcu_tasks);
rcu_tasks.gp_sleep = HZ / 10;
rcu_tasks.init_fract = HZ / 10;
if (rcu_tasks_lazy_ms >= 0)
@@ -1147,25 +1179,48 @@ struct task_struct *get_rcu_tasks_gp_kthread(void)
EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
/*
- * Contribute to protect against tasklist scan blind spot while the
- * task is exiting and may be removed from the tasklist. See
- * corresponding synchronize_srcu() for further details.
+ * Protect against tasklist scan blind spot while the task is exiting and
+ * may be removed from the tasklist. Do this by adding the task to yet
+ * another list.
+ *
+ * Note that the task will remove itself from this list, so there is no
+ * need for get_task_struct(), except in the case where rcu_tasks_pertask()
+ * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
+ * the needed get_task_struct().
*/
-void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
+void exit_tasks_rcu_start(void)
{
- current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
+ unsigned long flags;
+ struct rcu_tasks_percpu *rtpcp;
+ struct task_struct *t = current;
+
+ WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
+ preempt_disable();
+ rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
+ t->rcu_tasks_exit_cpu = smp_processor_id();
+ raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
+ if (!rtpcp->rtp_exit_list.next)
+ INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
+ list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
+ raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
+ preempt_enable();
}
/*
- * Contribute to protect against tasklist scan blind spot while the
- * task is exiting and may be removed from the tasklist. See
- * corresponding synchronize_srcu() for further details.
+ * Remove the task from the "yet another list" because do_exit() is now
+ * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
*/
-void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu)
+void exit_tasks_rcu_stop(void)
{
+ unsigned long flags;
+ struct rcu_tasks_percpu *rtpcp;
struct task_struct *t = current;
- __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
+ WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
+ rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
+ raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
+ list_del_init(&t->rcu_tasks_exit_list);
+ raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
}
/*
@@ -1282,7 +1337,6 @@ module_param(rcu_tasks_rude_lazy_ms, int, 0444);
static int __init rcu_spawn_tasks_rude_kthread(void)
{
- cblist_init_generic(&rcu_tasks_rude);
rcu_tasks_rude.gp_sleep = HZ / 10;
if (rcu_tasks_rude_lazy_ms >= 0)
rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms);
@@ -1914,7 +1968,6 @@ module_param(rcu_tasks_trace_lazy_ms, int, 0444);
static int __init rcu_spawn_tasks_trace_kthread(void)
{
- cblist_init_generic(&rcu_tasks_trace);
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
rcu_tasks_trace.gp_sleep = HZ / 10;
rcu_tasks_trace.init_fract = HZ / 10;
@@ -2086,6 +2139,24 @@ late_initcall(rcu_tasks_verify_schedule_work);
static void rcu_tasks_initiate_self_tests(void) { }
#endif /* #else #ifdef CONFIG_PROVE_RCU */
+void __init tasks_cblist_init_generic(void)
+{
+ lockdep_assert_irqs_disabled();
+ WARN_ON(num_online_cpus() > 1);
+
+#ifdef CONFIG_TASKS_RCU
+ cblist_init_generic(&rcu_tasks);
+#endif
+
+#ifdef CONFIG_TASKS_RUDE_RCU
+ cblist_init_generic(&rcu_tasks_rude);
+#endif
+
+#ifdef CONFIG_TASKS_TRACE_RCU
+ cblist_init_generic(&rcu_tasks_trace);
+#endif
+}
+
void __init rcu_init_tasks_generic(void)
{
#ifdef CONFIG_TASKS_RCU
diff --git a/kernel/rcu/tiny.c b/kernel/rcu/tiny.c
index fec804b79080..705c0d16850a 100644
--- a/kernel/rcu/tiny.c
+++ b/kernel/rcu/tiny.c
@@ -261,4 +261,5 @@ void __init rcu_init(void)
{
open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
rcu_early_boot_tests();
+ tasks_cblist_init_generic();
}
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index b2bccfd37c38..d9642dd06c25 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -145,7 +145,7 @@ static int rcu_scheduler_fully_active __read_mostly;
static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
unsigned long gps, unsigned long flags);
-static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
+static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
static void invoke_rcu_core(void);
static void rcu_report_exp_rdp(struct rcu_data *rdp);
static void sync_sched_exp_online_cleanup(int cpu);
@@ -2145,6 +2145,12 @@ static void rcu_do_batch(struct rcu_data *rdp)
* Extract the list of ready callbacks, disabling IRQs to prevent
* races with call_rcu() from interrupt handlers. Leave the
* callback counts, as rcu_barrier() needs to be conservative.
+ *
+ * Callbacks execution is fully ordered against preceding grace period
+ * completion (materialized by rnp->gp_seq update) thanks to the
+ * smp_mb__after_unlock_lock() upon node locking required for callbacks
+ * advancing. In NOCB mode this ordering is then further relayed through
+ * the nocb locking that protects both callbacks advancing and extraction.
*/
rcu_nocb_lock_irqsave(rdp, flags);
WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
@@ -2591,12 +2597,26 @@ static int __init rcu_spawn_core_kthreads(void)
return 0;
}
+static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
+{
+ rcu_segcblist_enqueue(&rdp->cblist, head);
+ if (__is_kvfree_rcu_offset((unsigned long)func))
+ trace_rcu_kvfree_callback(rcu_state.name, head,
+ (unsigned long)func,
+ rcu_segcblist_n_cbs(&rdp->cblist));
+ else
+ trace_rcu_callback(rcu_state.name, head,
+ rcu_segcblist_n_cbs(&rdp->cblist));
+ trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
+}
+
/*
* Handle any core-RCU processing required by a call_rcu() invocation.
*/
-static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
- unsigned long flags)
+static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
+ rcu_callback_t func, unsigned long flags)
{
+ rcutree_enqueue(rdp, head, func);
/*
* If called from an extended quiescent state, invoke the RCU
* core in order to force a re-evaluation of RCU's idleness.
@@ -2692,7 +2712,6 @@ __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
unsigned long flags;
bool lazy;
struct rcu_data *rdp;
- bool was_alldone;
/* Misaligned rcu_head! */
WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
@@ -2729,30 +2748,18 @@ __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
}
check_cb_ovld(rdp);
- if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
- return; // Enqueued onto ->nocb_bypass, so just leave.
- // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
- rcu_segcblist_enqueue(&rdp->cblist, head);
- if (__is_kvfree_rcu_offset((unsigned long)func))
- trace_rcu_kvfree_callback(rcu_state.name, head,
- (unsigned long)func,
- rcu_segcblist_n_cbs(&rdp->cblist));
- else
- trace_rcu_callback(rcu_state.name, head,
- rcu_segcblist_n_cbs(&rdp->cblist));
- trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
-
- /* Go handle any RCU core processing required. */
- if (unlikely(rcu_rdp_is_offloaded(rdp))) {
- __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
- } else {
- __call_rcu_core(rdp, head, flags);
- local_irq_restore(flags);
- }
+ if (unlikely(rcu_rdp_is_offloaded(rdp)))
+ call_rcu_nocb(rdp, head, func, flags, lazy);
+ else
+ call_rcu_core(rdp, head, func, flags);
+ local_irq_restore(flags);
}
#ifdef CONFIG_RCU_LAZY
+static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
+module_param(enable_rcu_lazy, bool, 0444);
+
/**
* call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
* flush all lazy callbacks (including the new one) to the main ->cblist while
@@ -2778,6 +2785,8 @@ void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
__call_rcu_common(head, func, false);
}
EXPORT_SYMBOL_GPL(call_rcu_hurry);
+#else
+#define enable_rcu_lazy false
#endif
/**
@@ -2826,7 +2835,7 @@ EXPORT_SYMBOL_GPL(call_rcu_hurry);
*/
void call_rcu(struct rcu_head *head, rcu_callback_t func)
{
- __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
+ __call_rcu_common(head, func, enable_rcu_lazy);
}
EXPORT_SYMBOL_GPL(call_rcu);
@@ -4394,6 +4403,66 @@ rcu_boot_init_percpu_data(int cpu)
rcu_boot_init_nocb_percpu_data(rdp);
}
+struct kthread_worker *rcu_exp_gp_kworker;
+
+static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
+{
+ struct kthread_worker *kworker;
+ const char *name = "rcu_exp_par_gp_kthread_worker/%d";
+ struct sched_param param = { .sched_priority = kthread_prio };
+ int rnp_index = rnp - rcu_get_root();
+
+ if (rnp->exp_kworker)
+ return;
+
+ kworker = kthread_create_worker(0, name, rnp_index);
+ if (IS_ERR_OR_NULL(kworker)) {
+ pr_err("Failed to create par gp kworker on %d/%d\n",
+ rnp->grplo, rnp->grphi);
+ return;
+ }
+ WRITE_ONCE(rnp->exp_kworker, kworker);
+
+ if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
+ sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
+}
+
+static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
+{
+ struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
+
+ if (!kworker)
+ return NULL;
+
+ return kworker->task;
+}
+
+static void __init rcu_start_exp_gp_kworker(void)
+{
+ const char *name = "rcu_exp_gp_kthread_worker";
+ struct sched_param param = { .sched_priority = kthread_prio };
+
+ rcu_exp_gp_kworker = kthread_create_worker(0, name);
+ if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
+ pr_err("Failed to create %s!\n", name);
+ rcu_exp_gp_kworker = NULL;
+ return;
+ }
+
+ if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
+ sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
+}
+
+static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
+{
+ if (rcu_scheduler_fully_active) {
+ mutex_lock(&rnp->kthread_mutex);
+ rcu_spawn_one_boost_kthread(rnp);
+ rcu_spawn_exp_par_gp_kworker(rnp);
+ mutex_unlock(&rnp->kthread_mutex);
+ }
+}
+
/*
* Invoked early in the CPU-online process, when pretty much all services
* are available. The incoming CPU is not present.
@@ -4442,7 +4511,7 @@ int rcutree_prepare_cpu(unsigned int cpu)
rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
- rcu_spawn_one_boost_kthread(rnp);
+ rcu_spawn_rnp_kthreads(rnp);
rcu_spawn_cpu_nocb_kthread(cpu);
WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
@@ -4450,13 +4519,64 @@ int rcutree_prepare_cpu(unsigned int cpu)
}
/*
- * Update RCU priority boot kthread affinity for CPU-hotplug changes.
+ * Update kthreads affinity during CPU-hotplug changes.
+ *
+ * Set the per-rcu_node kthread's affinity to cover all CPUs that are
+ * served by the rcu_node in question. The CPU hotplug lock is still
+ * held, so the value of rnp->qsmaskinit will be stable.
+ *
+ * We don't include outgoingcpu in the affinity set, use -1 if there is
+ * no outgoing CPU. If there are no CPUs left in the affinity set,
+ * this function allows the kthread to execute on any CPU.
+ *
+ * Any future concurrent calls are serialized via ->kthread_mutex.
*/
-static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
+static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
{
- struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
+ cpumask_var_t cm;
+ unsigned long mask;
+ struct rcu_data *rdp;
+ struct rcu_node *rnp;
+ struct task_struct *task_boost, *task_exp;
+
+ rdp = per_cpu_ptr(&rcu_data, cpu);
+ rnp = rdp->mynode;
+
+ task_boost = rcu_boost_task(rnp);
+ task_exp = rcu_exp_par_gp_task(rnp);
+
+ /*
+ * If CPU is the boot one, those tasks are created later from early
+ * initcall since kthreadd must be created first.
+ */
+ if (!task_boost && !task_exp)
+ return;
+
+ if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
+ return;
+
+ mutex_lock(&rnp->kthread_mutex);
+ mask = rcu_rnp_online_cpus(rnp);
+ for_each_leaf_node_possible_cpu(rnp, cpu)
+ if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
+ cpu != outgoingcpu)
+ cpumask_set_cpu(cpu, cm);
+ cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
+ if (cpumask_empty(cm)) {
+ cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
+ if (outgoingcpu >= 0)
+ cpumask_clear_cpu(outgoingcpu, cm);
+ }
+
+ if (task_exp)
+ set_cpus_allowed_ptr(task_exp, cm);
+
+ if (task_boost)
+ set_cpus_allowed_ptr(task_boost, cm);
- rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
+ mutex_unlock(&rnp->kthread_mutex);
+
+ free_cpumask_var(cm);
}
/*
@@ -4640,8 +4760,9 @@ void rcutree_migrate_callbacks(int cpu)
__call_rcu_nocb_wake(my_rdp, true, flags);
} else {
rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
- raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
+ raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
}
+ local_irq_restore(flags);
if (needwake)
rcu_gp_kthread_wake();
lockdep_assert_irqs_enabled();
@@ -4730,51 +4851,6 @@ static int rcu_pm_notify(struct notifier_block *self,
return NOTIFY_OK;
}
-#ifdef CONFIG_RCU_EXP_KTHREAD
-struct kthread_worker *rcu_exp_gp_kworker;
-struct kthread_worker *rcu_exp_par_gp_kworker;
-
-static void __init rcu_start_exp_gp_kworkers(void)
-{
- const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
- const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
- struct sched_param param = { .sched_priority = kthread_prio };
-
- rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
- if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
- pr_err("Failed to create %s!\n", gp_kworker_name);
- return;
- }
-
- rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
- if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
- pr_err("Failed to create %s!\n", par_gp_kworker_name);
- kthread_destroy_worker(rcu_exp_gp_kworker);
- return;
- }
-
- sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
- sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
- &param);
-}
-
-static inline void rcu_alloc_par_gp_wq(void)
-{
-}
-#else /* !CONFIG_RCU_EXP_KTHREAD */
-struct workqueue_struct *rcu_par_gp_wq;
-
-static void __init rcu_start_exp_gp_kworkers(void)
-{
-}
-
-static inline void rcu_alloc_par_gp_wq(void)
-{
- rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
- WARN_ON(!rcu_par_gp_wq);
-}
-#endif /* CONFIG_RCU_EXP_KTHREAD */
-
/*
* Spawn the kthreads that handle RCU's grace periods.
*/
@@ -4809,10 +4885,10 @@ static int __init rcu_spawn_gp_kthread(void)
* due to rcu_scheduler_fully_active.
*/
rcu_spawn_cpu_nocb_kthread(smp_processor_id());
- rcu_spawn_one_boost_kthread(rdp->mynode);
+ rcu_spawn_rnp_kthreads(rdp->mynode);
rcu_spawn_core_kthreads();
/* Create kthread worker for expedited GPs */
- rcu_start_exp_gp_kworkers();
+ rcu_start_exp_gp_kworker();
return 0;
}
early_initcall(rcu_spawn_gp_kthread);
@@ -4915,7 +4991,7 @@ static void __init rcu_init_one(void)
init_waitqueue_head(&rnp->exp_wq[2]);
init_waitqueue_head(&rnp->exp_wq[3]);
spin_lock_init(&rnp->exp_lock);
- mutex_init(&rnp->boost_kthread_mutex);
+ mutex_init(&rnp->kthread_mutex);
raw_spin_lock_init(&rnp->exp_poll_lock);
rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
@@ -5152,7 +5228,6 @@ void __init rcu_init(void)
/* Create workqueue for Tree SRCU and for expedited GPs. */
rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
WARN_ON(!rcu_gp_wq);
- rcu_alloc_par_gp_wq();
/* Fill in default value for rcutree.qovld boot parameter. */
/* -After- the rcu_node ->lock fields are initialized! */
@@ -5165,6 +5240,8 @@ void __init rcu_init(void)
(void)start_poll_synchronize_rcu_expedited();
rcu_test_sync_prims();
+
+ tasks_cblist_init_generic();
}
#include "tree_stall.h"
diff --git a/kernel/rcu/tree.h b/kernel/rcu/tree.h
index e9821a8422db..df48160b3136 100644
--- a/kernel/rcu/tree.h
+++ b/kernel/rcu/tree.h
@@ -21,14 +21,10 @@
#include "rcu_segcblist.h"
-/* Communicate arguments to a workqueue handler. */
+/* Communicate arguments to a kthread worker handler. */
struct rcu_exp_work {
unsigned long rew_s;
-#ifdef CONFIG_RCU_EXP_KTHREAD
struct kthread_work rew_work;
-#else
- struct work_struct rew_work;
-#endif /* CONFIG_RCU_EXP_KTHREAD */
};
/* RCU's kthread states for tracing. */
@@ -72,6 +68,9 @@ struct rcu_node {
/* Online CPUs for next expedited GP. */
/* Any CPU that has ever been online will */
/* have its bit set. */
+ struct kthread_worker *exp_kworker;
+ /* Workers performing per node expedited GP */
+ /* initialization. */
unsigned long cbovldmask;
/* CPUs experiencing callback overload. */
unsigned long ffmask; /* Fully functional CPUs. */
@@ -113,7 +112,7 @@ struct rcu_node {
/* side effect, not as a lock. */
unsigned long boost_time;
/* When to start boosting (jiffies). */
- struct mutex boost_kthread_mutex;
+ struct mutex kthread_mutex;
/* Exclusion for thread spawning and affinity */
/* manipulation. */
struct task_struct *boost_kthread_task;
@@ -467,11 +466,10 @@ static void rcu_init_one_nocb(struct rcu_node *rnp);
static bool wake_nocb_gp(struct rcu_data *rdp, bool force);
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j, bool lazy);
-static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
- bool *was_alldone, unsigned long flags,
- bool lazy);
-static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
- unsigned long flags);
+static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
+ rcu_callback_t func, unsigned long flags, bool lazy);
+static void __maybe_unused __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
+ unsigned long flags);
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level);
static bool do_nocb_deferred_wakeup(struct rcu_data *rdp);
static void rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp);
diff --git a/kernel/rcu/tree_exp.h b/kernel/rcu/tree_exp.h
index 2ac440bc7e10..6b83537480b1 100644
--- a/kernel/rcu/tree_exp.h
+++ b/kernel/rcu/tree_exp.h
@@ -198,10 +198,9 @@ static void __rcu_report_exp_rnp(struct rcu_node *rnp,
}
if (rnp->parent == NULL) {
raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
- if (wake) {
- smp_mb(); /* EGP done before wake_up(). */
+ if (wake)
swake_up_one_online(&rcu_state.expedited_wq);
- }
+
break;
}
mask = rnp->grpmask;
@@ -419,7 +418,6 @@ retry_ipi:
static void rcu_exp_sel_wait_wake(unsigned long s);
-#ifdef CONFIG_RCU_EXP_KTHREAD
static void sync_rcu_exp_select_node_cpus(struct kthread_work *wp)
{
struct rcu_exp_work *rewp =
@@ -428,9 +426,14 @@ static void sync_rcu_exp_select_node_cpus(struct kthread_work *wp)
__sync_rcu_exp_select_node_cpus(rewp);
}
-static inline bool rcu_gp_par_worker_started(void)
+static inline bool rcu_exp_worker_started(void)
+{
+ return !!READ_ONCE(rcu_exp_gp_kworker);
+}
+
+static inline bool rcu_exp_par_worker_started(struct rcu_node *rnp)
{
- return !!READ_ONCE(rcu_exp_par_gp_kworker);
+ return !!READ_ONCE(rnp->exp_kworker);
}
static inline void sync_rcu_exp_select_cpus_queue_work(struct rcu_node *rnp)
@@ -441,7 +444,7 @@ static inline void sync_rcu_exp_select_cpus_queue_work(struct rcu_node *rnp)
* another work item on the same kthread worker can result in
* deadlock.
*/
- kthread_queue_work(rcu_exp_par_gp_kworker, &rnp->rew.rew_work);
+ kthread_queue_work(READ_ONCE(rnp->exp_kworker), &rnp->rew.rew_work);
}
static inline void sync_rcu_exp_select_cpus_flush_work(struct rcu_node *rnp)
@@ -466,64 +469,6 @@ static inline void synchronize_rcu_expedited_queue_work(struct rcu_exp_work *rew
kthread_queue_work(rcu_exp_gp_kworker, &rew->rew_work);
}
-static inline void synchronize_rcu_expedited_destroy_work(struct rcu_exp_work *rew)
-{
-}
-#else /* !CONFIG_RCU_EXP_KTHREAD */
-static void sync_rcu_exp_select_node_cpus(struct work_struct *wp)
-{
- struct rcu_exp_work *rewp =
- container_of(wp, struct rcu_exp_work, rew_work);
-
- __sync_rcu_exp_select_node_cpus(rewp);
-}
-
-static inline bool rcu_gp_par_worker_started(void)
-{
- return !!READ_ONCE(rcu_par_gp_wq);
-}
-
-static inline void sync_rcu_exp_select_cpus_queue_work(struct rcu_node *rnp)
-{
- int cpu = find_next_bit(&rnp->ffmask, BITS_PER_LONG, -1);
-
- INIT_WORK(&rnp->rew.rew_work, sync_rcu_exp_select_node_cpus);
- /* If all offline, queue the work on an unbound CPU. */
- if (unlikely(cpu > rnp->grphi - rnp->grplo))
- cpu = WORK_CPU_UNBOUND;
- else
- cpu += rnp->grplo;
- queue_work_on(cpu, rcu_par_gp_wq, &rnp->rew.rew_work);
-}
-
-static inline void sync_rcu_exp_select_cpus_flush_work(struct rcu_node *rnp)
-{
- flush_work(&rnp->rew.rew_work);
-}
-
-/*
- * Work-queue handler to drive an expedited grace period forward.
- */
-static void wait_rcu_exp_gp(struct work_struct *wp)
-{
- struct rcu_exp_work *rewp;
-
- rewp = container_of(wp, struct rcu_exp_work, rew_work);
- rcu_exp_sel_wait_wake(rewp->rew_s);
-}
-
-static inline void synchronize_rcu_expedited_queue_work(struct rcu_exp_work *rew)
-{
- INIT_WORK_ONSTACK(&rew->rew_work, wait_rcu_exp_gp);
- queue_work(rcu_gp_wq, &rew->rew_work);
-}
-
-static inline void synchronize_rcu_expedited_destroy_work(struct rcu_exp_work *rew)
-{
- destroy_work_on_stack(&rew->rew_work);
-}
-#endif /* CONFIG_RCU_EXP_KTHREAD */
-
/*
* Select the nodes that the upcoming expedited grace period needs
* to wait for.
@@ -541,7 +486,7 @@ static void sync_rcu_exp_select_cpus(void)
rnp->exp_need_flush = false;
if (!READ_ONCE(rnp->expmask))
continue; /* Avoid early boot non-existent wq. */
- if (!rcu_gp_par_worker_started() ||
+ if (!rcu_exp_par_worker_started(rnp) ||
rcu_scheduler_active != RCU_SCHEDULER_RUNNING ||
rcu_is_last_leaf_node(rnp)) {
/* No worker started yet or last leaf, do direct call. */
@@ -956,7 +901,6 @@ static void rcu_exp_print_detail_task_stall_rnp(struct rcu_node *rnp)
*/
void synchronize_rcu_expedited(void)
{
- bool boottime = (rcu_scheduler_active == RCU_SCHEDULER_INIT);
unsigned long flags;
struct rcu_exp_work rew;
struct rcu_node *rnp;
@@ -996,7 +940,7 @@ void synchronize_rcu_expedited(void)
return; /* Someone else did our work for us. */
/* Ensure that load happens before action based on it. */
- if (unlikely(boottime)) {
+ if (unlikely((rcu_scheduler_active == RCU_SCHEDULER_INIT) || !rcu_exp_worker_started())) {
/* Direct call during scheduler init and early_initcalls(). */
rcu_exp_sel_wait_wake(s);
} else {
@@ -1013,9 +957,6 @@ void synchronize_rcu_expedited(void)
/* Let the next expedited grace period start. */
mutex_unlock(&rcu_state.exp_mutex);
-
- if (likely(!boottime))
- synchronize_rcu_expedited_destroy_work(&rew);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
diff --git a/kernel/rcu/tree_nocb.h b/kernel/rcu/tree_nocb.h
index 4efbf7333d4e..3f85577bddd4 100644
--- a/kernel/rcu/tree_nocb.h
+++ b/kernel/rcu/tree_nocb.h
@@ -256,6 +256,7 @@ static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
return __wake_nocb_gp(rdp_gp, rdp, force, flags);
}
+#ifdef CONFIG_RCU_LAZY
/*
* LAZY_FLUSH_JIFFIES decides the maximum amount of time that
* can elapse before lazy callbacks are flushed. Lazy callbacks
@@ -264,21 +265,20 @@ static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
* left unsubmitted to RCU after those many jiffies.
*/
#define LAZY_FLUSH_JIFFIES (10 * HZ)
-static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
+static unsigned long jiffies_lazy_flush = LAZY_FLUSH_JIFFIES;
-#ifdef CONFIG_RCU_LAZY
// To be called only from test code.
-void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
+void rcu_set_jiffies_lazy_flush(unsigned long jif)
{
- jiffies_till_flush = jif;
+ jiffies_lazy_flush = jif;
}
-EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
+EXPORT_SYMBOL(rcu_set_jiffies_lazy_flush);
-unsigned long rcu_lazy_get_jiffies_till_flush(void)
+unsigned long rcu_get_jiffies_lazy_flush(void)
{
- return jiffies_till_flush;
+ return jiffies_lazy_flush;
}
-EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
+EXPORT_SYMBOL(rcu_get_jiffies_lazy_flush);
#endif
/*
@@ -299,7 +299,7 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
*/
if (waketype == RCU_NOCB_WAKE_LAZY &&
rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
- mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
+ mod_timer(&rdp_gp->nocb_timer, jiffies + rcu_get_jiffies_lazy_flush());
WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
@@ -482,7 +482,7 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
// flush ->nocb_bypass to ->cblist.
if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
(ncbs && bypass_is_lazy &&
- (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
+ (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()))) ||
ncbs >= qhimark) {
rcu_nocb_lock(rdp);
*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
@@ -532,9 +532,7 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
// 2. Both of these conditions are met:
// a. The bypass list previously had only lazy CBs, and:
// b. The new CB is non-lazy.
- if (ncbs && (!bypass_is_lazy || lazy)) {
- local_irq_restore(flags);
- } else {
+ if (!ncbs || (bypass_is_lazy && !lazy)) {
// No-CBs GP kthread might be indefinitely asleep, if so, wake.
rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
@@ -544,7 +542,7 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
} else {
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("FirstBQnoWake"));
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ rcu_nocb_unlock(rdp);
}
}
return true; // Callback already enqueued.
@@ -566,11 +564,12 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
long lazy_len;
long len;
struct task_struct *t;
+ struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
// If we are being polled or there is no kthread, just leave.
t = READ_ONCE(rdp->nocb_gp_kthread);
if (rcu_nocb_poll || !t) {
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ rcu_nocb_unlock(rdp);
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("WakeNotPoll"));
return;
@@ -583,17 +582,17 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
rdp->qlen_last_fqs_check = len;
// Only lazy CBs in bypass list
if (lazy_len && bypass_len == lazy_len) {
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ rcu_nocb_unlock(rdp);
wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
TPS("WakeLazy"));
} else if (!irqs_disabled_flags(flags)) {
/* ... if queue was empty ... */
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ rcu_nocb_unlock(rdp);
wake_nocb_gp(rdp, false);
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("WakeEmpty"));
} else {
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ rcu_nocb_unlock(rdp);
wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
TPS("WakeEmptyIsDeferred"));
}
@@ -610,20 +609,32 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
smp_mb(); /* Enqueue before timer_pending(). */
if ((rdp->nocb_cb_sleep ||
!rcu_segcblist_ready_cbs(&rdp->cblist)) &&
- !timer_pending(&rdp->nocb_timer)) {
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ !timer_pending(&rdp_gp->nocb_timer)) {
+ rcu_nocb_unlock(rdp);
wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
TPS("WakeOvfIsDeferred"));
} else {
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ rcu_nocb_unlock(rdp);
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
}
} else {
- rcu_nocb_unlock_irqrestore(rdp, flags);
+ rcu_nocb_unlock(rdp);
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
}
}
+static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
+ rcu_callback_t func, unsigned long flags, bool lazy)
+{
+ bool was_alldone;
+
+ if (!rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
+ /* Not enqueued on bypass but locked, do regular enqueue */
+ rcutree_enqueue(rdp, head, func);
+ __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
+ }
+}
+
static int nocb_gp_toggle_rdp(struct rcu_data *rdp,
bool *wake_state)
{
@@ -723,7 +734,7 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
lazy_ncbs = READ_ONCE(rdp->lazy_len);
if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
- (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
+ (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + rcu_get_jiffies_lazy_flush()) ||
bypass_ncbs > 2 * qhimark)) {
flush_bypass = true;
} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
@@ -779,7 +790,6 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
needwake = rdp->nocb_cb_sleep;
WRITE_ONCE(rdp->nocb_cb_sleep, false);
- smp_mb(); /* CB invocation -after- GP end. */
} else {
needwake = false;
}
@@ -933,8 +943,7 @@ static void nocb_cb_wait(struct rcu_data *rdp)
swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
nocb_cb_wait_cond(rdp));
- // VVV Ensure CB invocation follows _sleep test.
- if (smp_load_acquire(&rdp->nocb_cb_sleep)) { // ^^^
+ if (READ_ONCE(rdp->nocb_cb_sleep)) {
WARN_ON(signal_pending(current));
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
}
@@ -1383,7 +1392,7 @@ lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
rcu_nocb_unlock_irqrestore(rdp, flags);
continue;
}
- WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
+ rcu_nocb_try_flush_bypass(rdp, jiffies);
rcu_nocb_unlock_irqrestore(rdp, flags);
wake_nocb_gp(rdp, false);
sc->nr_to_scan -= _count;
@@ -1768,10 +1777,10 @@ static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
return true;
}
-static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
- bool *was_alldone, unsigned long flags, bool lazy)
+static void call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *head,
+ rcu_callback_t func, unsigned long flags, bool lazy)
{
- return false;
+ WARN_ON_ONCE(1); /* Should be dead code! */
}
static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index 41021080ad25..36a8b5dbf5b5 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -1195,14 +1195,13 @@ static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
struct sched_param sp;
struct task_struct *t;
- mutex_lock(&rnp->boost_kthread_mutex);
- if (rnp->boost_kthread_task || !rcu_scheduler_fully_active)
- goto out;
+ if (rnp->boost_kthread_task)
+ return;
t = kthread_create(rcu_boost_kthread, (void *)rnp,
"rcub/%d", rnp_index);
if (WARN_ON_ONCE(IS_ERR(t)))
- goto out;
+ return;
raw_spin_lock_irqsave_rcu_node(rnp, flags);
rnp->boost_kthread_task = t;
@@ -1210,48 +1209,11 @@ static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
sp.sched_priority = kthread_prio;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
-
- out:
- mutex_unlock(&rnp->boost_kthread_mutex);
}
-/*
- * Set the per-rcu_node kthread's affinity to cover all CPUs that are
- * served by the rcu_node in question. The CPU hotplug lock is still
- * held, so the value of rnp->qsmaskinit will be stable.
- *
- * We don't include outgoingcpu in the affinity set, use -1 if there is
- * no outgoing CPU. If there are no CPUs left in the affinity set,
- * this function allows the kthread to execute on any CPU.
- *
- * Any future concurrent calls are serialized via ->boost_kthread_mutex.
- */
-static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
+static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
{
- struct task_struct *t = rnp->boost_kthread_task;
- unsigned long mask;
- cpumask_var_t cm;
- int cpu;
-
- if (!t)
- return;
- if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
- return;
- mutex_lock(&rnp->boost_kthread_mutex);
- mask = rcu_rnp_online_cpus(rnp);
- for_each_leaf_node_possible_cpu(rnp, cpu)
- if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
- cpu != outgoingcpu)
- cpumask_set_cpu(cpu, cm);
- cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
- if (cpumask_empty(cm)) {
- cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
- if (outgoingcpu >= 0)
- cpumask_clear_cpu(outgoingcpu, cm);
- }
- set_cpus_allowed_ptr(t, cm);
- mutex_unlock(&rnp->boost_kthread_mutex);
- free_cpumask_var(cm);
+ return READ_ONCE(rnp->boost_kthread_task);
}
#else /* #ifdef CONFIG_RCU_BOOST */
@@ -1270,10 +1232,10 @@ static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
{
}
-static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
+static struct task_struct *rcu_boost_task(struct rcu_node *rnp)
{
+ return NULL;
}
-
#endif /* #else #ifdef CONFIG_RCU_BOOST */
/*
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 9116bcc90346..d44efa0d0611 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1792,7 +1792,6 @@ static void cpu_util_update_eff(struct cgroup_subsys_state *css);
#endif
#ifdef CONFIG_SYSCTL
-#ifdef CONFIG_UCLAMP_TASK
#ifdef CONFIG_UCLAMP_TASK_GROUP
static void uclamp_update_root_tg(void)
{
@@ -1898,7 +1897,6 @@ undo:
return result;
}
#endif
-#endif
static int uclamp_validate(struct task_struct *p,
const struct sched_attr *attr)
@@ -2065,7 +2063,7 @@ static void __init init_uclamp(void)
}
}
-#else /* CONFIG_UCLAMP_TASK */
+#else /* !CONFIG_UCLAMP_TASK */
static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
static inline int uclamp_validate(struct task_struct *p,
@@ -3955,6 +3953,17 @@ void wake_up_if_idle(int cpu)
}
}
+bool cpus_equal_capacity(int this_cpu, int that_cpu)
+{
+ if (!sched_asym_cpucap_active())
+ return true;
+
+ if (this_cpu == that_cpu)
+ return true;
+
+ return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
+}
+
bool cpus_share_cache(int this_cpu, int that_cpu)
{
if (this_cpu == that_cpu)
@@ -6787,10 +6796,12 @@ static inline void sched_submit_work(struct task_struct *tsk)
static void sched_update_worker(struct task_struct *tsk)
{
- if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
+ if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
+ if (tsk->flags & PF_BLOCK_TS)
+ blk_plug_invalidate_ts(tsk);
if (tsk->flags & PF_WQ_WORKER)
wq_worker_running(tsk);
- else
+ else if (tsk->flags & PF_IO_WORKER)
io_wq_worker_running(tsk);
}
}
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 533547e3c90a..6a16129f9a5c 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -7289,7 +7289,7 @@ static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpu
if (!available_idle_cpu(cpu)) {
idle = false;
if (*idle_cpu == -1) {
- if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
+ if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
*idle_cpu = cpu;
break;
}
@@ -7297,7 +7297,7 @@ static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpu
}
break;
}
- if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
+ if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
*idle_cpu = cpu;
}
@@ -7311,13 +7311,19 @@ static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpu
/*
* Scan the local SMT mask for idle CPUs.
*/
-static int select_idle_smt(struct task_struct *p, int target)
+static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
int cpu;
for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
if (cpu == target)
continue;
+ /*
+ * Check if the CPU is in the LLC scheduling domain of @target.
+ * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
+ */
+ if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
+ continue;
if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
return cpu;
}
@@ -7341,7 +7347,7 @@ static inline int select_idle_core(struct task_struct *p, int core, struct cpuma
return __select_idle_cpu(core, p);
}
-static inline int select_idle_smt(struct task_struct *p, int target)
+static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
{
return -1;
}
@@ -7591,7 +7597,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
has_idle_core = test_idle_cores(target);
if (!has_idle_core && cpus_share_cache(prev, target)) {
- i = select_idle_smt(p, prev);
+ i = select_idle_smt(p, sd, prev);
if ((unsigned int)i < nr_cpumask_bits)
return i;
}
@@ -9237,19 +9243,17 @@ static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
static inline bool others_have_blocked(struct rq *rq)
{
- if (READ_ONCE(rq->avg_rt.util_avg))
+ if (cpu_util_rt(rq))
return true;
- if (READ_ONCE(rq->avg_dl.util_avg))
+ if (cpu_util_dl(rq))
return true;
if (thermal_load_avg(rq))
return true;
-#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
- if (READ_ONCE(rq->avg_irq.util_avg))
+ if (cpu_util_irq(rq))
return true;
-#endif
return false;
}
@@ -9506,8 +9510,8 @@ static unsigned long scale_rt_capacity(int cpu)
* avg_thermal.load_avg tracks thermal pressure and the weighted
* average uses the actual delta max capacity(load).
*/
- used = READ_ONCE(rq->avg_rt.util_avg);
- used += READ_ONCE(rq->avg_dl.util_avg);
+ used = cpu_util_rt(rq);
+ used += cpu_util_dl(rq);
used += thermal_load_avg(rq);
if (unlikely(used >= max))
@@ -9740,51 +9744,49 @@ group_type group_classify(unsigned int imbalance_pct,
*/
static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
{
+ if (!(sd->flags & SD_ASYM_PACKING))
+ return false;
+
if (!sched_smt_active())
return true;
return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
}
+static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
+{
+ /*
+ * First check if @dst_cpu can do asym_packing load balance. Only do it
+ * if it has higher priority than @src_cpu.
+ */
+ return sched_use_asym_prio(sd, dst_cpu) &&
+ sched_asym_prefer(dst_cpu, src_cpu);
+}
+
/**
- * sched_asym - Check if the destination CPU can do asym_packing load balance
+ * sched_group_asym - Check if the destination CPU can do asym_packing balance
* @env: The load balancing environment
- * @sds: Load-balancing data with statistics of the local group
* @sgs: Load-balancing statistics of the candidate busiest group
* @group: The candidate busiest group
*
* @env::dst_cpu can do asym_packing if it has higher priority than the
* preferred CPU of @group.
*
- * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
- * can do asym_packing balance only if all its SMT siblings are idle. Also, it
- * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
- * imbalances in the number of CPUS are dealt with in find_busiest_group().
- *
- * If we are balancing load within an SMT core, or at PKG domain level, always
- * proceed.
- *
* Return: true if @env::dst_cpu can do with asym_packing load balance. False
* otherwise.
*/
static inline bool
-sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
- struct sched_group *group)
+sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
{
- /* Ensure that the whole local core is idle, if applicable. */
- if (!sched_use_asym_prio(env->sd, env->dst_cpu))
- return false;
-
/*
- * CPU priorities does not make sense for SMT cores with more than one
+ * CPU priorities do not make sense for SMT cores with more than one
* busy sibling.
*/
- if (group->flags & SD_SHARE_CPUCAPACITY) {
- if (sgs->group_weight - sgs->idle_cpus != 1)
- return false;
- }
+ if ((group->flags & SD_SHARE_CPUCAPACITY) &&
+ (sgs->group_weight - sgs->idle_cpus != 1))
+ return false;
- return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
+ return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
}
/* One group has more than one SMT CPU while the other group does not */
@@ -9938,11 +9940,9 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->group_weight = group->group_weight;
/* Check if dst CPU is idle and preferred to this group */
- if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
- env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
- sched_asym(env, sds, sgs, group)) {
+ if (!local_group && env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
+ sched_group_asym(env, sgs, group))
sgs->group_asym_packing = 1;
- }
/* Check for loaded SMT group to be balanced to dst CPU */
if (!local_group && smt_balance(env, sgs, group))
@@ -10006,9 +10006,7 @@ static bool update_sd_pick_busiest(struct lb_env *env,
switch (sgs->group_type) {
case group_overloaded:
/* Select the overloaded group with highest avg_load. */
- if (sgs->avg_load <= busiest->avg_load)
- return false;
- break;
+ return sgs->avg_load > busiest->avg_load;
case group_imbalanced:
/*
@@ -10019,18 +10017,14 @@ static bool update_sd_pick_busiest(struct lb_env *env,
case group_asym_packing:
/* Prefer to move from lowest priority CPU's work */
- if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
- return false;
- break;
+ return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
case group_misfit_task:
/*
* If we have more than one misfit sg go with the biggest
* misfit.
*/
- if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
- return false;
- break;
+ return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
case group_smt_balance:
/*
@@ -10182,10 +10176,8 @@ static int idle_cpu_without(int cpu, struct task_struct *p)
* be computed and tested before calling idle_cpu_without().
*/
-#ifdef CONFIG_SMP
if (rq->ttwu_pending)
return 0;
-#endif
return 1;
}
@@ -10578,16 +10570,11 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
- if (local_group)
- goto next_group;
-
-
- if (update_sd_pick_busiest(env, sds, sg, sgs)) {
+ if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
sds->busiest = sg;
sds->busiest_stat = *sgs;
}
-next_group:
/* Now, start updating sd_lb_stats */
sds->total_load += sgs->group_load;
sds->total_capacity += sgs->group_capacity;
@@ -10691,7 +10678,7 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
*/
if (local->group_type == group_has_spare) {
if ((busiest->group_type > group_fully_busy) &&
- !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
+ !(env->sd->flags & SD_SHARE_LLC)) {
/*
* If busiest is overloaded, try to fill spare
* capacity. This might end up creating spare capacity
@@ -11038,10 +11025,7 @@ static struct rq *find_busiest_queue(struct lb_env *env,
* If balancing between cores, let lower priority CPUs help
* SMT cores with more than one busy sibling.
*/
- if ((env->sd->flags & SD_ASYM_PACKING) &&
- sched_use_asym_prio(env->sd, i) &&
- sched_asym_prefer(i, env->dst_cpu) &&
- nr_running == 1)
+ if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
continue;
switch (env->migration_type) {
@@ -11137,8 +11121,7 @@ asym_active_balance(struct lb_env *env)
* the lower priority @env::dst_cpu help it. Do not follow
* CPU priority.
*/
- return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
- sched_use_asym_prio(env->sd, env->dst_cpu) &&
+ return env->idle != CPU_NOT_IDLE && sched_use_asym_prio(env->sd, env->dst_cpu) &&
(sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
!sched_use_asym_prio(env->sd, env->src_cpu));
}
@@ -11910,8 +11893,7 @@ static void nohz_balancer_kick(struct rq *rq)
* preferred CPU must be idle.
*/
for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
- if (sched_use_asym_prio(sd, i) &&
- sched_asym_prefer(i, cpu)) {
+ if (sched_asym(sd, i, cpu)) {
flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
goto unlock;
}
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 31231925f1ec..b15d40cad7ea 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -291,7 +291,6 @@ static void do_idle(void)
local_irq_disable();
if (cpu_is_offline(cpu)) {
- tick_nohz_idle_stop_tick();
cpuhp_report_idle_dead();
arch_cpu_idle_dead();
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 001fe047bd5d..d2242679239e 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -3136,7 +3136,7 @@ static inline bool uclamp_rq_is_idle(struct rq *rq)
#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
static inline unsigned long cpu_util_irq(struct rq *rq)
{
- return rq->avg_irq.util_avg;
+ return READ_ONCE(rq->avg_irq.util_avg);
}
static inline
diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c
index 10d1391e7416..99ea5986038c 100644
--- a/kernel/sched/topology.c
+++ b/kernel/sched/topology.c
@@ -657,13 +657,13 @@ static void destroy_sched_domains(struct sched_domain *sd)
}
/*
- * Keep a special pointer to the highest sched_domain that has
- * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
- * allows us to avoid some pointer chasing select_idle_sibling().
+ * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
+ * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
+ * select_idle_sibling().
*
- * Also keep a unique ID per domain (we use the first CPU number in
- * the cpumask of the domain), this allows us to quickly tell if
- * two CPUs are in the same cache domain, see cpus_share_cache().
+ * Also keep a unique ID per domain (we use the first CPU number in the cpumask
+ * of the domain), this allows us to quickly tell if two CPUs are in the same
+ * cache domain, see cpus_share_cache().
*/
DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
DEFINE_PER_CPU(int, sd_llc_size);
@@ -684,7 +684,7 @@ static void update_top_cache_domain(int cpu)
int id = cpu;
int size = 1;
- sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
+ sd = highest_flag_domain(cpu, SD_SHARE_LLC);
if (sd) {
id = cpumask_first(sched_domain_span(sd));
size = cpumask_weight(sched_domain_span(sd));
@@ -1551,11 +1551,12 @@ static struct cpumask ***sched_domains_numa_masks;
*
* These flags are purely descriptive of the topology and do not prescribe
* behaviour. Behaviour is artificial and mapped in the below sd_init()
- * function:
+ * function. For details, see include/linux/sched/sd_flags.h.
*
- * SD_SHARE_CPUCAPACITY - describes SMT topologies
- * SD_SHARE_PKG_RESOURCES - describes shared caches
- * SD_NUMA - describes NUMA topologies
+ * SD_SHARE_CPUCAPACITY
+ * SD_SHARE_LLC
+ * SD_CLUSTER
+ * SD_NUMA
*
* Odd one out, which beside describing the topology has a quirk also
* prescribes the desired behaviour that goes along with it:
@@ -1565,7 +1566,7 @@ static struct cpumask ***sched_domains_numa_masks;
#define TOPOLOGY_SD_FLAGS \
(SD_SHARE_CPUCAPACITY | \
SD_CLUSTER | \
- SD_SHARE_PKG_RESOURCES | \
+ SD_SHARE_LLC | \
SD_NUMA | \
SD_ASYM_PACKING)
@@ -1608,7 +1609,7 @@ sd_init(struct sched_domain_topology_level *tl,
| 0*SD_BALANCE_WAKE
| 1*SD_WAKE_AFFINE
| 0*SD_SHARE_CPUCAPACITY
- | 0*SD_SHARE_PKG_RESOURCES
+ | 0*SD_SHARE_LLC
| 0*SD_SERIALIZE
| 1*SD_PREFER_SIBLING
| 0*SD_NUMA
@@ -1645,7 +1646,7 @@ sd_init(struct sched_domain_topology_level *tl,
if (sd->flags & SD_SHARE_CPUCAPACITY) {
sd->imbalance_pct = 110;
- } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+ } else if (sd->flags & SD_SHARE_LLC) {
sd->imbalance_pct = 117;
sd->cache_nice_tries = 1;
@@ -1670,7 +1671,7 @@ sd_init(struct sched_domain_topology_level *tl,
* For all levels sharing cache; connect a sched_domain_shared
* instance.
*/
- if (sd->flags & SD_SHARE_PKG_RESOURCES) {
+ if (sd->flags & SD_SHARE_LLC) {
sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
atomic_inc(&sd->shared->ref);
atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
@@ -2445,8 +2446,8 @@ build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *att
for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
struct sched_domain *child = sd->child;
- if (!(sd->flags & SD_SHARE_PKG_RESOURCES) && child &&
- (child->flags & SD_SHARE_PKG_RESOURCES)) {
+ if (!(sd->flags & SD_SHARE_LLC) && child &&
+ (child->flags & SD_SHARE_LLC)) {
struct sched_domain __rcu *top_p;
unsigned int nr_llcs;
diff --git a/kernel/signal.c b/kernel/signal.c
index c9c57d053ce4..bdca529f0f7b 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -47,6 +47,7 @@
#include <linux/cgroup.h>
#include <linux/audit.h>
#include <linux/sysctl.h>
+#include <uapi/linux/pidfd.h>
#define CREATE_TRACE_POINTS
#include <trace/events/signal.h>
@@ -1436,7 +1437,8 @@ void lockdep_assert_task_sighand_held(struct task_struct *task)
#endif
/*
- * send signal info to all the members of a group
+ * send signal info to all the members of a thread group or to the
+ * individual thread if type == PIDTYPE_PID.
*/
int group_send_sig_info(int sig, struct kernel_siginfo *info,
struct task_struct *p, enum pid_type type)
@@ -1478,7 +1480,8 @@ int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
return ret;
}
-int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
+static int kill_pid_info_type(int sig, struct kernel_siginfo *info,
+ struct pid *pid, enum pid_type type)
{
int error = -ESRCH;
struct task_struct *p;
@@ -1487,11 +1490,10 @@ int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
rcu_read_lock();
p = pid_task(pid, PIDTYPE_PID);
if (p)
- error = group_send_sig_info(sig, info, p, PIDTYPE_TGID);
+ error = group_send_sig_info(sig, info, p, type);
rcu_read_unlock();
if (likely(!p || error != -ESRCH))
return error;
-
/*
* The task was unhashed in between, try again. If it
* is dead, pid_task() will return NULL, if we race with
@@ -1500,6 +1502,11 @@ int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
}
}
+int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid)
+{
+ return kill_pid_info_type(sig, info, pid, PIDTYPE_TGID);
+}
+
static int kill_proc_info(int sig, struct kernel_siginfo *info, pid_t pid)
{
int error;
@@ -1898,16 +1905,19 @@ int send_sig_fault_trapno(int sig, int code, void __user *addr, int trapno,
return send_sig_info(info.si_signo, &info, t);
}
-int kill_pgrp(struct pid *pid, int sig, int priv)
+static int kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp)
{
int ret;
-
read_lock(&tasklist_lock);
- ret = __kill_pgrp_info(sig, __si_special(priv), pid);
+ ret = __kill_pgrp_info(sig, info, pgrp);
read_unlock(&tasklist_lock);
-
return ret;
}
+
+int kill_pgrp(struct pid *pid, int sig, int priv)
+{
+ return kill_pgrp_info(sig, __si_special(priv), pid);
+}
EXPORT_SYMBOL(kill_pgrp);
int kill_pid(struct pid *pid, int sig, int priv)
@@ -2019,13 +2029,14 @@ ret:
return ret;
}
-static void do_notify_pidfd(struct task_struct *task)
+void do_notify_pidfd(struct task_struct *task)
{
- struct pid *pid;
+ struct pid *pid = task_pid(task);
WARN_ON(task->exit_state == 0);
- pid = task_pid(task);
- wake_up_all(&pid->wait_pidfd);
+
+ __wake_up(&pid->wait_pidfd, TASK_NORMAL, 0,
+ poll_to_key(EPOLLIN | EPOLLRDNORM));
}
/*
@@ -2050,9 +2061,12 @@ bool do_notify_parent(struct task_struct *tsk, int sig)
WARN_ON_ONCE(!tsk->ptrace &&
(tsk->group_leader != tsk || !thread_group_empty(tsk)));
-
- /* Wake up all pidfd waiters */
- do_notify_pidfd(tsk);
+ /*
+ * tsk is a group leader and has no threads, wake up the
+ * non-PIDFD_THREAD waiters.
+ */
+ if (thread_group_empty(tsk))
+ do_notify_pidfd(tsk);
if (sig != SIGCHLD) {
/*
@@ -3789,12 +3803,13 @@ COMPAT_SYSCALL_DEFINE4(rt_sigtimedwait_time32, compat_sigset_t __user *, uthese,
#endif
#endif
-static inline void prepare_kill_siginfo(int sig, struct kernel_siginfo *info)
+static void prepare_kill_siginfo(int sig, struct kernel_siginfo *info,
+ enum pid_type type)
{
clear_siginfo(info);
info->si_signo = sig;
info->si_errno = 0;
- info->si_code = SI_USER;
+ info->si_code = (type == PIDTYPE_PID) ? SI_TKILL : SI_USER;
info->si_pid = task_tgid_vnr(current);
info->si_uid = from_kuid_munged(current_user_ns(), current_uid());
}
@@ -3808,7 +3823,7 @@ SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
{
struct kernel_siginfo info;
- prepare_kill_siginfo(sig, &info);
+ prepare_kill_siginfo(sig, &info, PIDTYPE_TGID);
return kill_something_info(sig, &info, pid);
}
@@ -3861,6 +3876,10 @@ static struct pid *pidfd_to_pid(const struct file *file)
return tgid_pidfd_to_pid(file);
}
+#define PIDFD_SEND_SIGNAL_FLAGS \
+ (PIDFD_SIGNAL_THREAD | PIDFD_SIGNAL_THREAD_GROUP | \
+ PIDFD_SIGNAL_PROCESS_GROUP)
+
/**
* sys_pidfd_send_signal - Signal a process through a pidfd
* @pidfd: file descriptor of the process
@@ -3868,14 +3887,10 @@ static struct pid *pidfd_to_pid(const struct file *file)
* @info: signal info
* @flags: future flags
*
- * The syscall currently only signals via PIDTYPE_PID which covers
- * kill(<positive-pid>, <signal>. It does not signal threads or process
- * groups.
- * In order to extend the syscall to threads and process groups the @flags
- * argument should be used. In essence, the @flags argument will determine
- * what is signaled and not the file descriptor itself. Put in other words,
- * grouping is a property of the flags argument not a property of the file
- * descriptor.
+ * Send the signal to the thread group or to the individual thread depending
+ * on PIDFD_THREAD.
+ * In the future extension to @flags may be used to override the default scope
+ * of @pidfd.
*
* Return: 0 on success, negative errno on failure
*/
@@ -3886,9 +3901,14 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
struct fd f;
struct pid *pid;
kernel_siginfo_t kinfo;
+ enum pid_type type;
/* Enforce flags be set to 0 until we add an extension. */
- if (flags)
+ if (flags & ~PIDFD_SEND_SIGNAL_FLAGS)
+ return -EINVAL;
+
+ /* Ensure that only a single signal scope determining flag is set. */
+ if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
return -EINVAL;
f = fdget(pidfd);
@@ -3906,6 +3926,25 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
if (!access_pidfd_pidns(pid))
goto err;
+ switch (flags) {
+ case 0:
+ /* Infer scope from the type of pidfd. */
+ if (f.file->f_flags & PIDFD_THREAD)
+ type = PIDTYPE_PID;
+ else
+ type = PIDTYPE_TGID;
+ break;
+ case PIDFD_SIGNAL_THREAD:
+ type = PIDTYPE_PID;
+ break;
+ case PIDFD_SIGNAL_THREAD_GROUP:
+ type = PIDTYPE_TGID;
+ break;
+ case PIDFD_SIGNAL_PROCESS_GROUP:
+ type = PIDTYPE_PGID;
+ break;
+ }
+
if (info) {
ret = copy_siginfo_from_user_any(&kinfo, info);
if (unlikely(ret))
@@ -3917,15 +3956,17 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
/* Only allow sending arbitrary signals to yourself. */
ret = -EPERM;
- if ((task_pid(current) != pid) &&
+ if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
(kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
goto err;
} else {
- prepare_kill_siginfo(sig, &kinfo);
+ prepare_kill_siginfo(sig, &kinfo, type);
}
- ret = kill_pid_info(sig, &kinfo, pid);
-
+ if (type == PIDTYPE_PGID)
+ ret = kill_pgrp_info(sig, &kinfo, pid);
+ else
+ ret = kill_pid_info_type(sig, &kinfo, pid, type);
err:
fdput(f);
return ret;
@@ -3965,12 +4006,7 @@ static int do_tkill(pid_t tgid, pid_t pid, int sig)
{
struct kernel_siginfo info;
- clear_siginfo(&info);
- info.si_signo = sig;
- info.si_errno = 0;
- info.si_code = SI_TKILL;
- info.si_pid = task_tgid_vnr(current);
- info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
+ prepare_kill_siginfo(sig, &info, PIDTYPE_PID);
return do_send_specific(tgid, pid, sig, &info);
}
diff --git a/kernel/softirq.c b/kernel/softirq.c
index 210cf5f8d92c..b315b21fb28c 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -27,6 +27,7 @@
#include <linux/tick.h>
#include <linux/irq.h>
#include <linux/wait_bit.h>
+#include <linux/workqueue.h>
#include <asm/softirq_stack.h>
@@ -802,11 +803,13 @@ static void tasklet_action_common(struct softirq_action *a,
static __latent_entropy void tasklet_action(struct softirq_action *a)
{
+ workqueue_softirq_action(false);
tasklet_action_common(a, this_cpu_ptr(&tasklet_vec), TASKLET_SOFTIRQ);
}
static __latent_entropy void tasklet_hi_action(struct softirq_action *a)
{
+ workqueue_softirq_action(true);
tasklet_action_common(a, this_cpu_ptr(&tasklet_hi_vec), HI_SOFTIRQ);
}
@@ -929,6 +932,8 @@ static void run_ksoftirqd(unsigned int cpu)
#ifdef CONFIG_HOTPLUG_CPU
static int takeover_tasklets(unsigned int cpu)
{
+ workqueue_softirq_dead(cpu);
+
/* CPU is dead, so no lock needed. */
local_irq_disable();
diff --git a/kernel/time/Makefile b/kernel/time/Makefile
index 7e875e63ff3b..4af2a264a160 100644
--- a/kernel/time/Makefile
+++ b/kernel/time/Makefile
@@ -17,6 +17,9 @@ endif
obj-$(CONFIG_GENERIC_SCHED_CLOCK) += sched_clock.o
obj-$(CONFIG_TICK_ONESHOT) += tick-oneshot.o tick-sched.o
obj-$(CONFIG_LEGACY_TIMER_TICK) += tick-legacy.o
+ifeq ($(CONFIG_SMP),y)
+ obj-$(CONFIG_NO_HZ_COMMON) += timer_migration.o
+endif
obj-$(CONFIG_HAVE_GENERIC_VDSO) += vsyscall.o
obj-$(CONFIG_DEBUG_FS) += timekeeping_debug.o
obj-$(CONFIG_TEST_UDELAY) += test_udelay.o
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 960143b183cd..a7ca458cdd9c 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -659,7 +659,7 @@ void tick_cleanup_dead_cpu(int cpu)
#endif
#ifdef CONFIG_SYSFS
-static struct bus_type clockevents_subsys = {
+static const struct bus_type clockevents_subsys = {
.name = "clockevents",
.dev_name = "clockevent",
};
diff --git a/kernel/time/clocksource-wdtest.c b/kernel/time/clocksource-wdtest.c
index df922f49d171..d06185e054ea 100644
--- a/kernel/time/clocksource-wdtest.c
+++ b/kernel/time/clocksource-wdtest.c
@@ -104,8 +104,8 @@ static void wdtest_ktime_clocksource_reset(void)
static int wdtest_func(void *arg)
{
unsigned long j1, j2;
+ int i, max_retries;
char *s;
- int i;
schedule_timeout_uninterruptible(holdoff * HZ);
@@ -139,18 +139,19 @@ static int wdtest_func(void *arg)
WARN_ON_ONCE(time_before(j2, j1 + NSEC_PER_USEC));
/* Verify tsc-like stability with various numbers of errors injected. */
- for (i = 0; i <= max_cswd_read_retries + 1; i++) {
- if (i <= 1 && i < max_cswd_read_retries)
+ max_retries = clocksource_get_max_watchdog_retry();
+ for (i = 0; i <= max_retries + 1; i++) {
+ if (i <= 1 && i < max_retries)
s = "";
- else if (i <= max_cswd_read_retries)
+ else if (i <= max_retries)
s = ", expect message";
else
s = ", expect clock skew";
- pr_info("--- Watchdog with %dx error injection, %lu retries%s.\n", i, max_cswd_read_retries, s);
+ pr_info("--- Watchdog with %dx error injection, %d retries%s.\n", i, max_retries, s);
WRITE_ONCE(wdtest_ktime_read_ndelays, i);
schedule_timeout_uninterruptible(2 * HZ);
WARN_ON_ONCE(READ_ONCE(wdtest_ktime_read_ndelays));
- WARN_ON_ONCE((i <= max_cswd_read_retries) !=
+ WARN_ON_ONCE((i <= max_retries) !=
!(clocksource_wdtest_ktime.flags & CLOCK_SOURCE_UNSTABLE));
wdtest_ktime_clocksource_reset();
}
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 3052b1f1168e..e5b260aa0e02 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -210,9 +210,6 @@ void clocksource_mark_unstable(struct clocksource *cs)
spin_unlock_irqrestore(&watchdog_lock, flags);
}
-ulong max_cswd_read_retries = 2;
-module_param(max_cswd_read_retries, ulong, 0644);
-EXPORT_SYMBOL_GPL(max_cswd_read_retries);
static int verify_n_cpus = 8;
module_param(verify_n_cpus, int, 0644);
@@ -224,11 +221,12 @@ enum wd_read_status {
static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
{
- unsigned int nretries;
+ unsigned int nretries, max_retries;
u64 wd_end, wd_end2, wd_delta;
int64_t wd_delay, wd_seq_delay;
- for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
+ max_retries = clocksource_get_max_watchdog_retry();
+ for (nretries = 0; nretries <= max_retries; nretries++) {
local_irq_disable();
*wdnow = watchdog->read(watchdog);
*csnow = cs->read(cs);
@@ -240,7 +238,7 @@ static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow,
wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
watchdog->shift);
if (wd_delay <= WATCHDOG_MAX_SKEW) {
- if (nretries > 1 || nretries >= max_cswd_read_retries) {
+ if (nretries > 1 || nretries >= max_retries) {
pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
smp_processor_id(), watchdog->name, nretries);
}
@@ -1468,7 +1466,7 @@ static struct attribute *clocksource_attrs[] = {
};
ATTRIBUTE_GROUPS(clocksource);
-static struct bus_type clocksource_subsys = {
+static const struct bus_type clocksource_subsys = {
.name = "clocksource",
.dev_name = "clocksource",
};
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index edb0f821dcea..70625dff62ce 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -38,6 +38,7 @@
#include <linux/sched/deadline.h>
#include <linux/sched/nohz.h>
#include <linux/sched/debug.h>
+#include <linux/sched/isolation.h>
#include <linux/timer.h>
#include <linux/freezer.h>
#include <linux/compat.h>
@@ -746,7 +747,7 @@ static void hrtimer_switch_to_hres(void)
base->hres_active = 1;
hrtimer_resolution = HIGH_RES_NSEC;
- tick_setup_sched_timer();
+ tick_setup_sched_timer(true);
/* "Retrigger" the interrupt to get things going */
retrigger_next_event(NULL);
}
@@ -1021,21 +1022,23 @@ void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
}
/**
- * hrtimer_forward - forward the timer expiry
+ * hrtimer_forward() - forward the timer expiry
* @timer: hrtimer to forward
* @now: forward past this time
* @interval: the interval to forward
*
* Forward the timer expiry so it will expire in the future.
- * Returns the number of overruns.
*
- * Can be safely called from the callback function of @timer. If
- * called from other contexts @timer must neither be enqueued nor
- * running the callback and the caller needs to take care of
- * serialization.
+ * .. note::
+ * This only updates the timer expiry value and does not requeue the timer.
*
- * Note: This only updates the timer expiry value and does not requeue
- * the timer.
+ * There is also a variant of the function hrtimer_forward_now().
+ *
+ * Context: Can be safely called from the callback function of @timer. If called
+ * from other contexts @timer must neither be enqueued nor running the
+ * callback and the caller needs to take care of serialization.
+ *
+ * Return: The number of overruns are returned.
*/
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
{
@@ -2223,10 +2226,8 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
int hrtimers_cpu_dying(unsigned int dying_cpu)
{
+ int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
struct hrtimer_cpu_base *old_base, *new_base;
- int i, ncpu = cpumask_first(cpu_active_mask);
-
- tick_cancel_sched_timer(dying_cpu);
old_base = this_cpu_ptr(&hrtimer_bases);
new_base = &per_cpu(hrtimer_bases, ncpu);
diff --git a/kernel/time/tick-common.c b/kernel/time/tick-common.c
index e9138cd7a0f5..fb0fdec8719a 100644
--- a/kernel/time/tick-common.c
+++ b/kernel/time/tick-common.c
@@ -111,15 +111,13 @@ void tick_handle_periodic(struct clock_event_device *dev)
tick_periodic(cpu);
-#if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
/*
* The cpu might have transitioned to HIGHRES or NOHZ mode via
* update_process_times() -> run_local_timers() ->
* hrtimer_run_queues().
*/
- if (dev->event_handler != tick_handle_periodic)
+ if (IS_ENABLED(CONFIG_TICK_ONESHOT) && dev->event_handler != tick_handle_periodic)
return;
-#endif
if (!clockevent_state_oneshot(dev))
return;
@@ -398,16 +396,31 @@ int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
#ifdef CONFIG_HOTPLUG_CPU
+void tick_assert_timekeeping_handover(void)
+{
+ WARN_ON_ONCE(tick_do_timer_cpu == smp_processor_id());
+}
/*
- * Transfer the do_timer job away from a dying cpu.
- *
- * Called with interrupts disabled. No locking required. If
- * tick_do_timer_cpu is owned by this cpu, nothing can change it.
+ * Stop the tick and transfer the timekeeping job away from a dying cpu.
*/
-void tick_handover_do_timer(void)
+int tick_cpu_dying(unsigned int dying_cpu)
{
- if (tick_do_timer_cpu == smp_processor_id())
+ /*
+ * If the current CPU is the timekeeper, it's the only one that
+ * can safely hand over its duty. Also all online CPUs are in
+ * stop machine, guaranteed not to be idle, therefore it's safe
+ * to pick any online successor.
+ */
+ if (tick_do_timer_cpu == dying_cpu)
tick_do_timer_cpu = cpumask_first(cpu_online_mask);
+
+ /* Make sure the CPU won't try to retake the timekeeping duty */
+ tick_sched_timer_dying(dying_cpu);
+
+ /* Remove CPU from timer broadcasting */
+ tick_offline_cpu(dying_cpu);
+
+ return 0;
}
/*
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index 481b7ab65e2c..5f2105e637bd 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -8,6 +8,11 @@
#include "timekeeping.h"
#include "tick-sched.h"
+struct timer_events {
+ u64 local;
+ u64 global;
+};
+
#ifdef CONFIG_GENERIC_CLOCKEVENTS
# define TICK_DO_TIMER_NONE -1
@@ -137,8 +142,10 @@ static inline bool tick_broadcast_oneshot_available(void) { return tick_oneshot_
#endif /* !(BROADCAST && ONESHOT) */
#if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_HOTPLUG_CPU)
+extern void tick_offline_cpu(unsigned int cpu);
extern void tick_broadcast_offline(unsigned int cpu);
#else
+static inline void tick_offline_cpu(unsigned int cpu) { }
static inline void tick_broadcast_offline(unsigned int cpu) { }
#endif
@@ -152,8 +159,16 @@ static inline void tick_nohz_init(void) { }
#ifdef CONFIG_NO_HZ_COMMON
extern unsigned long tick_nohz_active;
extern void timers_update_nohz(void);
+extern u64 get_jiffies_update(unsigned long *basej);
# ifdef CONFIG_SMP
extern struct static_key_false timers_migration_enabled;
+extern void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
+ struct timer_events *tevt,
+ unsigned int cpu);
+extern void timer_lock_remote_bases(unsigned int cpu);
+extern void timer_unlock_remote_bases(unsigned int cpu);
+extern bool timer_base_is_idle(void);
+extern void timer_expire_remote(unsigned int cpu);
# endif
#else /* CONFIG_NO_HZ_COMMON */
static inline void timers_update_nohz(void) { }
@@ -163,6 +178,7 @@ static inline void timers_update_nohz(void) { }
DECLARE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases);
extern u64 get_next_timer_interrupt(unsigned long basej, u64 basem);
+u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle);
void timer_clear_idle(void);
#define CLOCK_SET_WALL \
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index 01fb50c1b17e..269e21590df5 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -43,7 +43,6 @@ struct tick_sched *tick_get_tick_sched(int cpu)
return &per_cpu(tick_cpu_sched, cpu);
}
-#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
/*
* The time when the last jiffy update happened. Write access must hold
* jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
@@ -181,13 +180,32 @@ static ktime_t tick_init_jiffy_update(void)
return period;
}
+static inline int tick_sched_flag_test(struct tick_sched *ts,
+ unsigned long flag)
+{
+ return !!(ts->flags & flag);
+}
+
+static inline void tick_sched_flag_set(struct tick_sched *ts,
+ unsigned long flag)
+{
+ lockdep_assert_irqs_disabled();
+ ts->flags |= flag;
+}
+
+static inline void tick_sched_flag_clear(struct tick_sched *ts,
+ unsigned long flag)
+{
+ lockdep_assert_irqs_disabled();
+ ts->flags &= ~flag;
+}
+
#define MAX_STALLED_JIFFIES 5
static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
{
int cpu = smp_processor_id();
-#ifdef CONFIG_NO_HZ_COMMON
/*
* Check if the do_timer duty was dropped. We don't care about
* concurrency: This happens only when the CPU in charge went
@@ -198,13 +216,13 @@ static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
* If nohz_full is enabled, this should not happen because the
* 'tick_do_timer_cpu' CPU never relinquishes.
*/
- if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
+ unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
#ifdef CONFIG_NO_HZ_FULL
WARN_ON_ONCE(tick_nohz_full_running);
#endif
tick_do_timer_cpu = cpu;
}
-#endif
/* Check if jiffies need an update */
if (tick_do_timer_cpu == cpu)
@@ -225,13 +243,12 @@ static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
}
}
- if (ts->inidle)
+ if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
ts->got_idle_tick = 1;
}
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
-#ifdef CONFIG_NO_HZ_COMMON
/*
* When we are idle and the tick is stopped, we have to touch
* the watchdog as we might not schedule for a really long
@@ -240,7 +257,8 @@ static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
* idle" jiffy stamp so the idle accounting adjustment we do
* when we go busy again does not account too many ticks.
*/
- if (ts->tick_stopped) {
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON) &&
+ tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
touch_softlockup_watchdog_sched();
if (is_idle_task(current))
ts->idle_jiffies++;
@@ -251,11 +269,52 @@ static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
*/
ts->next_tick = 0;
}
-#endif
+
update_process_times(user_mode(regs));
profile_tick(CPU_PROFILING);
}
-#endif
+
+/*
+ * We rearm the timer until we get disabled by the idle code.
+ * Called with interrupts disabled.
+ */
+static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
+{
+ struct tick_sched *ts = container_of(timer, struct tick_sched, sched_timer);
+ struct pt_regs *regs = get_irq_regs();
+ ktime_t now = ktime_get();
+
+ tick_sched_do_timer(ts, now);
+
+ /*
+ * Do not call when we are not in IRQ context and have
+ * no valid 'regs' pointer
+ */
+ if (regs)
+ tick_sched_handle(ts, regs);
+ else
+ ts->next_tick = 0;
+
+ /*
+ * In dynticks mode, tick reprogram is deferred:
+ * - to the idle task if in dynticks-idle
+ * - to IRQ exit if in full-dynticks.
+ */
+ if (unlikely(tick_sched_flag_test(ts, TS_FLAG_STOPPED)))
+ return HRTIMER_NORESTART;
+
+ hrtimer_forward(timer, now, TICK_NSEC);
+
+ return HRTIMER_RESTART;
+}
+
+static void tick_sched_timer_cancel(struct tick_sched *ts)
+{
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
+ hrtimer_cancel(&ts->sched_timer);
+ else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
+ tick_program_event(KTIME_MAX, 1);
+}
#ifdef CONFIG_NO_HZ_FULL
cpumask_var_t tick_nohz_full_mask;
@@ -529,7 +588,7 @@ void __tick_nohz_task_switch(void)
ts = this_cpu_ptr(&tick_cpu_sched);
- if (ts->tick_stopped) {
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
if (atomic_read(&current->tick_dep_mask) ||
atomic_read(&current->signal->tick_dep_mask))
tick_nohz_full_kick();
@@ -601,7 +660,7 @@ void __init tick_nohz_init(void)
pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
cpumask_pr_args(tick_nohz_full_mask));
}
-#endif
+#endif /* #ifdef CONFIG_NO_HZ_FULL */
/*
* NOHZ - aka dynamic tick functionality
@@ -626,14 +685,14 @@ bool tick_nohz_tick_stopped(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- return ts->tick_stopped;
+ return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
}
bool tick_nohz_tick_stopped_cpu(int cpu)
{
struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
- return ts->tick_stopped;
+ return tick_sched_flag_test(ts, TS_FLAG_STOPPED);
}
/**
@@ -663,7 +722,7 @@ static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
{
ktime_t delta;
- if (WARN_ON_ONCE(!ts->idle_active))
+ if (WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE)))
return;
delta = ktime_sub(now, ts->idle_entrytime);
@@ -675,7 +734,7 @@ static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
ts->idle_entrytime = now;
- ts->idle_active = 0;
+ tick_sched_flag_clear(ts, TS_FLAG_IDLE_ACTIVE);
write_seqcount_end(&ts->idle_sleeptime_seq);
sched_clock_idle_wakeup_event();
@@ -685,7 +744,7 @@ static void tick_nohz_start_idle(struct tick_sched *ts)
{
write_seqcount_begin(&ts->idle_sleeptime_seq);
ts->idle_entrytime = ktime_get();
- ts->idle_active = 1;
+ tick_sched_flag_set(ts, TS_FLAG_IDLE_ACTIVE);
write_seqcount_end(&ts->idle_sleeptime_seq);
sched_clock_idle_sleep_event();
@@ -707,7 +766,7 @@ static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
do {
seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
- if (ts->idle_active && compute_delta) {
+ if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE) && compute_delta) {
ktime_t delta = ktime_sub(now, ts->idle_entrytime);
idle = ktime_add(*sleeptime, delta);
@@ -780,7 +839,7 @@ static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
/* Forward the time to expire in the future */
hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
- if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
hrtimer_start_expires(&ts->sched_timer,
HRTIMER_MODE_ABS_PINNED_HARD);
} else {
@@ -799,18 +858,40 @@ static inline bool local_timer_softirq_pending(void)
return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
}
-static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
+/*
+ * Read jiffies and the time when jiffies were updated last
+ */
+u64 get_jiffies_update(unsigned long *basej)
{
- u64 basemono, next_tick, delta, expires;
unsigned long basejiff;
unsigned int seq;
+ u64 basemono;
- /* Read jiffies and the time when jiffies were updated last */
do {
seq = read_seqcount_begin(&jiffies_seq);
basemono = last_jiffies_update;
basejiff = jiffies;
} while (read_seqcount_retry(&jiffies_seq, seq));
+ *basej = basejiff;
+ return basemono;
+}
+
+/**
+ * tick_nohz_next_event() - return the clock monotonic based next event
+ * @ts: pointer to tick_sched struct
+ * @cpu: CPU number
+ *
+ * Return:
+ * *%0 - When the next event is a maximum of TICK_NSEC in the future
+ * and the tick is not stopped yet
+ * *%next_event - Next event based on clock monotonic
+ */
+static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
+{
+ u64 basemono, next_tick, delta, expires;
+ unsigned long basejiff;
+
+ basemono = get_jiffies_update(&basejiff);
ts->last_jiffies = basejiff;
ts->timer_expires_base = basemono;
@@ -850,15 +931,10 @@ static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
delta = next_tick - basemono;
if (delta <= (u64)TICK_NSEC) {
/*
- * Tell the timer code that the base is not idle, i.e. undo
- * the effect of get_next_timer_interrupt():
- */
- timer_clear_idle();
- /*
* We've not stopped the tick yet, and there's a timer in the
* next period, so no point in stopping it either, bail.
*/
- if (!ts->tick_stopped) {
+ if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
ts->timer_expires = 0;
goto out;
}
@@ -871,7 +947,8 @@ static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
*/
delta = timekeeping_max_deferment();
if (cpu != tick_do_timer_cpu &&
- (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
+ (tick_do_timer_cpu != TICK_DO_TIMER_NONE ||
+ !tick_sched_flag_test(ts, TS_FLAG_DO_TIMER_LAST)))
delta = KTIME_MAX;
/* Calculate the next expiry time */
@@ -889,13 +966,39 @@ out:
static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
{
struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
+ unsigned long basejiff = ts->last_jiffies;
u64 basemono = ts->timer_expires_base;
- u64 expires = ts->timer_expires;
+ bool timer_idle = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
+ u64 expires;
/* Make sure we won't be trying to stop it twice in a row. */
ts->timer_expires_base = 0;
/*
+ * Now the tick should be stopped definitely - so the timer base needs
+ * to be marked idle as well to not miss a newly queued timer.
+ */
+ expires = timer_base_try_to_set_idle(basejiff, basemono, &timer_idle);
+ if (expires > ts->timer_expires) {
+ /*
+ * This path could only happen when the first timer was removed
+ * between calculating the possible sleep length and now (when
+ * high resolution mode is not active, timer could also be a
+ * hrtimer).
+ *
+ * We have to stick to the original calculated expiry value to
+ * not stop the tick for too long with a shallow C-state (which
+ * was programmed by cpuidle because of an early next expiration
+ * value).
+ */
+ expires = ts->timer_expires;
+ }
+
+ /* If the timer base is not idle, retain the not yet stopped tick. */
+ if (!timer_idle)
+ return;
+
+ /*
* If this CPU is the one which updates jiffies, then give up
* the assignment and let it be taken by the CPU which runs
* the tick timer next, which might be this CPU as well. If we
@@ -905,13 +1008,13 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
*/
if (cpu == tick_do_timer_cpu) {
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
- ts->do_timer_last = 1;
+ tick_sched_flag_set(ts, TS_FLAG_DO_TIMER_LAST);
} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
- ts->do_timer_last = 0;
+ tick_sched_flag_clear(ts, TS_FLAG_DO_TIMER_LAST);
}
/* Skip reprogram of event if it's not changed */
- if (ts->tick_stopped && (expires == ts->next_tick)) {
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED) && (expires == ts->next_tick)) {
/* Sanity check: make sure clockevent is actually programmed */
if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
return;
@@ -929,12 +1032,12 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
* call we save the current tick time, so we can restart the
* scheduler tick in tick_nohz_restart_sched_tick().
*/
- if (!ts->tick_stopped) {
+ if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
calc_load_nohz_start();
quiet_vmstat();
ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
- ts->tick_stopped = 1;
+ tick_sched_flag_set(ts, TS_FLAG_STOPPED);
trace_tick_stop(1, TICK_DEP_MASK_NONE);
}
@@ -945,14 +1048,11 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
* the tick timer.
*/
if (unlikely(expires == KTIME_MAX)) {
- if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
- hrtimer_cancel(&ts->sched_timer);
- else
- tick_program_event(KTIME_MAX, 1);
+ tick_sched_timer_cancel(ts);
return;
}
- if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES)) {
hrtimer_start(&ts->sched_timer, expires,
HRTIMER_MODE_ABS_PINNED_HARD);
} else {
@@ -967,7 +1067,7 @@ static void tick_nohz_retain_tick(struct tick_sched *ts)
}
#ifdef CONFIG_NO_HZ_FULL
-static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
+static void tick_nohz_full_stop_tick(struct tick_sched *ts, int cpu)
{
if (tick_nohz_next_event(ts, cpu))
tick_nohz_stop_tick(ts, cpu);
@@ -991,7 +1091,7 @@ static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
touch_softlockup_watchdog_sched();
/* Cancel the scheduled timer and restore the tick: */
- ts->tick_stopped = 0;
+ tick_sched_flag_clear(ts, TS_FLAG_STOPPED);
tick_nohz_restart(ts, now);
}
@@ -1002,8 +1102,8 @@ static void __tick_nohz_full_update_tick(struct tick_sched *ts,
int cpu = smp_processor_id();
if (can_stop_full_tick(cpu, ts))
- tick_nohz_stop_sched_tick(ts, cpu);
- else if (ts->tick_stopped)
+ tick_nohz_full_stop_tick(ts, cpu);
+ else if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
tick_nohz_restart_sched_tick(ts, now);
#endif
}
@@ -1013,7 +1113,7 @@ static void tick_nohz_full_update_tick(struct tick_sched *ts)
if (!tick_nohz_full_cpu(smp_processor_id()))
return;
- if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
+ if (!tick_sched_flag_test(ts, TS_FLAG_NOHZ))
return;
__tick_nohz_full_update_tick(ts, ktime_get());
@@ -1060,25 +1160,9 @@ static bool report_idle_softirq(void)
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
- /*
- * If this CPU is offline and it is the one which updates
- * jiffies, then give up the assignment and let it be taken by
- * the CPU which runs the tick timer next. If we don't drop
- * this here, the jiffies might be stale and do_timer() never
- * gets invoked.
- */
- if (unlikely(!cpu_online(cpu))) {
- if (cpu == tick_do_timer_cpu)
- tick_do_timer_cpu = TICK_DO_TIMER_NONE;
- /*
- * Make sure the CPU doesn't get fooled by obsolete tick
- * deadline if it comes back online later.
- */
- ts->next_tick = 0;
- return false;
- }
+ WARN_ON_ONCE(cpu_is_offline(cpu));
- if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
+ if (unlikely(!tick_sched_flag_test(ts, TS_FLAG_NOHZ)))
return false;
if (need_resched())
@@ -1128,14 +1212,14 @@ void tick_nohz_idle_stop_tick(void)
ts->idle_calls++;
if (expires > 0LL) {
- int was_stopped = ts->tick_stopped;
+ int was_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
tick_nohz_stop_tick(ts, cpu);
ts->idle_sleeps++;
ts->idle_expires = expires;
- if (!was_stopped && ts->tick_stopped) {
+ if (!was_stopped && tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
ts->idle_jiffies = ts->last_jiffies;
nohz_balance_enter_idle(cpu);
}
@@ -1147,11 +1231,6 @@ void tick_nohz_idle_stop_tick(void)
void tick_nohz_idle_retain_tick(void)
{
tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
- /*
- * Undo the effect of get_next_timer_interrupt() called from
- * tick_nohz_next_event().
- */
- timer_clear_idle();
}
/**
@@ -1171,7 +1250,7 @@ void tick_nohz_idle_enter(void)
WARN_ON_ONCE(ts->timer_expires_base);
- ts->inidle = 1;
+ tick_sched_flag_set(ts, TS_FLAG_INIDLE);
tick_nohz_start_idle(ts);
local_irq_enable();
@@ -1200,7 +1279,7 @@ void tick_nohz_irq_exit(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- if (ts->inidle)
+ if (tick_sched_flag_test(ts, TS_FLAG_INIDLE))
tick_nohz_start_idle(ts);
else
tick_nohz_full_update_tick(ts);
@@ -1254,7 +1333,7 @@ ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
ktime_t now = ts->idle_entrytime;
ktime_t next_event;
- WARN_ON_ONCE(!ts->inidle);
+ WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
*delta_next = ktime_sub(dev->next_event, now);
@@ -1326,7 +1405,7 @@ void tick_nohz_idle_restart_tick(void)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- if (ts->tick_stopped) {
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED)) {
ktime_t now = ktime_get();
tick_nohz_restart_sched_tick(ts, now);
tick_nohz_account_idle_time(ts, now);
@@ -1367,12 +1446,12 @@ void tick_nohz_idle_exit(void)
local_irq_disable();
- WARN_ON_ONCE(!ts->inidle);
+ WARN_ON_ONCE(!tick_sched_flag_test(ts, TS_FLAG_INIDLE));
WARN_ON_ONCE(ts->timer_expires_base);
- ts->inidle = 0;
- idle_active = ts->idle_active;
- tick_stopped = ts->tick_stopped;
+ tick_sched_flag_clear(ts, TS_FLAG_INIDLE);
+ idle_active = tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE);
+ tick_stopped = tick_sched_flag_test(ts, TS_FLAG_STOPPED);
if (idle_active || tick_stopped)
now = ktime_get();
@@ -1391,38 +1470,22 @@ void tick_nohz_idle_exit(void)
* at the clockevent level. hrtimer can't be used instead, because its
* infrastructure actually relies on the tick itself as a backend in
* low-resolution mode (see hrtimer_run_queues()).
- *
- * This low-resolution handler still makes use of some hrtimer APIs meanwhile
- * for convenience with expiration calculation and forwarding.
*/
static void tick_nohz_lowres_handler(struct clock_event_device *dev)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- struct pt_regs *regs = get_irq_regs();
- ktime_t now = ktime_get();
dev->next_event = KTIME_MAX;
- tick_sched_do_timer(ts, now);
- tick_sched_handle(ts, regs);
-
- /*
- * In dynticks mode, tick reprogram is deferred:
- * - to the idle task if in dynticks-idle
- * - to IRQ exit if in full-dynticks.
- */
- if (likely(!ts->tick_stopped)) {
- hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
+ if (likely(tick_nohz_handler(&ts->sched_timer) == HRTIMER_RESTART))
tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
- }
-
}
-static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
+static inline void tick_nohz_activate(struct tick_sched *ts)
{
if (!tick_nohz_enabled)
return;
- ts->nohz_mode = mode;
+ tick_sched_flag_set(ts, TS_FLAG_NOHZ);
/* One update is enough */
if (!test_and_set_bit(0, &tick_nohz_active))
timers_update_nohz();
@@ -1433,9 +1496,6 @@ static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
*/
static void tick_nohz_switch_to_nohz(void)
{
- struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- ktime_t next;
-
if (!tick_nohz_enabled)
return;
@@ -1444,16 +1504,9 @@ static void tick_nohz_switch_to_nohz(void)
/*
* Recycle the hrtimer in 'ts', so we can share the
- * hrtimer_forward_now() function with the highres code.
+ * highres code.
*/
- hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
- /* Get the next period */
- next = tick_init_jiffy_update();
-
- hrtimer_set_expires(&ts->sched_timer, next);
- hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
- tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
- tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
+ tick_setup_sched_timer(false);
}
static inline void tick_nohz_irq_enter(void)
@@ -1461,10 +1514,10 @@ static inline void tick_nohz_irq_enter(void)
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
ktime_t now;
- if (!ts->idle_active && !ts->tick_stopped)
+ if (!tick_sched_flag_test(ts, TS_FLAG_STOPPED | TS_FLAG_IDLE_ACTIVE))
return;
now = ktime_get();
- if (ts->idle_active)
+ if (tick_sched_flag_test(ts, TS_FLAG_IDLE_ACTIVE))
tick_nohz_stop_idle(ts, now);
/*
* If all CPUs are idle we may need to update a stale jiffies value.
@@ -1473,7 +1526,7 @@ static inline void tick_nohz_irq_enter(void)
* rare case (typically stop machine). So we must make sure we have a
* last resort.
*/
- if (ts->tick_stopped)
+ if (tick_sched_flag_test(ts, TS_FLAG_STOPPED))
tick_nohz_update_jiffies(now);
}
@@ -1481,7 +1534,7 @@ static inline void tick_nohz_irq_enter(void)
static inline void tick_nohz_switch_to_nohz(void) { }
static inline void tick_nohz_irq_enter(void) { }
-static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
+static inline void tick_nohz_activate(struct tick_sched *ts) { }
#endif /* CONFIG_NO_HZ_COMMON */
@@ -1494,45 +1547,6 @@ void tick_irq_enter(void)
tick_nohz_irq_enter();
}
-/*
- * High resolution timer specific code
- */
-#ifdef CONFIG_HIGH_RES_TIMERS
-/*
- * We rearm the timer until we get disabled by the idle code.
- * Called with interrupts disabled.
- */
-static enum hrtimer_restart tick_nohz_highres_handler(struct hrtimer *timer)
-{
- struct tick_sched *ts =
- container_of(timer, struct tick_sched, sched_timer);
- struct pt_regs *regs = get_irq_regs();
- ktime_t now = ktime_get();
-
- tick_sched_do_timer(ts, now);
-
- /*
- * Do not call when we are not in IRQ context and have
- * no valid 'regs' pointer
- */
- if (regs)
- tick_sched_handle(ts, regs);
- else
- ts->next_tick = 0;
-
- /*
- * In dynticks mode, tick reprogram is deferred:
- * - to the idle task if in dynticks-idle
- * - to IRQ exit if in full-dynticks.
- */
- if (unlikely(ts->tick_stopped))
- return HRTIMER_NORESTART;
-
- hrtimer_forward(timer, now, TICK_NSEC);
-
- return HRTIMER_RESTART;
-}
-
static int sched_skew_tick;
static int __init skew_tick(char *str)
@@ -1545,15 +1559,19 @@ early_param("skew_tick", skew_tick);
/**
* tick_setup_sched_timer - setup the tick emulation timer
+ * @mode: tick_nohz_mode to setup for
*/
-void tick_setup_sched_timer(void)
+void tick_setup_sched_timer(bool hrtimer)
{
struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
- ktime_t now = ktime_get();
/* Emulate tick processing via per-CPU hrtimers: */
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
- ts->sched_timer.function = tick_nohz_highres_handler;
+
+ if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer) {
+ tick_sched_flag_set(ts, TS_FLAG_HIGHRES);
+ ts->sched_timer.function = tick_nohz_handler;
+ }
/* Get the next period (per-CPU) */
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
@@ -1566,23 +1584,35 @@ void tick_setup_sched_timer(void)
hrtimer_add_expires_ns(&ts->sched_timer, offset);
}
- hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
- hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
- tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
+ hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
+ if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && hrtimer)
+ hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
+ else
+ tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
+ tick_nohz_activate(ts);
}
-#endif /* HIGH_RES_TIMERS */
-#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
-void tick_cancel_sched_timer(int cpu)
+/*
+ * Shut down the tick and make sure the CPU won't try to retake the timekeeping
+ * duty before disabling IRQs in idle for the last time.
+ */
+void tick_sched_timer_dying(int cpu)
{
+ struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
+ struct clock_event_device *dev = td->evtdev;
ktime_t idle_sleeptime, iowait_sleeptime;
unsigned long idle_calls, idle_sleeps;
-# ifdef CONFIG_HIGH_RES_TIMERS
- if (ts->sched_timer.base)
- hrtimer_cancel(&ts->sched_timer);
-# endif
+ /* This must happen before hrtimers are migrated! */
+ tick_sched_timer_cancel(ts);
+
+ /*
+ * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
+ * make sure not to call low-res tick handler.
+ */
+ if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
+ dev->event_handler = clockevents_handle_noop;
idle_sleeptime = ts->idle_sleeptime;
iowait_sleeptime = ts->iowait_sleeptime;
@@ -1594,7 +1624,6 @@ void tick_cancel_sched_timer(int cpu)
ts->idle_calls = idle_calls;
ts->idle_sleeps = idle_sleeps;
}
-#endif
/*
* Async notification about clocksource changes
@@ -1632,7 +1661,7 @@ int tick_check_oneshot_change(int allow_nohz)
if (!test_and_clear_bit(0, &ts->check_clocks))
return 0;
- if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
+ if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
return 0;
if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
diff --git a/kernel/time/tick-sched.h b/kernel/time/tick-sched.h
index 5ed5a9d41d5a..e11c4dc65bcb 100644
--- a/kernel/time/tick-sched.h
+++ b/kernel/time/tick-sched.h
@@ -14,20 +14,26 @@ struct tick_device {
enum tick_device_mode mode;
};
-enum tick_nohz_mode {
- NOHZ_MODE_INACTIVE,
- NOHZ_MODE_LOWRES,
- NOHZ_MODE_HIGHRES,
-};
+/* The CPU is in the tick idle mode */
+#define TS_FLAG_INIDLE BIT(0)
+/* The idle tick has been stopped */
+#define TS_FLAG_STOPPED BIT(1)
+/*
+ * Indicator that the CPU is actively in the tick idle mode;
+ * it is reset during irq handling phases.
+ */
+#define TS_FLAG_IDLE_ACTIVE BIT(2)
+/* CPU was the last one doing do_timer before going idle */
+#define TS_FLAG_DO_TIMER_LAST BIT(3)
+/* NO_HZ is enabled */
+#define TS_FLAG_NOHZ BIT(4)
+/* High resolution tick mode */
+#define TS_FLAG_HIGHRES BIT(5)
/**
* struct tick_sched - sched tick emulation and no idle tick control/stats
*
- * @inidle: Indicator that the CPU is in the tick idle mode
- * @tick_stopped: Indicator that the idle tick has been stopped
- * @idle_active: Indicator that the CPU is actively in the tick idle mode;
- * it is reset during irq handling phases.
- * @do_timer_last: CPU was the last one doing do_timer before going idle
+ * @flags: State flags gathering the TS_FLAG_* features
* @got_idle_tick: Tick timer function has run with @inidle set
* @stalled_jiffies: Number of stalled jiffies detected across ticks
* @last_tick_jiffies: Value of jiffies seen on last tick
@@ -57,11 +63,7 @@ enum tick_nohz_mode {
*/
struct tick_sched {
/* Common flags */
- unsigned int inidle : 1;
- unsigned int tick_stopped : 1;
- unsigned int idle_active : 1;
- unsigned int do_timer_last : 1;
- unsigned int got_idle_tick : 1;
+ unsigned long flags;
/* Tick handling: jiffies stall check */
unsigned int stalled_jiffies;
@@ -73,13 +75,13 @@ struct tick_sched {
ktime_t next_tick;
unsigned long idle_jiffies;
ktime_t idle_waketime;
+ unsigned int got_idle_tick;
/* Idle entry */
seqcount_t idle_sleeptime_seq;
ktime_t idle_entrytime;
/* Tick stop */
- enum tick_nohz_mode nohz_mode;
unsigned long last_jiffies;
u64 timer_expires_base;
u64 timer_expires;
@@ -102,11 +104,11 @@ struct tick_sched {
extern struct tick_sched *tick_get_tick_sched(int cpu);
-extern void tick_setup_sched_timer(void);
-#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
-extern void tick_cancel_sched_timer(int cpu);
+extern void tick_setup_sched_timer(bool hrtimer);
+#if defined CONFIG_TICK_ONESHOT
+extern void tick_sched_timer_dying(int cpu);
#else
-static inline void tick_cancel_sched_timer(int cpu) { }
+static inline void tick_sched_timer_dying(int cpu) { }
#endif
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
diff --git a/kernel/time/time_test.c b/kernel/time/time_test.c
index ca058c8af6ba..3e5d422dd15c 100644
--- a/kernel/time/time_test.c
+++ b/kernel/time/time_test.c
@@ -73,7 +73,7 @@ static void time64_to_tm_test_date_range(struct kunit *test)
days = div_s64(secs, 86400);
- #define FAIL_MSG "%05ld/%02d/%02d (%2d) : %ld", \
+ #define FAIL_MSG "%05ld/%02d/%02d (%2d) : %lld", \
year, month, mdday, yday, days
KUNIT_ASSERT_EQ_MSG(test, year - 1900, result.tm_year, FAIL_MSG);
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 266d02809dbb..b58dffc58a8f 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -1180,13 +1180,15 @@ static int adjust_historical_crosststamp(struct system_time_snapshot *history,
}
/*
- * cycle_between - true if test occurs chronologically between before and after
+ * timestamp_in_interval - true if ts is chronologically in [start, end]
+ *
+ * True if ts occurs chronologically at or after start, and before or at end.
*/
-static bool cycle_between(u64 before, u64 test, u64 after)
+static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
{
- if (test > before && test < after)
+ if (ts >= start && ts <= end)
return true;
- if (test < before && before > after)
+ if (start > end && (ts >= start || ts <= end))
return true;
return false;
}
@@ -1232,11 +1234,12 @@ int get_device_system_crosststamp(int (*get_time_fn)
return ret;
/*
- * Verify that the clocksource associated with the captured
- * system counter value is the same as the currently installed
- * timekeeper clocksource
+ * Verify that the clocksource ID associated with the captured
+ * system counter value is the same as for the currently
+ * installed timekeeper clocksource
*/
- if (tk->tkr_mono.clock != system_counterval.cs)
+ if (system_counterval.cs_id == CSID_GENERIC ||
+ tk->tkr_mono.clock->id != system_counterval.cs_id)
return -ENODEV;
cycles = system_counterval.cycles;
@@ -1246,7 +1249,7 @@ int get_device_system_crosststamp(int (*get_time_fn)
*/
now = tk_clock_read(&tk->tkr_mono);
interval_start = tk->tkr_mono.cycle_last;
- if (!cycle_between(interval_start, cycles, now)) {
+ if (!timestamp_in_interval(interval_start, now, cycles)) {
clock_was_set_seq = tk->clock_was_set_seq;
cs_was_changed_seq = tk->cs_was_changed_seq;
cycles = interval_start;
@@ -1259,10 +1262,8 @@ int get_device_system_crosststamp(int (*get_time_fn)
tk_core.timekeeper.offs_real);
base_raw = tk->tkr_raw.base;
- nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
- system_counterval.cycles);
- nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
- system_counterval.cycles);
+ nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
+ nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
} while (read_seqcount_retry(&tk_core.seq, seq));
xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
@@ -1277,13 +1278,13 @@ int get_device_system_crosststamp(int (*get_time_fn)
bool discontinuity;
/*
- * Check that the counter value occurs after the provided
+ * Check that the counter value is not before the provided
* history reference and that the history doesn't cross a
* clocksource change
*/
if (!history_begin ||
- !cycle_between(history_begin->cycles,
- system_counterval.cycles, cycles) ||
+ !timestamp_in_interval(history_begin->cycles,
+ cycles, system_counterval.cycles) ||
history_begin->cs_was_changed_seq != cs_was_changed_seq)
return -EINVAL;
partial_history_cycles = cycles - system_counterval.cycles;
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 352b161113cd..e69e75d3858c 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -53,6 +53,7 @@
#include <asm/io.h>
#include "tick-internal.h"
+#include "timer_migration.h"
#define CREATE_TRACE_POINTS
#include <trace/events/timer.h>
@@ -187,15 +188,66 @@ EXPORT_SYMBOL(jiffies_64);
#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
#ifdef CONFIG_NO_HZ_COMMON
-# define NR_BASES 2
-# define BASE_STD 0
-# define BASE_DEF 1
+/*
+ * If multiple bases need to be locked, use the base ordering for lock
+ * nesting, i.e. lowest number first.
+ */
+# define NR_BASES 3
+# define BASE_LOCAL 0
+# define BASE_GLOBAL 1
+# define BASE_DEF 2
#else
# define NR_BASES 1
-# define BASE_STD 0
+# define BASE_LOCAL 0
+# define BASE_GLOBAL 0
# define BASE_DEF 0
#endif
+/**
+ * struct timer_base - Per CPU timer base (number of base depends on config)
+ * @lock: Lock protecting the timer_base
+ * @running_timer: When expiring timers, the lock is dropped. To make
+ * sure not to race agains deleting/modifying a
+ * currently running timer, the pointer is set to the
+ * timer, which expires at the moment. If no timer is
+ * running, the pointer is NULL.
+ * @expiry_lock: PREEMPT_RT only: Lock is taken in softirq around
+ * timer expiry callback execution and when trying to
+ * delete a running timer and it wasn't successful in
+ * the first glance. It prevents priority inversion
+ * when callback was preempted on a remote CPU and a
+ * caller tries to delete the running timer. It also
+ * prevents a life lock, when the task which tries to
+ * delete a timer preempted the softirq thread which
+ * is running the timer callback function.
+ * @timer_waiters: PREEMPT_RT only: Tells, if there is a waiter
+ * waiting for the end of the timer callback function
+ * execution.
+ * @clk: clock of the timer base; is updated before enqueue
+ * of a timer; during expiry, it is 1 offset ahead of
+ * jiffies to avoid endless requeuing to current
+ * jiffies
+ * @next_expiry: expiry value of the first timer; it is updated when
+ * finding the next timer and during enqueue; the
+ * value is not valid, when next_expiry_recalc is set
+ * @cpu: Number of CPU the timer base belongs to
+ * @next_expiry_recalc: States, whether a recalculation of next_expiry is
+ * required. Value is set true, when a timer was
+ * deleted.
+ * @is_idle: Is set, when timer_base is idle. It is triggered by NOHZ
+ * code. This state is only used in standard
+ * base. Deferrable timers, which are enqueued remotely
+ * never wake up an idle CPU. So no matter of supporting it
+ * for this base.
+ * @timers_pending: Is set, when a timer is pending in the base. It is only
+ * reliable when next_expiry_recalc is not set.
+ * @pending_map: bitmap of the timer wheel; each bit reflects a
+ * bucket of the wheel. When a bit is set, at least a
+ * single timer is enqueued in the related bucket.
+ * @vectors: Array of lists; Each array member reflects a bucket
+ * of the timer wheel. The list contains all timers
+ * which are enqueued into a specific bucket.
+ */
struct timer_base {
raw_spinlock_t lock;
struct timer_list *running_timer;
@@ -583,11 +635,16 @@ trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
/*
* We might have to IPI the remote CPU if the base is idle and the
- * timer is not deferrable. If the other CPU is on the way to idle
- * then it can't set base->is_idle as we hold the base lock:
+ * timer is pinned. If it is a non pinned timer, it is only queued
+ * on the remote CPU, when timer was running during queueing. Then
+ * everything is handled by remote CPU anyway. If the other CPU is
+ * on the way to idle then it can't set base->is_idle as we hold
+ * the base lock:
*/
- if (base->is_idle)
+ if (base->is_idle) {
+ WARN_ON_ONCE(!(timer->flags & TIMER_PINNED));
wake_up_nohz_cpu(base->cpu);
+ }
}
/*
@@ -899,7 +956,10 @@ static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
{
- struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
+ int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
+ struct timer_base *base;
+
+ base = per_cpu_ptr(&timer_bases[index], cpu);
/*
* If the timer is deferrable and NO_HZ_COMMON is set then we need
@@ -912,7 +972,10 @@ static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
{
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+ int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
+ struct timer_base *base;
+
+ base = this_cpu_ptr(&timer_bases[index]);
/*
* If the timer is deferrable and NO_HZ_COMMON is set then we need
@@ -928,17 +991,6 @@ static inline struct timer_base *get_timer_base(u32 tflags)
return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
}
-static inline struct timer_base *
-get_target_base(struct timer_base *base, unsigned tflags)
-{
-#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
- if (static_branch_likely(&timers_migration_enabled) &&
- !(tflags & TIMER_PINNED))
- return get_timer_cpu_base(tflags, get_nohz_timer_target());
-#endif
- return get_timer_this_cpu_base(tflags);
-}
-
static inline void __forward_timer_base(struct timer_base *base,
unsigned long basej)
{
@@ -1093,7 +1145,7 @@ __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int option
if (!ret && (options & MOD_TIMER_PENDING_ONLY))
goto out_unlock;
- new_base = get_target_base(base, timer->flags);
+ new_base = get_timer_this_cpu_base(timer->flags);
if (base != new_base) {
/*
@@ -1246,11 +1298,48 @@ void add_timer(struct timer_list *timer)
EXPORT_SYMBOL(add_timer);
/**
+ * add_timer_local() - Start a timer on the local CPU
+ * @timer: The timer to be started
+ *
+ * Same as add_timer() except that the timer flag TIMER_PINNED is set.
+ *
+ * See add_timer() for further details.
+ */
+void add_timer_local(struct timer_list *timer)
+{
+ if (WARN_ON_ONCE(timer_pending(timer)))
+ return;
+ timer->flags |= TIMER_PINNED;
+ __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
+}
+EXPORT_SYMBOL(add_timer_local);
+
+/**
+ * add_timer_global() - Start a timer without TIMER_PINNED flag set
+ * @timer: The timer to be started
+ *
+ * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
+ *
+ * See add_timer() for further details.
+ */
+void add_timer_global(struct timer_list *timer)
+{
+ if (WARN_ON_ONCE(timer_pending(timer)))
+ return;
+ timer->flags &= ~TIMER_PINNED;
+ __mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
+}
+EXPORT_SYMBOL(add_timer_global);
+
+/**
* add_timer_on - Start a timer on a particular CPU
* @timer: The timer to be started
* @cpu: The CPU to start it on
*
- * Same as add_timer() except that it starts the timer on the given CPU.
+ * Same as add_timer() except that it starts the timer on the given CPU and
+ * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
+ * the next round, add_timer_global() should be used instead as it unsets
+ * the TIMER_PINNED flag.
*
* See add_timer() for further details.
*/
@@ -1264,6 +1353,9 @@ void add_timer_on(struct timer_list *timer, int cpu)
if (WARN_ON_ONCE(timer_pending(timer)))
return;
+ /* Make sure timer flags have TIMER_PINNED flag set */
+ timer->flags |= TIMER_PINNED;
+
new_base = get_timer_cpu_base(timer->flags, cpu);
/*
@@ -1911,71 +2003,350 @@ static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
}
+static unsigned long next_timer_interrupt(struct timer_base *base,
+ unsigned long basej)
+{
+ if (base->next_expiry_recalc)
+ next_expiry_recalc(base);
+
+ /*
+ * Move next_expiry for the empty base into the future to prevent an
+ * unnecessary raise of the timer softirq when the next_expiry value
+ * will be reached even if there is no timer pending.
+ *
+ * This update is also required to make timer_base::next_expiry values
+ * easy comparable to find out which base holds the first pending timer.
+ */
+ if (!base->timers_pending)
+ base->next_expiry = basej + NEXT_TIMER_MAX_DELTA;
+
+ return base->next_expiry;
+}
+
+static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
+ struct timer_base *base_local,
+ struct timer_base *base_global,
+ struct timer_events *tevt)
+{
+ unsigned long nextevt, nextevt_local, nextevt_global;
+ bool local_first;
+
+ nextevt_local = next_timer_interrupt(base_local, basej);
+ nextevt_global = next_timer_interrupt(base_global, basej);
+
+ local_first = time_before_eq(nextevt_local, nextevt_global);
+
+ nextevt = local_first ? nextevt_local : nextevt_global;
+
+ /*
+ * If the @nextevt is at max. one tick away, use @nextevt and store
+ * it in the local expiry value. The next global event is irrelevant in
+ * this case and can be left as KTIME_MAX.
+ */
+ if (time_before_eq(nextevt, basej + 1)) {
+ /* If we missed a tick already, force 0 delta */
+ if (time_before(nextevt, basej))
+ nextevt = basej;
+ tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
+
+ /*
+ * This is required for the remote check only but it doesn't
+ * hurt, when it is done for both call sites:
+ *
+ * * The remote callers will only take care of the global timers
+ * as local timers will be handled by CPU itself. When not
+ * updating tevt->global with the already missed first global
+ * timer, it is possible that it will be missed completely.
+ *
+ * * The local callers will ignore the tevt->global anyway, when
+ * nextevt is max. one tick away.
+ */
+ if (!local_first)
+ tevt->global = tevt->local;
+ return nextevt;
+ }
+
+ /*
+ * Update tevt.* values:
+ *
+ * If the local queue expires first, then the global event can be
+ * ignored. If the global queue is empty, nothing to do either.
+ */
+ if (!local_first && base_global->timers_pending)
+ tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
+
+ if (base_local->timers_pending)
+ tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
+
+ return nextevt;
+}
+
+# ifdef CONFIG_SMP
/**
- * get_next_timer_interrupt - return the time (clock mono) of the next timer
+ * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
* @basej: base time jiffies
* @basem: base time clock monotonic
+ * @tevt: Pointer to the storage for the expiry values
+ * @cpu: Remote CPU
+ *
+ * Stores the next pending local and global timer expiry values in the
+ * struct pointed to by @tevt. If a queue is empty the corresponding
+ * field is set to KTIME_MAX. If local event expires before global
+ * event, global event is set to KTIME_MAX as well.
*
- * Returns the tick aligned clock monotonic time of the next pending
- * timer or KTIME_MAX if no timer is pending.
+ * Caller needs to make sure timer base locks are held (use
+ * timer_lock_remote_bases() for this purpose).
*/
-u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
+void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
+ struct timer_events *tevt,
+ unsigned int cpu)
+{
+ struct timer_base *base_local, *base_global;
+
+ /* Preset local / global events */
+ tevt->local = tevt->global = KTIME_MAX;
+
+ base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
+ base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
+
+ lockdep_assert_held(&base_local->lock);
+ lockdep_assert_held(&base_global->lock);
+
+ fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
+}
+
+/**
+ * timer_unlock_remote_bases - unlock timer bases of cpu
+ * @cpu: Remote CPU
+ *
+ * Unlocks the remote timer bases.
+ */
+void timer_unlock_remote_bases(unsigned int cpu)
+ __releases(timer_bases[BASE_LOCAL]->lock)
+ __releases(timer_bases[BASE_GLOBAL]->lock)
+{
+ struct timer_base *base_local, *base_global;
+
+ base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
+ base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
+
+ raw_spin_unlock(&base_global->lock);
+ raw_spin_unlock(&base_local->lock);
+}
+
+/**
+ * timer_lock_remote_bases - lock timer bases of cpu
+ * @cpu: Remote CPU
+ *
+ * Locks the remote timer bases.
+ */
+void timer_lock_remote_bases(unsigned int cpu)
+ __acquires(timer_bases[BASE_LOCAL]->lock)
+ __acquires(timer_bases[BASE_GLOBAL]->lock)
+{
+ struct timer_base *base_local, *base_global;
+
+ base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
+ base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
+
+ lockdep_assert_irqs_disabled();
+
+ raw_spin_lock(&base_local->lock);
+ raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
+}
+
+/**
+ * timer_base_is_idle() - Return whether timer base is set idle
+ *
+ * Returns value of local timer base is_idle value.
+ */
+bool timer_base_is_idle(void)
+{
+ return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
+}
+
+static void __run_timer_base(struct timer_base *base);
+
+/**
+ * timer_expire_remote() - expire global timers of cpu
+ * @cpu: Remote CPU
+ *
+ * Expire timers of global base of remote CPU.
+ */
+void timer_expire_remote(unsigned int cpu)
+{
+ struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
+
+ __run_timer_base(base);
+}
+
+static void timer_use_tmigr(unsigned long basej, u64 basem,
+ unsigned long *nextevt, bool *tick_stop_path,
+ bool timer_base_idle, struct timer_events *tevt)
{
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
- unsigned long nextevt = basej + NEXT_TIMER_MAX_DELTA;
- u64 expires = KTIME_MAX;
- bool was_idle;
+ u64 next_tmigr;
+
+ if (timer_base_idle)
+ next_tmigr = tmigr_cpu_new_timer(tevt->global);
+ else if (tick_stop_path)
+ next_tmigr = tmigr_cpu_deactivate(tevt->global);
+ else
+ next_tmigr = tmigr_quick_check(tevt->global);
/*
- * Pretend that there is no timer pending if the cpu is offline.
- * Possible pending timers will be migrated later to an active cpu.
+ * If the CPU is the last going idle in timer migration hierarchy, make
+ * sure the CPU will wake up in time to handle remote timers.
+ * next_tmigr == KTIME_MAX if other CPUs are still active.
*/
- if (cpu_is_offline(smp_processor_id()))
- return expires;
+ if (next_tmigr < tevt->local) {
+ u64 tmp;
- raw_spin_lock(&base->lock);
- if (base->next_expiry_recalc)
- next_expiry_recalc(base);
+ /* If we missed a tick already, force 0 delta */
+ if (next_tmigr < basem)
+ next_tmigr = basem;
+
+ tmp = div_u64(next_tmigr - basem, TICK_NSEC);
+
+ *nextevt = basej + (unsigned long)tmp;
+ tevt->local = next_tmigr;
+ }
+}
+# else
+static void timer_use_tmigr(unsigned long basej, u64 basem,
+ unsigned long *nextevt, bool *tick_stop_path,
+ bool timer_base_idle, struct timer_events *tevt)
+{
+ /*
+ * Make sure first event is written into tevt->local to not miss a
+ * timer on !SMP systems.
+ */
+ tevt->local = min_t(u64, tevt->local, tevt->global);
+}
+# endif /* CONFIG_SMP */
+
+static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
+ bool *idle)
+{
+ struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
+ struct timer_base *base_local, *base_global;
+ unsigned long nextevt;
+ bool idle_is_possible;
+
+ /*
+ * When the CPU is offline, the tick is cancelled and nothing is supposed
+ * to try to stop it.
+ */
+ if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
+ if (idle)
+ *idle = true;
+ return tevt.local;
+ }
+
+ base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
+ base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
+
+ raw_spin_lock(&base_local->lock);
+ raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
+
+ nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
+ base_global, &tevt);
+
+ /*
+ * If the next event is only one jiffie ahead there is no need to call
+ * timer migration hierarchy related functions. The value for the next
+ * global timer in @tevt struct equals then KTIME_MAX. This is also
+ * true, when the timer base is idle.
+ *
+ * The proper timer migration hierarchy function depends on the callsite
+ * and whether timer base is idle or not. @nextevt will be updated when
+ * this CPU needs to handle the first timer migration hierarchy
+ * event. See timer_use_tmigr() for detailed information.
+ */
+ idle_is_possible = time_after(nextevt, basej + 1);
+ if (idle_is_possible)
+ timer_use_tmigr(basej, basem, &nextevt, idle,
+ base_local->is_idle, &tevt);
/*
* We have a fresh next event. Check whether we can forward the
* base.
*/
- __forward_timer_base(base, basej);
+ __forward_timer_base(base_local, basej);
+ __forward_timer_base(base_global, basej);
- if (base->timers_pending) {
- nextevt = base->next_expiry;
+ /*
+ * Set base->is_idle only when caller is timer_base_try_to_set_idle()
+ */
+ if (idle) {
+ /*
+ * Bases are idle if the next event is more than a tick
+ * away. Caution: @nextevt could have changed by enqueueing a
+ * global timer into timer migration hierarchy. Therefore a new
+ * check is required here.
+ *
+ * If the base is marked idle then any timer add operation must
+ * forward the base clk itself to keep granularity small. This
+ * idle logic is only maintained for the BASE_LOCAL and
+ * BASE_GLOBAL base, deferrable timers may still see large
+ * granularity skew (by design).
+ */
+ if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
+ base_local->is_idle = true;
+ trace_timer_base_idle(true, base_local->cpu);
+ }
+ *idle = base_local->is_idle;
- /* If we missed a tick already, force 0 delta */
- if (time_before(nextevt, basej))
- nextevt = basej;
- expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
- } else {
/*
- * Move next_expiry for the empty base into the future to
- * prevent a unnecessary raise of the timer softirq when the
- * next_expiry value will be reached even if there is no timer
- * pending.
+ * When timer base is not set idle, undo the effect of
+ * tmigr_cpu_deactivate() to prevent inconsitent states - active
+ * timer base but inactive timer migration hierarchy.
+ *
+ * When timer base was already marked idle, nothing will be
+ * changed here.
*/
- base->next_expiry = nextevt;
+ if (!base_local->is_idle && idle_is_possible)
+ tmigr_cpu_activate();
}
- /*
- * Base is idle if the next event is more than a tick away.
- *
- * If the base is marked idle then any timer add operation must forward
- * the base clk itself to keep granularity small. This idle logic is
- * only maintained for the BASE_STD base, deferrable timers may still
- * see large granularity skew (by design).
- */
- was_idle = base->is_idle;
- base->is_idle = time_after(nextevt, basej + 1);
- if (was_idle != base->is_idle)
- trace_timer_base_idle(base->is_idle, base->cpu);
+ raw_spin_unlock(&base_global->lock);
+ raw_spin_unlock(&base_local->lock);
- raw_spin_unlock(&base->lock);
+ return cmp_next_hrtimer_event(basem, tevt.local);
+}
- return cmp_next_hrtimer_event(basem, expires);
+/**
+ * get_next_timer_interrupt() - return the time (clock mono) of the next timer
+ * @basej: base time jiffies
+ * @basem: base time clock monotonic
+ *
+ * Returns the tick aligned clock monotonic time of the next pending timer or
+ * KTIME_MAX if no timer is pending. If timer of global base was queued into
+ * timer migration hierarchy, first global timer is not taken into account. If
+ * it was the last CPU of timer migration hierarchy going idle, first global
+ * event is taken into account.
+ */
+u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
+{
+ return __get_next_timer_interrupt(basej, basem, NULL);
+}
+
+/**
+ * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
+ * @basej: base time jiffies
+ * @basem: base time clock monotonic
+ * @idle: pointer to store the value of timer_base->is_idle on return;
+ * *idle contains the information whether tick was already stopped
+ *
+ * Returns the tick aligned clock monotonic time of the next pending timer or
+ * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
+ * returned as well.
+ */
+u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
+{
+ if (*idle)
+ return KTIME_MAX;
+
+ return __get_next_timer_interrupt(basej, basem, idle);
}
/**
@@ -1985,18 +2356,18 @@ u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
*/
void timer_clear_idle(void)
{
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
-
/*
- * We do this unlocked. The worst outcome is a remote enqueue sending
- * a pointless IPI, but taking the lock would just make the window for
- * sending the IPI a few instructions smaller for the cost of taking
- * the lock in the exit from idle path.
+ * We do this unlocked. The worst outcome is a remote pinned timer
+ * enqueue sending a pointless IPI, but taking the lock would just
+ * make the window for sending the IPI a few instructions smaller
+ * for the cost of taking the lock in the exit from idle
+ * path. Required for BASE_LOCAL only.
*/
- if (base->is_idle) {
- base->is_idle = false;
- trace_timer_base_idle(false, smp_processor_id());
- }
+ __this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
+ trace_timer_base_idle(false, smp_processor_id());
+
+ /* Activate without holding the timer_base->lock */
+ tmigr_cpu_activate();
}
#endif
@@ -2009,11 +2380,10 @@ static inline void __run_timers(struct timer_base *base)
struct hlist_head heads[LVL_DEPTH];
int levels;
- if (time_before(jiffies, base->next_expiry))
- return;
+ lockdep_assert_held(&base->lock);
- timer_base_lock_expiry(base);
- raw_spin_lock_irq(&base->lock);
+ if (base->running_timer)
+ return;
while (time_after_eq(jiffies, base->clk) &&
time_after_eq(jiffies, base->next_expiry)) {
@@ -2037,20 +2407,40 @@ static inline void __run_timers(struct timer_base *base)
while (levels--)
expire_timers(base, heads + levels);
}
+}
+
+static void __run_timer_base(struct timer_base *base)
+{
+ if (time_before(jiffies, base->next_expiry))
+ return;
+
+ timer_base_lock_expiry(base);
+ raw_spin_lock_irq(&base->lock);
+ __run_timers(base);
raw_spin_unlock_irq(&base->lock);
timer_base_unlock_expiry(base);
}
+static void run_timer_base(int index)
+{
+ struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
+
+ __run_timer_base(base);
+}
+
/*
* This function runs timers and the timer-tq in bottom half context.
*/
static __latent_entropy void run_timer_softirq(struct softirq_action *h)
{
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+ run_timer_base(BASE_LOCAL);
+ if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
+ run_timer_base(BASE_GLOBAL);
+ run_timer_base(BASE_DEF);
- __run_timers(base);
- if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
- __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
+ if (is_timers_nohz_active())
+ tmigr_handle_remote();
+ }
}
/*
@@ -2058,19 +2448,18 @@ static __latent_entropy void run_timer_softirq(struct softirq_action *h)
*/
static void run_local_timers(void)
{
- struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
+ struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
hrtimer_run_queues();
- /* Raise the softirq only if required. */
- if (time_before(jiffies, base->next_expiry)) {
- if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
- return;
- /* CPU is awake, so check the deferrable base. */
- base++;
- if (time_before(jiffies, base->next_expiry))
+
+ for (int i = 0; i < NR_BASES; i++, base++) {
+ /* Raise the softirq only if required. */
+ if (time_after_eq(jiffies, base->next_expiry) ||
+ (i == BASE_DEF && tmigr_requires_handle_remote())) {
+ raise_softirq(TIMER_SOFTIRQ);
return;
+ }
}
- raise_softirq(TIMER_SOFTIRQ);
}
/*
diff --git a/kernel/time/timer_list.c b/kernel/time/timer_list.c
index ed7d6ad694fb..1c311c46da50 100644
--- a/kernel/time/timer_list.c
+++ b/kernel/time/timer_list.c
@@ -147,11 +147,15 @@ static void print_cpu(struct seq_file *m, int cpu, u64 now)
# define P_ns(x) \
SEQ_printf(m, " .%-15s: %Lu nsecs\n", #x, \
(unsigned long long)(ktime_to_ns(ts->x)))
+# define P_flag(x, f) \
+ SEQ_printf(m, " .%-15s: %d\n", #x, !!(ts->flags & (f)))
+
{
struct tick_sched *ts = tick_get_tick_sched(cpu);
- P(nohz_mode);
+ P_flag(nohz, TS_FLAG_NOHZ);
+ P_flag(highres, TS_FLAG_HIGHRES);
P_ns(last_tick);
- P(tick_stopped);
+ P_flag(tick_stopped, TS_FLAG_STOPPED);
P(idle_jiffies);
P(idle_calls);
P(idle_sleeps);
@@ -256,7 +260,7 @@ static void timer_list_show_tickdevices_header(struct seq_file *m)
static inline void timer_list_header(struct seq_file *m, u64 now)
{
- SEQ_printf(m, "Timer List Version: v0.9\n");
+ SEQ_printf(m, "Timer List Version: v0.10\n");
SEQ_printf(m, "HRTIMER_MAX_CLOCK_BASES: %d\n", HRTIMER_MAX_CLOCK_BASES);
SEQ_printf(m, "now at %Ld nsecs\n", (unsigned long long)now);
SEQ_printf(m, "\n");
diff --git a/kernel/time/timer_migration.c b/kernel/time/timer_migration.c
new file mode 100644
index 000000000000..8f49b6b96dfd
--- /dev/null
+++ b/kernel/time/timer_migration.c
@@ -0,0 +1,1793 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Infrastructure for migratable timers
+ *
+ * Copyright(C) 2022 linutronix GmbH
+ */
+#include <linux/cpuhotplug.h>
+#include <linux/slab.h>
+#include <linux/smp.h>
+#include <linux/spinlock.h>
+#include <linux/timerqueue.h>
+#include <trace/events/ipi.h>
+
+#include "timer_migration.h"
+#include "tick-internal.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/timer_migration.h>
+
+/*
+ * The timer migration mechanism is built on a hierarchy of groups. The
+ * lowest level group contains CPUs, the next level groups of CPU groups
+ * and so forth. The CPU groups are kept per node so for the normal case
+ * lock contention won't happen across nodes. Depending on the number of
+ * CPUs per node even the next level might be kept as groups of CPU groups
+ * per node and only the levels above cross the node topology.
+ *
+ * Example topology for a two node system with 24 CPUs each.
+ *
+ * LVL 2 [GRP2:0]
+ * GRP1:0 = GRP1:M
+ *
+ * LVL 1 [GRP1:0] [GRP1:1]
+ * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5
+ *
+ * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5]
+ * CPUS 0-7 8-15 16-23 24-31 32-39 40-47
+ *
+ * The groups hold a timer queue of events sorted by expiry time. These
+ * queues are updated when CPUs go in idle. When they come out of idle
+ * ignore flag of events is set.
+ *
+ * Each group has a designated migrator CPU/group as long as a CPU/group is
+ * active in the group. This designated role is necessary to avoid that all
+ * active CPUs in a group try to migrate expired timers from other CPUs,
+ * which would result in massive lock bouncing.
+ *
+ * When a CPU is awake, it checks in it's own timer tick the group
+ * hierarchy up to the point where it is assigned the migrator role or if
+ * no CPU is active, it also checks the groups where no migrator is set
+ * (TMIGR_NONE).
+ *
+ * If it finds expired timers in one of the group queues it pulls them over
+ * from the idle CPU and runs the timer function. After that it updates the
+ * group and the parent groups if required.
+ *
+ * CPUs which go idle arm their CPU local timer hardware for the next local
+ * (pinned) timer event. If the next migratable timer expires after the
+ * next local timer or the CPU has no migratable timer pending then the
+ * CPU does not queue an event in the LVL0 group. If the next migratable
+ * timer expires before the next local timer then the CPU queues that timer
+ * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0
+ * group.
+ *
+ * When CPU comes out of idle and when a group has at least a single active
+ * child, the ignore flag of the tmigr_event is set. This indicates, that
+ * the event is ignored even if it is still enqueued in the parent groups
+ * timer queue. It will be removed when touching the timer queue the next
+ * time. This spares locking in active path as the lock protects (after
+ * setup) only event information. For more information about locking,
+ * please read the section "Locking rules".
+ *
+ * If the CPU is the migrator of the group then it delegates that role to
+ * the next active CPU in the group or sets migrator to TMIGR_NONE when
+ * there is no active CPU in the group. This delegation needs to be
+ * propagated up the hierarchy so hand over from other leaves can happen at
+ * all hierarchy levels w/o doing a search.
+ *
+ * When the last CPU in the system goes idle, then it drops all migrator
+ * duties up to the top level of the hierarchy (LVL2 in the example). It
+ * then has to make sure, that it arms it's own local hardware timer for
+ * the earliest event in the system.
+ *
+ *
+ * Lifetime rules:
+ * ---------------
+ *
+ * The groups are built up at init time or when CPUs come online. They are
+ * not destroyed when a group becomes empty due to offlining. The group
+ * just won't participate in the hierarchy management anymore. Destroying
+ * groups would result in interesting race conditions which would just make
+ * the whole mechanism slow and complex.
+ *
+ *
+ * Locking rules:
+ * --------------
+ *
+ * For setting up new groups and handling events it's required to lock both
+ * child and parent group. The lock ordering is always bottom up. This also
+ * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and
+ * active CPU/group information atomic_try_cmpxchg() is used instead and only
+ * the per CPU tmigr_cpu->lock is held.
+ *
+ * During the setup of groups tmigr_level_list is required. It is protected by
+ * @tmigr_mutex.
+ *
+ * When @timer_base->lock as well as tmigr related locks are required, the lock
+ * ordering is: first @timer_base->lock, afterwards tmigr related locks.
+ *
+ *
+ * Protection of the tmigr group state information:
+ * ------------------------------------------------
+ *
+ * The state information with the list of active children and migrator needs to
+ * be protected by a sequence counter. It prevents a race when updates in child
+ * groups are propagated in changed order. The state update is performed
+ * lockless and group wise. The following scenario describes what happens
+ * without updating the sequence counter:
+ *
+ * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well
+ * as GRP0:1 will not change during the scenario):
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:0, GRP0:1
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = CPU0 migrator = CPU2
+ * active = CPU0 active = CPU2
+ * / \ / \
+ * CPUs 0 1 2 3
+ * active idle active idle
+ *
+ *
+ * 1. CPU0 goes idle. As the update is performed group wise, in the first step
+ * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to
+ * walk the hierarchy.
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:0, GRP0:1
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * --> migrator = TMIGR_NONE migrator = CPU2
+ * --> active = active = CPU2
+ * / \ / \
+ * CPUs 0 1 2 3
+ * --> idle idle active idle
+ *
+ * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of
+ * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also
+ * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the
+ * hierarchy to perform the needed update from their point of view. The
+ * currently visible state looks the following:
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:0, GRP0:1
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * --> migrator = CPU1 migrator = CPU2
+ * --> active = CPU1 active = CPU2
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle --> active active idle
+ *
+ * 3. Here is the race condition: CPU1 managed to propagate its changes (from
+ * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The
+ * active members of GRP1:0 remain unchanged after the update since it is
+ * still valid from CPU1 current point of view:
+ *
+ * LVL 1 [GRP1:0]
+ * --> migrator = GRP0:1
+ * --> active = GRP0:0, GRP0:1
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = CPU1 migrator = CPU2
+ * active = CPU1 active = CPU2
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle active active idle
+ *
+ * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0.
+ *
+ * LVL 1 [GRP1:0]
+ * --> migrator = GRP0:1
+ * --> active = GRP0:1
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = CPU1 migrator = CPU2
+ * active = CPU1 active = CPU2
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle active active idle
+ *
+ *
+ * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is
+ * active and is correctly listed as active in GRP0:0. However GRP1:0 does not
+ * have GRP0:0 listed as active, which is wrong. The sequence counter has been
+ * added to avoid inconsistent states during updates. The state is updated
+ * atomically only if all members, including the sequence counter, match the
+ * expected value (compare-and-exchange).
+ *
+ * Looking back at the previous example with the addition of the sequence
+ * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed
+ * the sequence number during the update in step 3 so the expected old value (as
+ * seen by CPU0 before starting the walk) does not match.
+ *
+ * Prevent race between new event and last CPU going inactive
+ * ----------------------------------------------------------
+ *
+ * When the last CPU is going idle and there is a concurrent update of a new
+ * first global timer of an idle CPU, the group and child states have to be read
+ * while holding the lock in tmigr_update_events(). The following scenario shows
+ * what happens, when this is not done.
+ *
+ * 1. Only CPU2 is active:
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:1
+ * next_expiry = KTIME_MAX
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE migrator = CPU2
+ * active = active = CPU2
+ * next_expiry = KTIME_MAX next_expiry = KTIME_MAX
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle active idle
+ *
+ * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and
+ * propagates that to GRP0:1:
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:1
+ * next_expiry = KTIME_MAX
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE --> migrator = TMIGR_NONE
+ * active = --> active =
+ * next_expiry = KTIME_MAX next_expiry = KTIME_MAX
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle --> idle idle
+ *
+ * 3. Now the idle state is propagated up to GRP1:0. As this is now the last
+ * child going idle in top level group, the expiry of the next group event
+ * has to be handed back to make sure no event is lost. As there is no event
+ * enqueued, KTIME_MAX is handed back to CPU2.
+ *
+ * LVL 1 [GRP1:0]
+ * --> migrator = TMIGR_NONE
+ * --> active =
+ * next_expiry = KTIME_MAX
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE migrator = TMIGR_NONE
+ * active = active =
+ * next_expiry = KTIME_MAX next_expiry = KTIME_MAX
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle --> idle idle
+ *
+ * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0
+ * propagates that to GRP0:0:
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = TMIGR_NONE
+ * active =
+ * next_expiry = KTIME_MAX
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE migrator = TMIGR_NONE
+ * active = active =
+ * --> next_expiry = TIMER0 next_expiry = KTIME_MAX
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle idle idle
+ *
+ * 5. GRP0:0 is not active, so the new timer has to be propagated to
+ * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value
+ * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is
+ * handed back to CPU0, as it seems that there is still an active child in
+ * top level group.
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = TMIGR_NONE
+ * active =
+ * --> next_expiry = TIMER0
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE migrator = TMIGR_NONE
+ * active = active =
+ * next_expiry = TIMER0 next_expiry = KTIME_MAX
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle idle idle
+ *
+ * This is prevented by reading the state when holding the lock (when a new
+ * timer has to be propagated from idle path)::
+ *
+ * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up())
+ * -------------------------- ---------------------------
+ * // step 3:
+ * cmpxchg(&GRP1:0->state);
+ * tmigr_update_events() {
+ * spin_lock(&GRP1:0->lock);
+ * // ... update events ...
+ * // hand back first expiry when GRP1:0 is idle
+ * spin_unlock(&GRP1:0->lock);
+ * // ^^^ release state modification
+ * }
+ * tmigr_update_events() {
+ * spin_lock(&GRP1:0->lock)
+ * // ^^^ acquire state modification
+ * group_state = atomic_read(&GRP1:0->state)
+ * // .... update events ...
+ * // hand back first expiry when GRP1:0 is idle
+ * spin_unlock(&GRP1:0->lock) <3>
+ * // ^^^ makes state visible for other
+ * // callers of tmigr_new_timer_up()
+ * }
+ *
+ * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported
+ * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent
+ * update of the group state from active path is no problem, as the upcoming CPU
+ * will take care of the group events.
+ *
+ * Required event and timerqueue update after a remote expiry:
+ * -----------------------------------------------------------
+ *
+ * After expiring timers of a remote CPU, a walk through the hierarchy and
+ * update of events and timerqueues is required. It is obviously needed if there
+ * is a 'new' global timer but also if there is no new global timer but the
+ * remote CPU is still idle.
+ *
+ * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same
+ * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is
+ * also idle and has no global timer pending. CPU2 is the only active CPU and
+ * thus also the migrator:
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:1
+ * --> timerqueue = evt-GRP0:0
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE migrator = CPU2
+ * active = active = CPU2
+ * groupevt.ignore = false groupevt.ignore = true
+ * groupevt.cpu = CPU0 groupevt.cpu =
+ * timerqueue = evt-CPU0, timerqueue =
+ * evt-CPU1
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle active idle
+ *
+ * 2. CPU2 starts to expire remote timers. It starts with LVL0 group
+ * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with
+ * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It
+ * looks at tmigr_event::cpu struct member and expires the pending timer(s)
+ * of CPU0.
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:1
+ * --> timerqueue =
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE migrator = CPU2
+ * active = active = CPU2
+ * groupevt.ignore = false groupevt.ignore = true
+ * --> groupevt.cpu = CPU0 groupevt.cpu =
+ * timerqueue = evt-CPU0, timerqueue =
+ * evt-CPU1
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle active idle
+ *
+ * 3. Some work has to be done after expiring the timers of CPU0. If we stop
+ * here, then CPU1's pending global timer(s) will not expire in time and the
+ * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just
+ * been processed. So it is required to walk the hierarchy from CPU0's point
+ * of view and update it accordingly. CPU0's event will be removed from the
+ * timerqueue because it has no pending timer. If CPU0 would have a timer
+ * pending then it has to expire after CPU1's first timer because all timers
+ * from this period were just expired. Either way CPU1's event will be first
+ * in GRP0:0's timerqueue and therefore set in the CPU field of the group
+ * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not
+ * active:
+ *
+ * LVL 1 [GRP1:0]
+ * migrator = GRP0:1
+ * active = GRP0:1
+ * --> timerqueue = evt-GRP0:0
+ * / \
+ * LVL 0 [GRP0:0] [GRP0:1]
+ * migrator = TMIGR_NONE migrator = CPU2
+ * active = active = CPU2
+ * groupevt.ignore = false groupevt.ignore = true
+ * --> groupevt.cpu = CPU1 groupevt.cpu =
+ * --> timerqueue = evt-CPU1 timerqueue =
+ * / \ / \
+ * CPUs 0 1 2 3
+ * idle idle active idle
+ *
+ * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the
+ * timer(s) of CPU1.
+ *
+ * The hierarchy walk in step 3 can be skipped if the migrator notices that a
+ * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care
+ * of the group as migrator and any needed updates within the hierarchy.
+ */
+
+static DEFINE_MUTEX(tmigr_mutex);
+static struct list_head *tmigr_level_list __read_mostly;
+
+static unsigned int tmigr_hierarchy_levels __read_mostly;
+static unsigned int tmigr_crossnode_level __read_mostly;
+
+static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu);
+
+#define TMIGR_NONE 0xFF
+#define BIT_CNT 8
+
+static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc)
+{
+ return !(tmc->tmgroup && tmc->online);
+}
+
+/*
+ * Returns true, when @childmask corresponds to the group migrator or when the
+ * group is not active - so no migrator is set.
+ */
+static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask)
+{
+ union tmigr_state s;
+
+ s.state = atomic_read(&group->migr_state);
+
+ if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
+ return true;
+
+ return false;
+}
+
+static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask)
+{
+ bool lonely, migrator = false;
+ unsigned long active;
+ union tmigr_state s;
+
+ s.state = atomic_read(&group->migr_state);
+
+ if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
+ migrator = true;
+
+ active = s.active;
+ lonely = bitmap_weight(&active, BIT_CNT) <= 1;
+
+ return (migrator && lonely);
+}
+
+static bool tmigr_check_lonely(struct tmigr_group *group)
+{
+ unsigned long active;
+ union tmigr_state s;
+
+ s.state = atomic_read(&group->migr_state);
+
+ active = s.active;
+
+ return bitmap_weight(&active, BIT_CNT) <= 1;
+}
+
+typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *);
+
+static void __walk_groups(up_f up, void *data,
+ struct tmigr_cpu *tmc)
+{
+ struct tmigr_group *child = NULL, *group = tmc->tmgroup;
+
+ do {
+ WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels);
+
+ if (up(group, child, data))
+ break;
+
+ child = group;
+ group = group->parent;
+ } while (group);
+}
+
+static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc)
+{
+ lockdep_assert_held(&tmc->lock);
+
+ __walk_groups(up, data, tmc);
+}
+
+/**
+ * struct tmigr_walk - data required for walking the hierarchy
+ * @nextexp: Next CPU event expiry information which is handed into
+ * the timer migration code by the timer code
+ * (get_next_timer_interrupt())
+ * @firstexp: Contains the first event expiry information when last
+ * active CPU of hierarchy is on the way to idle to make
+ * sure CPU will be back in time.
+ * @evt: Pointer to tmigr_event which needs to be queued (of idle
+ * child group)
+ * @childmask: childmask of child group
+ * @remote: Is set, when the new timer path is executed in
+ * tmigr_handle_remote_cpu()
+ */
+struct tmigr_walk {
+ u64 nextexp;
+ u64 firstexp;
+ struct tmigr_event *evt;
+ u8 childmask;
+ bool remote;
+};
+
+/**
+ * struct tmigr_remote_data - data required for remote expiry hierarchy walk
+ * @basej: timer base in jiffies
+ * @now: timer base monotonic
+ * @firstexp: returns expiry of the first timer in the idle timer
+ * migration hierarchy to make sure the timer is handled in
+ * time; it is stored in the per CPU tmigr_cpu struct of
+ * CPU which expires remote timers
+ * @childmask: childmask of child group
+ * @check: is set if there is the need to handle remote timers;
+ * required in tmigr_requires_handle_remote() only
+ * @tmc_active: this flag indicates, whether the CPU which triggers
+ * the hierarchy walk is !idle in the timer migration
+ * hierarchy. When the CPU is idle and the whole hierarchy is
+ * idle, only the first event of the top level has to be
+ * considered.
+ */
+struct tmigr_remote_data {
+ unsigned long basej;
+ u64 now;
+ u64 firstexp;
+ u8 childmask;
+ bool check;
+ bool tmc_active;
+};
+
+/*
+ * Returns the next event of the timerqueue @group->events
+ *
+ * Removes timers with ignore flag and update next_expiry of the group. Values
+ * of the group event are updated in tmigr_update_events() only.
+ */
+static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group)
+{
+ struct timerqueue_node *node = NULL;
+ struct tmigr_event *evt = NULL;
+
+ lockdep_assert_held(&group->lock);
+
+ WRITE_ONCE(group->next_expiry, KTIME_MAX);
+
+ while ((node = timerqueue_getnext(&group->events))) {
+ evt = container_of(node, struct tmigr_event, nextevt);
+
+ if (!evt->ignore) {
+ WRITE_ONCE(group->next_expiry, evt->nextevt.expires);
+ return evt;
+ }
+
+ /*
+ * Remove next timers with ignore flag, because the group lock
+ * is held anyway
+ */
+ if (!timerqueue_del(&group->events, node))
+ break;
+ }
+
+ return NULL;
+}
+
+/*
+ * Return the next event (with the expiry equal or before @now)
+ *
+ * Event, which is returned, is also removed from the queue.
+ */
+static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group,
+ u64 now)
+{
+ struct tmigr_event *evt = tmigr_next_groupevt(group);
+
+ if (!evt || now < evt->nextevt.expires)
+ return NULL;
+
+ /*
+ * The event is ready to expire. Remove it and update next group event.
+ */
+ timerqueue_del(&group->events, &evt->nextevt);
+ tmigr_next_groupevt(group);
+
+ return evt;
+}
+
+static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
+{
+ struct tmigr_event *evt;
+
+ evt = tmigr_next_groupevt(group);
+
+ if (!evt)
+ return KTIME_MAX;
+ else
+ return evt->nextevt.expires;
+}
+
+static bool tmigr_active_up(struct tmigr_group *group,
+ struct tmigr_group *child,
+ void *ptr)
+{
+ union tmigr_state curstate, newstate;
+ struct tmigr_walk *data = ptr;
+ bool walk_done;
+ u8 childmask;
+
+ childmask = data->childmask;
+ /*
+ * No memory barrier is required here in contrast to
+ * tmigr_inactive_up(), as the group state change does not depend on the
+ * child state.
+ */
+ curstate.state = atomic_read(&group->migr_state);
+
+ do {
+ newstate = curstate;
+ walk_done = true;
+
+ if (newstate.migrator == TMIGR_NONE) {
+ newstate.migrator = childmask;
+
+ /* Changes need to be propagated */
+ walk_done = false;
+ }
+
+ newstate.active |= childmask;
+ newstate.seq++;
+
+ } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
+
+ if ((walk_done == false) && group->parent)
+ data->childmask = group->childmask;
+
+ /*
+ * The group is active (again). The group event might be still queued
+ * into the parent group's timerqueue but can now be handled by the
+ * migrator of this group. Therefore the ignore flag for the group event
+ * is updated to reflect this.
+ *
+ * The update of the ignore flag in the active path is done lockless. In
+ * worst case the migrator of the parent group observes the change too
+ * late and expires remotely all events belonging to this group. The
+ * lock is held while updating the ignore flag in idle path. So this
+ * state change will not be lost.
+ */
+ group->groupevt.ignore = true;
+
+ trace_tmigr_group_set_cpu_active(group, newstate, childmask);
+
+ return walk_done;
+}
+
+static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
+{
+ struct tmigr_walk data;
+
+ data.childmask = tmc->childmask;
+
+ trace_tmigr_cpu_active(tmc);
+
+ tmc->cpuevt.ignore = true;
+ WRITE_ONCE(tmc->wakeup, KTIME_MAX);
+
+ walk_groups(&tmigr_active_up, &data, tmc);
+}
+
+/**
+ * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy
+ *
+ * Call site timer_clear_idle() is called with interrupts disabled.
+ */
+void tmigr_cpu_activate(void)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+
+ if (tmigr_is_not_available(tmc))
+ return;
+
+ if (WARN_ON_ONCE(!tmc->idle))
+ return;
+
+ raw_spin_lock(&tmc->lock);
+ tmc->idle = false;
+ __tmigr_cpu_activate(tmc);
+ raw_spin_unlock(&tmc->lock);
+}
+
+/*
+ * Returns true, if there is nothing to be propagated to the next level
+ *
+ * @data->firstexp is set to expiry of first gobal event of the (top level of
+ * the) hierarchy, but only when hierarchy is completely idle.
+ *
+ * The child and group states need to be read under the lock, to prevent a race
+ * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See
+ * also section "Prevent race between new event and last CPU going inactive" in
+ * the documentation at the top.
+ *
+ * This is the only place where the group event expiry value is set.
+ */
+static
+bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child,
+ struct tmigr_walk *data)
+{
+ struct tmigr_event *evt, *first_childevt;
+ union tmigr_state childstate, groupstate;
+ bool remote = data->remote;
+ bool walk_done = false;
+ u64 nextexp;
+
+ if (child) {
+ raw_spin_lock(&child->lock);
+ raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING);
+
+ childstate.state = atomic_read(&child->migr_state);
+ groupstate.state = atomic_read(&group->migr_state);
+
+ if (childstate.active) {
+ walk_done = true;
+ goto unlock;
+ }
+
+ first_childevt = tmigr_next_groupevt(child);
+ nextexp = child->next_expiry;
+ evt = &child->groupevt;
+
+ evt->ignore = (nextexp == KTIME_MAX) ? true : false;
+ } else {
+ nextexp = data->nextexp;
+
+ first_childevt = evt = data->evt;
+
+ /*
+ * Walking the hierarchy is required in any case when a
+ * remote expiry was done before. This ensures to not lose
+ * already queued events in non active groups (see section
+ * "Required event and timerqueue update after a remote
+ * expiry" in the documentation at the top).
+ *
+ * The two call sites which are executed without a remote expiry
+ * before, are not prevented from propagating changes through
+ * the hierarchy by the return:
+ * - When entering this path by tmigr_new_timer(), @evt->ignore
+ * is never set.
+ * - tmigr_inactive_up() takes care of the propagation by
+ * itself and ignores the return value. But an immediate
+ * return is required because nothing has to be done in this
+ * level as the event could be ignored.
+ */
+ if (evt->ignore && !remote)
+ return true;
+
+ raw_spin_lock(&group->lock);
+
+ childstate.state = 0;
+ groupstate.state = atomic_read(&group->migr_state);
+ }
+
+ /*
+ * If the child event is already queued in the group, remove it from the
+ * queue when the expiry time changed only or when it could be ignored.
+ */
+ if (timerqueue_node_queued(&evt->nextevt)) {
+ if ((evt->nextevt.expires == nextexp) && !evt->ignore)
+ goto check_toplvl;
+
+ if (!timerqueue_del(&group->events, &evt->nextevt))
+ WRITE_ONCE(group->next_expiry, KTIME_MAX);
+ }
+
+ if (evt->ignore) {
+ /*
+ * When the next child event could be ignored (nextexp is
+ * KTIME_MAX) and there was no remote timer handling before or
+ * the group is already active, there is no need to walk the
+ * hierarchy even if there is a parent group.
+ *
+ * The other way round: even if the event could be ignored, but
+ * if a remote timer handling was executed before and the group
+ * is not active, walking the hierarchy is required to not miss
+ * an enqueued timer in the non active group. The enqueued timer
+ * of the group needs to be propagated to a higher level to
+ * ensure it is handled.
+ */
+ if (!remote || groupstate.active)
+ walk_done = true;
+ } else {
+ evt->nextevt.expires = nextexp;
+ evt->cpu = first_childevt->cpu;
+
+ if (timerqueue_add(&group->events, &evt->nextevt))
+ WRITE_ONCE(group->next_expiry, nextexp);
+ }
+
+check_toplvl:
+ if (!group->parent && (groupstate.migrator == TMIGR_NONE)) {
+ walk_done = true;
+
+ /*
+ * Nothing to do when update was done during remote timer
+ * handling. First timer in top level group which needs to be
+ * handled when top level group is not active, is calculated
+ * directly in tmigr_handle_remote_up().
+ */
+ if (remote)
+ goto unlock;
+
+ /*
+ * The top level group is idle and it has to be ensured the
+ * global timers are handled in time. (This could be optimized
+ * by keeping track of the last global scheduled event and only
+ * arming it on the CPU if the new event is earlier. Not sure if
+ * its worth the complexity.)
+ */
+ data->firstexp = tmigr_next_groupevt_expires(group);
+ }
+
+ trace_tmigr_update_events(child, group, childstate, groupstate,
+ nextexp);
+
+unlock:
+ raw_spin_unlock(&group->lock);
+
+ if (child)
+ raw_spin_unlock(&child->lock);
+
+ return walk_done;
+}
+
+static bool tmigr_new_timer_up(struct tmigr_group *group,
+ struct tmigr_group *child,
+ void *ptr)
+{
+ struct tmigr_walk *data = ptr;
+
+ return tmigr_update_events(group, child, data);
+}
+
+/*
+ * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is
+ * returned, if an active CPU will handle all the timer migration hierarchy
+ * timers.
+ */
+static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp)
+{
+ struct tmigr_walk data = { .nextexp = nextexp,
+ .firstexp = KTIME_MAX,
+ .evt = &tmc->cpuevt };
+
+ lockdep_assert_held(&tmc->lock);
+
+ if (tmc->remote)
+ return KTIME_MAX;
+
+ trace_tmigr_cpu_new_timer(tmc);
+
+ tmc->cpuevt.ignore = false;
+ data.remote = false;
+
+ walk_groups(&tmigr_new_timer_up, &data, tmc);
+
+ /* If there is a new first global event, make sure it is handled */
+ return data.firstexp;
+}
+
+static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now,
+ unsigned long jif)
+{
+ struct timer_events tevt;
+ struct tmigr_walk data;
+ struct tmigr_cpu *tmc;
+
+ tmc = per_cpu_ptr(&tmigr_cpu, cpu);
+
+ raw_spin_lock_irq(&tmc->lock);
+
+ /*
+ * If the remote CPU is offline then the timers have been migrated to
+ * another CPU.
+ *
+ * If tmigr_cpu::remote is set, at the moment another CPU already
+ * expires the timers of the remote CPU.
+ *
+ * If tmigr_event::ignore is set, then the CPU returns from idle and
+ * takes care of its timers.
+ *
+ * If the next event expires in the future, then the event has been
+ * updated and there are no timers to expire right now. The CPU which
+ * updated the event takes care when hierarchy is completely
+ * idle. Otherwise the migrator does it as the event is enqueued.
+ */
+ if (!tmc->online || tmc->remote || tmc->cpuevt.ignore ||
+ now < tmc->cpuevt.nextevt.expires) {
+ raw_spin_unlock_irq(&tmc->lock);
+ return;
+ }
+
+ trace_tmigr_handle_remote_cpu(tmc);
+
+ tmc->remote = true;
+ WRITE_ONCE(tmc->wakeup, KTIME_MAX);
+
+ /* Drop the lock to allow the remote CPU to exit idle */
+ raw_spin_unlock_irq(&tmc->lock);
+
+ if (cpu != smp_processor_id())
+ timer_expire_remote(cpu);
+
+ /*
+ * Lock ordering needs to be preserved - timer_base locks before tmigr
+ * related locks (see section "Locking rules" in the documentation at
+ * the top). During fetching the next timer interrupt, also tmc->lock
+ * needs to be held. Otherwise there is a possible race window against
+ * the CPU itself when it comes out of idle, updates the first timer in
+ * the hierarchy and goes back to idle.
+ *
+ * timer base locks are dropped as fast as possible: After checking
+ * whether the remote CPU went offline in the meantime and after
+ * fetching the next remote timer interrupt. Dropping the locks as fast
+ * as possible keeps the locking region small and prevents holding
+ * several (unnecessary) locks during walking the hierarchy for updating
+ * the timerqueue and group events.
+ */
+ local_irq_disable();
+ timer_lock_remote_bases(cpu);
+ raw_spin_lock(&tmc->lock);
+
+ /*
+ * When the CPU went offline in the meantime, no hierarchy walk has to
+ * be done for updating the queued events, because the walk was
+ * already done during marking the CPU offline in the hierarchy.
+ *
+ * When the CPU is no longer idle, the CPU takes care of the timers and
+ * also of the timers in the hierarchy.
+ *
+ * (See also section "Required event and timerqueue update after a
+ * remote expiry" in the documentation at the top)
+ */
+ if (!tmc->online || !tmc->idle) {
+ timer_unlock_remote_bases(cpu);
+ goto unlock;
+ }
+
+ /* next event of CPU */
+ fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu);
+ timer_unlock_remote_bases(cpu);
+
+ data.nextexp = tevt.global;
+ data.firstexp = KTIME_MAX;
+ data.evt = &tmc->cpuevt;
+ data.remote = true;
+
+ /*
+ * The update is done even when there is no 'new' global timer pending
+ * on the remote CPU (see section "Required event and timerqueue update
+ * after a remote expiry" in the documentation at the top)
+ */
+ walk_groups(&tmigr_new_timer_up, &data, tmc);
+
+unlock:
+ tmc->remote = false;
+ raw_spin_unlock_irq(&tmc->lock);
+}
+
+static bool tmigr_handle_remote_up(struct tmigr_group *group,
+ struct tmigr_group *child,
+ void *ptr)
+{
+ struct tmigr_remote_data *data = ptr;
+ struct tmigr_event *evt;
+ unsigned long jif;
+ u8 childmask;
+ u64 now;
+
+ jif = data->basej;
+ now = data->now;
+
+ childmask = data->childmask;
+
+ trace_tmigr_handle_remote(group);
+again:
+ /*
+ * Handle the group only if @childmask is the migrator or if the
+ * group has no migrator. Otherwise the group is active and is
+ * handled by its own migrator.
+ */
+ if (!tmigr_check_migrator(group, childmask))
+ return true;
+
+ raw_spin_lock_irq(&group->lock);
+
+ evt = tmigr_next_expired_groupevt(group, now);
+
+ if (evt) {
+ unsigned int remote_cpu = evt->cpu;
+
+ raw_spin_unlock_irq(&group->lock);
+
+ tmigr_handle_remote_cpu(remote_cpu, now, jif);
+
+ /* check if there is another event, that needs to be handled */
+ goto again;
+ }
+
+ /*
+ * Update of childmask for the next level and keep track of the expiry
+ * of the first event that needs to be handled (group->next_expiry was
+ * updated by tmigr_next_expired_groupevt(), next was set by
+ * tmigr_handle_remote_cpu()).
+ */
+ data->childmask = group->childmask;
+ data->firstexp = group->next_expiry;
+
+ raw_spin_unlock_irq(&group->lock);
+
+ return false;
+}
+
+/**
+ * tmigr_handle_remote() - Handle global timers of remote idle CPUs
+ *
+ * Called from the timer soft interrupt with interrupts enabled.
+ */
+void tmigr_handle_remote(void)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ struct tmigr_remote_data data;
+
+ if (tmigr_is_not_available(tmc))
+ return;
+
+ data.childmask = tmc->childmask;
+ data.firstexp = KTIME_MAX;
+
+ /*
+ * NOTE: This is a doubled check because the migrator test will be done
+ * in tmigr_handle_remote_up() anyway. Keep this check to speed up the
+ * return when nothing has to be done.
+ */
+ if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask))
+ return;
+
+ data.now = get_jiffies_update(&data.basej);
+
+ /*
+ * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to
+ * KTIME_MAX. Even if tmc->lock is not held during the whole remote
+ * handling, tmc->wakeup is fine to be stale as it is called in
+ * interrupt context and tick_nohz_next_event() is executed in interrupt
+ * exit path only after processing the last pending interrupt.
+ */
+
+ __walk_groups(&tmigr_handle_remote_up, &data, tmc);
+
+ raw_spin_lock_irq(&tmc->lock);
+ WRITE_ONCE(tmc->wakeup, data.firstexp);
+ raw_spin_unlock_irq(&tmc->lock);
+}
+
+static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
+ struct tmigr_group *child,
+ void *ptr)
+{
+ struct tmigr_remote_data *data = ptr;
+ u8 childmask;
+
+ childmask = data->childmask;
+
+ /*
+ * Handle the group only if the child is the migrator or if the group
+ * has no migrator. Otherwise the group is active and is handled by its
+ * own migrator.
+ */
+ if (!tmigr_check_migrator(group, childmask))
+ return true;
+
+ /*
+ * When there is a parent group and the CPU which triggered the
+ * hierarchy walk is not active, proceed the walk to reach the top level
+ * group before reading the next_expiry value.
+ */
+ if (group->parent && !data->tmc_active)
+ goto out;
+
+ /*
+ * The lock is required on 32bit architectures to read the variable
+ * consistently with a concurrent writer. On 64bit the lock is not
+ * required because the read operation is not split and so it is always
+ * consistent.
+ */
+ if (IS_ENABLED(CONFIG_64BIT)) {
+ data->firstexp = READ_ONCE(group->next_expiry);
+ if (data->now >= data->firstexp) {
+ data->check = true;
+ return true;
+ }
+ } else {
+ raw_spin_lock(&group->lock);
+ data->firstexp = group->next_expiry;
+ if (data->now >= group->next_expiry) {
+ data->check = true;
+ raw_spin_unlock(&group->lock);
+ return true;
+ }
+ raw_spin_unlock(&group->lock);
+ }
+
+out:
+ /* Update of childmask for the next level */
+ data->childmask = group->childmask;
+ return false;
+}
+
+/**
+ * tmigr_requires_handle_remote() - Check the need of remote timer handling
+ *
+ * Must be called with interrupts disabled.
+ */
+bool tmigr_requires_handle_remote(void)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ struct tmigr_remote_data data;
+ unsigned long jif;
+ bool ret = false;
+
+ if (tmigr_is_not_available(tmc))
+ return ret;
+
+ data.now = get_jiffies_update(&jif);
+ data.childmask = tmc->childmask;
+ data.firstexp = KTIME_MAX;
+ data.tmc_active = !tmc->idle;
+ data.check = false;
+
+ /*
+ * If the CPU is active, walk the hierarchy to check whether a remote
+ * expiry is required.
+ *
+ * Check is done lockless as interrupts are disabled and @tmc->idle is
+ * set only by the local CPU.
+ */
+ if (!tmc->idle) {
+ __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc);
+
+ return data.check;
+ }
+
+ /*
+ * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock
+ * is required on 32bit architectures to read the variable consistently
+ * with a concurrent writer. On 64bit the lock is not required because
+ * the read operation is not split and so it is always consistent.
+ */
+ if (IS_ENABLED(CONFIG_64BIT)) {
+ if (data.now >= READ_ONCE(tmc->wakeup))
+ return true;
+ } else {
+ raw_spin_lock(&tmc->lock);
+ if (data.now >= tmc->wakeup)
+ ret = true;
+ raw_spin_unlock(&tmc->lock);
+ }
+
+ return ret;
+}
+
+/**
+ * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc)
+ * @nextexp: Next expiry of global timer (or KTIME_MAX if not)
+ *
+ * The CPU is already deactivated in the timer migration
+ * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event()
+ * and thereby the timer idle path is executed once more. @tmc->wakeup
+ * holds the first timer, when the timer migration hierarchy is
+ * completely idle.
+ *
+ * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if
+ * nothing needs to be done.
+ */
+u64 tmigr_cpu_new_timer(u64 nextexp)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ u64 ret;
+
+ if (tmigr_is_not_available(tmc))
+ return nextexp;
+
+ raw_spin_lock(&tmc->lock);
+
+ ret = READ_ONCE(tmc->wakeup);
+ if (nextexp != KTIME_MAX) {
+ if (nextexp != tmc->cpuevt.nextevt.expires ||
+ tmc->cpuevt.ignore) {
+ ret = tmigr_new_timer(tmc, nextexp);
+ }
+ }
+ /*
+ * Make sure the reevaluation of timers in idle path will not miss an
+ * event.
+ */
+ WRITE_ONCE(tmc->wakeup, ret);
+
+ trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
+ raw_spin_unlock(&tmc->lock);
+ return ret;
+}
+
+static bool tmigr_inactive_up(struct tmigr_group *group,
+ struct tmigr_group *child,
+ void *ptr)
+{
+ union tmigr_state curstate, newstate, childstate;
+ struct tmigr_walk *data = ptr;
+ bool walk_done;
+ u8 childmask;
+
+ childmask = data->childmask;
+ childstate.state = 0;
+
+ /*
+ * The memory barrier is paired with the cmpxchg() in tmigr_active_up()
+ * to make sure the updates of child and group states are ordered. The
+ * ordering is mandatory, as the group state change depends on the child
+ * state.
+ */
+ curstate.state = atomic_read_acquire(&group->migr_state);
+
+ for (;;) {
+ if (child)
+ childstate.state = atomic_read(&child->migr_state);
+
+ newstate = curstate;
+ walk_done = true;
+
+ /* Reset active bit when the child is no longer active */
+ if (!childstate.active)
+ newstate.active &= ~childmask;
+
+ if (newstate.migrator == childmask) {
+ /*
+ * Find a new migrator for the group, because the child
+ * group is idle!
+ */
+ if (!childstate.active) {
+ unsigned long new_migr_bit, active = newstate.active;
+
+ new_migr_bit = find_first_bit(&active, BIT_CNT);
+
+ if (new_migr_bit != BIT_CNT) {
+ newstate.migrator = BIT(new_migr_bit);
+ } else {
+ newstate.migrator = TMIGR_NONE;
+
+ /* Changes need to be propagated */
+ walk_done = false;
+ }
+ }
+ }
+
+ newstate.seq++;
+
+ WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
+
+ if (atomic_try_cmpxchg(&group->migr_state, &curstate.state,
+ newstate.state))
+ break;
+
+ /*
+ * The memory barrier is paired with the cmpxchg() in
+ * tmigr_active_up() to make sure the updates of child and group
+ * states are ordered. It is required only when the above
+ * try_cmpxchg() fails.
+ */
+ smp_mb__after_atomic();
+ }
+
+ data->remote = false;
+
+ /* Event Handling */
+ tmigr_update_events(group, child, data);
+
+ if (group->parent && (walk_done == false))
+ data->childmask = group->childmask;
+
+ /*
+ * data->firstexp was set by tmigr_update_events() and contains the
+ * expiry of the first global event which needs to be handled. It
+ * differs from KTIME_MAX if:
+ * - group is the top level group and
+ * - group is idle (which means CPU was the last active CPU in the
+ * hierarchy) and
+ * - there is a pending event in the hierarchy
+ */
+ WARN_ON_ONCE(data->firstexp != KTIME_MAX && group->parent);
+
+ trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
+
+ return walk_done;
+}
+
+static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
+{
+ struct tmigr_walk data = { .nextexp = nextexp,
+ .firstexp = KTIME_MAX,
+ .evt = &tmc->cpuevt,
+ .childmask = tmc->childmask };
+
+ /*
+ * If nextexp is KTIME_MAX, the CPU event will be ignored because the
+ * local timer expires before the global timer, no global timer is set
+ * or CPU goes offline.
+ */
+ if (nextexp != KTIME_MAX)
+ tmc->cpuevt.ignore = false;
+
+ walk_groups(&tmigr_inactive_up, &data, tmc);
+ return data.firstexp;
+}
+
+/**
+ * tmigr_cpu_deactivate() - Put current CPU into inactive state
+ * @nextexp: The next global timer expiry of the current CPU
+ *
+ * Must be called with interrupts disabled.
+ *
+ * Return: the next event expiry of the current CPU or the next event expiry
+ * from the hierarchy if this CPU is the top level migrator or the hierarchy is
+ * completely idle.
+ */
+u64 tmigr_cpu_deactivate(u64 nextexp)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ u64 ret;
+
+ if (tmigr_is_not_available(tmc))
+ return nextexp;
+
+ raw_spin_lock(&tmc->lock);
+
+ ret = __tmigr_cpu_deactivate(tmc, nextexp);
+
+ tmc->idle = true;
+
+ /*
+ * Make sure the reevaluation of timers in idle path will not miss an
+ * event.
+ */
+ WRITE_ONCE(tmc->wakeup, ret);
+
+ trace_tmigr_cpu_idle(tmc, nextexp);
+ raw_spin_unlock(&tmc->lock);
+ return ret;
+}
+
+/**
+ * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to
+ * go idle
+ * @nextevt: The next global timer expiry of the current CPU
+ *
+ * Return:
+ * * KTIME_MAX - when it is probable that nothing has to be done (not
+ * the only one in the level 0 group; and if it is the
+ * only one in level 0 group, but there are more than a
+ * single group active on the way to top level)
+ * * nextevt - when CPU is offline and has to handle timer on his own
+ * or when on the way to top in every group only a single
+ * child is active but @nextevt is before the lowest
+ * next_expiry encountered while walking up to top level.
+ * * next_expiry - value of lowest expiry encountered while walking groups
+ * if only a single child is active on each and @nextevt
+ * is after this lowest expiry.
+ */
+u64 tmigr_quick_check(u64 nextevt)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ struct tmigr_group *group = tmc->tmgroup;
+
+ if (tmigr_is_not_available(tmc))
+ return nextevt;
+
+ if (WARN_ON_ONCE(tmc->idle))
+ return nextevt;
+
+ if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask))
+ return KTIME_MAX;
+
+ do {
+ if (!tmigr_check_lonely(group)) {
+ return KTIME_MAX;
+ } else {
+ /*
+ * Since current CPU is active, events may not be sorted
+ * from bottom to the top because the CPU's event is ignored
+ * up to the top and its sibling's events not propagated upwards.
+ * Thus keep track of the lowest observed expiry.
+ */
+ nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry));
+ if (!group->parent)
+ return nextevt;
+ }
+ group = group->parent;
+ } while (group);
+
+ return KTIME_MAX;
+}
+
+static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
+ int node)
+{
+ union tmigr_state s;
+
+ raw_spin_lock_init(&group->lock);
+
+ group->level = lvl;
+ group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE;
+
+ group->num_children = 0;
+
+ s.migrator = TMIGR_NONE;
+ s.active = 0;
+ s.seq = 0;
+ atomic_set(&group->migr_state, s.state);
+
+ timerqueue_init_head(&group->events);
+ timerqueue_init(&group->groupevt.nextevt);
+ group->groupevt.nextevt.expires = KTIME_MAX;
+ WRITE_ONCE(group->next_expiry, KTIME_MAX);
+ group->groupevt.ignore = true;
+}
+
+static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
+ unsigned int lvl)
+{
+ struct tmigr_group *tmp, *group = NULL;
+
+ lockdep_assert_held(&tmigr_mutex);
+
+ /* Try to attach to an existing group first */
+ list_for_each_entry(tmp, &tmigr_level_list[lvl], list) {
+ /*
+ * If @lvl is below the cross NUMA node level, check whether
+ * this group belongs to the same NUMA node.
+ */
+ if (lvl < tmigr_crossnode_level && tmp->numa_node != node)
+ continue;
+
+ /* Capacity left? */
+ if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP)
+ continue;
+
+ /*
+ * TODO: A possible further improvement: Make sure that all CPU
+ * siblings end up in the same group of the lowest level of the
+ * hierarchy. Rely on the topology sibling mask would be a
+ * reasonable solution.
+ */
+
+ group = tmp;
+ break;
+ }
+
+ if (group)
+ return group;
+
+ /* Allocate and set up a new group */
+ group = kzalloc_node(sizeof(*group), GFP_KERNEL, node);
+ if (!group)
+ return ERR_PTR(-ENOMEM);
+
+ tmigr_init_group(group, lvl, node);
+
+ /* Setup successful. Add it to the hierarchy */
+ list_add(&group->list, &tmigr_level_list[lvl]);
+ trace_tmigr_group_set(group);
+ return group;
+}
+
+static void tmigr_connect_child_parent(struct tmigr_group *child,
+ struct tmigr_group *parent)
+{
+ union tmigr_state childstate;
+
+ raw_spin_lock_irq(&child->lock);
+ raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
+
+ child->parent = parent;
+ child->childmask = BIT(parent->num_children++);
+
+ raw_spin_unlock(&parent->lock);
+ raw_spin_unlock_irq(&child->lock);
+
+ trace_tmigr_connect_child_parent(child);
+
+ /*
+ * To prevent inconsistent states, active children need to be active in
+ * the new parent as well. Inactive children are already marked inactive
+ * in the parent group:
+ *
+ * * When new groups were created by tmigr_setup_groups() starting from
+ * the lowest level (and not higher then one level below the current
+ * top level), then they are not active. They will be set active when
+ * the new online CPU comes active.
+ *
+ * * But if a new group above the current top level is required, it is
+ * mandatory to propagate the active state of the already existing
+ * child to the new parent. So tmigr_connect_child_parent() is
+ * executed with the formerly top level group (child) and the newly
+ * created group (parent).
+ */
+ childstate.state = atomic_read(&child->migr_state);
+ if (childstate.migrator != TMIGR_NONE) {
+ struct tmigr_walk data;
+
+ data.childmask = child->childmask;
+
+ /*
+ * There is only one new level per time. When connecting the
+ * child and the parent and set the child active when the parent
+ * is inactive, the parent needs to be the uppermost
+ * level. Otherwise there went something wrong!
+ */
+ WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
+ }
+}
+
+static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
+{
+ struct tmigr_group *group, *child, **stack;
+ int top = 0, err = 0, i = 0;
+ struct list_head *lvllist;
+
+ stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL);
+ if (!stack)
+ return -ENOMEM;
+
+ do {
+ group = tmigr_get_group(cpu, node, i);
+ if (IS_ERR(group)) {
+ err = PTR_ERR(group);
+ break;
+ }
+
+ top = i;
+ stack[i++] = group;
+
+ /*
+ * When booting only less CPUs of a system than CPUs are
+ * available, not all calculated hierarchy levels are required.
+ *
+ * The loop is aborted as soon as the highest level, which might
+ * be different from tmigr_hierarchy_levels, contains only a
+ * single group.
+ */
+ if (group->parent || i == tmigr_hierarchy_levels ||
+ (list_empty(&tmigr_level_list[i]) &&
+ list_is_singular(&tmigr_level_list[i - 1])))
+ break;
+
+ } while (i < tmigr_hierarchy_levels);
+
+ do {
+ group = stack[--i];
+
+ if (err < 0) {
+ list_del(&group->list);
+ kfree(group);
+ continue;
+ }
+
+ WARN_ON_ONCE(i != group->level);
+
+ /*
+ * Update tmc -> group / child -> group connection
+ */
+ if (i == 0) {
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+
+ raw_spin_lock_irq(&group->lock);
+
+ tmc->tmgroup = group;
+ tmc->childmask = BIT(group->num_children++);
+
+ raw_spin_unlock_irq(&group->lock);
+
+ trace_tmigr_connect_cpu_parent(tmc);
+
+ /* There are no children that need to be connected */
+ continue;
+ } else {
+ child = stack[i - 1];
+ tmigr_connect_child_parent(child, group);
+ }
+
+ /* check if uppermost level was newly created */
+ if (top != i)
+ continue;
+
+ WARN_ON_ONCE(top == 0);
+
+ lvllist = &tmigr_level_list[top];
+ if (group->num_children == 1 && list_is_singular(lvllist)) {
+ lvllist = &tmigr_level_list[top - 1];
+ list_for_each_entry(child, lvllist, list) {
+ if (child->parent)
+ continue;
+
+ tmigr_connect_child_parent(child, group);
+ }
+ }
+ } while (i > 0);
+
+ kfree(stack);
+
+ return err;
+}
+
+static int tmigr_add_cpu(unsigned int cpu)
+{
+ int node = cpu_to_node(cpu);
+ int ret;
+
+ mutex_lock(&tmigr_mutex);
+ ret = tmigr_setup_groups(cpu, node);
+ mutex_unlock(&tmigr_mutex);
+
+ return ret;
+}
+
+static int tmigr_cpu_online(unsigned int cpu)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ int ret;
+
+ /* First online attempt? Initialize CPU data */
+ if (!tmc->tmgroup) {
+ raw_spin_lock_init(&tmc->lock);
+
+ ret = tmigr_add_cpu(cpu);
+ if (ret < 0)
+ return ret;
+
+ if (tmc->childmask == 0)
+ return -EINVAL;
+
+ timerqueue_init(&tmc->cpuevt.nextevt);
+ tmc->cpuevt.nextevt.expires = KTIME_MAX;
+ tmc->cpuevt.ignore = true;
+ tmc->cpuevt.cpu = cpu;
+
+ tmc->remote = false;
+ WRITE_ONCE(tmc->wakeup, KTIME_MAX);
+ }
+ raw_spin_lock_irq(&tmc->lock);
+ trace_tmigr_cpu_online(tmc);
+ tmc->idle = timer_base_is_idle();
+ if (!tmc->idle)
+ __tmigr_cpu_activate(tmc);
+ tmc->online = true;
+ raw_spin_unlock_irq(&tmc->lock);
+ return 0;
+}
+
+/*
+ * tmigr_trigger_active() - trigger a CPU to become active again
+ *
+ * This function is executed on a CPU which is part of cpu_online_mask, when the
+ * last active CPU in the hierarchy is offlining. With this, it is ensured that
+ * the other CPU is active and takes over the migrator duty.
+ */
+static long tmigr_trigger_active(void *unused)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+
+ WARN_ON_ONCE(!tmc->online || tmc->idle);
+
+ return 0;
+}
+
+static int tmigr_cpu_offline(unsigned int cpu)
+{
+ struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
+ int migrator;
+ u64 firstexp;
+
+ raw_spin_lock_irq(&tmc->lock);
+ tmc->online = false;
+ WRITE_ONCE(tmc->wakeup, KTIME_MAX);
+
+ /*
+ * CPU has to handle the local events on his own, when on the way to
+ * offline; Therefore nextevt value is set to KTIME_MAX
+ */
+ firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
+ trace_tmigr_cpu_offline(tmc);
+ raw_spin_unlock_irq(&tmc->lock);
+
+ if (firstexp != KTIME_MAX) {
+ migrator = cpumask_any_but(cpu_online_mask, cpu);
+ work_on_cpu(migrator, tmigr_trigger_active, NULL);
+ }
+
+ return 0;
+}
+
+static int __init tmigr_init(void)
+{
+ unsigned int cpulvl, nodelvl, cpus_per_node, i;
+ unsigned int nnodes = num_possible_nodes();
+ unsigned int ncpus = num_possible_cpus();
+ int ret = -ENOMEM;
+
+ BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP);
+
+ /* Nothing to do if running on UP */
+ if (ncpus == 1)
+ return 0;
+
+ /*
+ * Calculate the required hierarchy levels. Unfortunately there is no
+ * reliable information available, unless all possible CPUs have been
+ * brought up and all NUMA nodes are populated.
+ *
+ * Estimate the number of levels with the number of possible nodes and
+ * the number of possible CPUs. Assume CPUs are spread evenly across
+ * nodes. We cannot rely on cpumask_of_node() because it only works for
+ * online CPUs.
+ */
+ cpus_per_node = DIV_ROUND_UP(ncpus, nnodes);
+
+ /* Calc the hierarchy levels required to hold the CPUs of a node */
+ cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node),
+ ilog2(TMIGR_CHILDREN_PER_GROUP));
+
+ /* Calculate the extra levels to connect all nodes */
+ nodelvl = DIV_ROUND_UP(order_base_2(nnodes),
+ ilog2(TMIGR_CHILDREN_PER_GROUP));
+
+ tmigr_hierarchy_levels = cpulvl + nodelvl;
+
+ /*
+ * If a NUMA node spawns more than one CPU level group then the next
+ * level(s) of the hierarchy contains groups which handle all CPU groups
+ * of the same NUMA node. The level above goes across NUMA nodes. Store
+ * this information for the setup code to decide in which level node
+ * matching is no longer required.
+ */
+ tmigr_crossnode_level = cpulvl;
+
+ tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL);
+ if (!tmigr_level_list)
+ goto err;
+
+ for (i = 0; i < tmigr_hierarchy_levels; i++)
+ INIT_LIST_HEAD(&tmigr_level_list[i]);
+
+ pr_info("Timer migration: %d hierarchy levels; %d children per group;"
+ " %d crossnode level\n",
+ tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
+ tmigr_crossnode_level);
+
+ ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
+ tmigr_cpu_online, tmigr_cpu_offline);
+ if (ret)
+ goto err;
+
+ return 0;
+
+err:
+ pr_err("Timer migration setup failed\n");
+ return ret;
+}
+late_initcall(tmigr_init);
diff --git a/kernel/time/timer_migration.h b/kernel/time/timer_migration.h
new file mode 100644
index 000000000000..6c37d94a37d9
--- /dev/null
+++ b/kernel/time/timer_migration.h
@@ -0,0 +1,140 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+#ifndef _KERNEL_TIME_MIGRATION_H
+#define _KERNEL_TIME_MIGRATION_H
+
+/* Per group capacity. Must be a power of 2! */
+#define TMIGR_CHILDREN_PER_GROUP 8
+
+/**
+ * struct tmigr_event - a timer event associated to a CPU
+ * @nextevt: The node to enqueue an event in the parent group queue
+ * @cpu: The CPU to which this event belongs
+ * @ignore: Hint whether the event could be ignored; it is set when
+ * CPU or group is active;
+ */
+struct tmigr_event {
+ struct timerqueue_node nextevt;
+ unsigned int cpu;
+ bool ignore;
+};
+
+/**
+ * struct tmigr_group - timer migration hierarchy group
+ * @lock: Lock protecting the event information and group hierarchy
+ * information during setup
+ * @parent: Pointer to the parent group
+ * @groupevt: Next event of the group which is only used when the
+ * group is !active. The group event is then queued into
+ * the parent timer queue.
+ * Ignore bit of @groupevt is set when the group is active.
+ * @next_expiry: Base monotonic expiry time of the next event of the
+ * group; It is used for the racy lockless check whether a
+ * remote expiry is required; it is always reliable
+ * @events: Timer queue for child events queued in the group
+ * @migr_state: State of the group (see union tmigr_state)
+ * @level: Hierarchy level of the group; Required during setup
+ * @numa_node: Required for setup only to make sure CPU and low level
+ * group information is NUMA local. It is set to NUMA node
+ * as long as the group level is per NUMA node (level <
+ * tmigr_crossnode_level); otherwise it is set to
+ * NUMA_NO_NODE
+ * @num_children: Counter of group children to make sure the group is only
+ * filled with TMIGR_CHILDREN_PER_GROUP; Required for setup
+ * only
+ * @childmask: childmask of the group in the parent group; is set
+ * during setup and will never change; can be read
+ * lockless
+ * @list: List head that is added to the per level
+ * tmigr_level_list; is required during setup when a
+ * new group needs to be connected to the existing
+ * hierarchy groups
+ */
+struct tmigr_group {
+ raw_spinlock_t lock;
+ struct tmigr_group *parent;
+ struct tmigr_event groupevt;
+ u64 next_expiry;
+ struct timerqueue_head events;
+ atomic_t migr_state;
+ unsigned int level;
+ int numa_node;
+ unsigned int num_children;
+ u8 childmask;
+ struct list_head list;
+};
+
+/**
+ * struct tmigr_cpu - timer migration per CPU group
+ * @lock: Lock protecting the tmigr_cpu group information
+ * @online: Indicates whether the CPU is online; In deactivate path
+ * it is required to know whether the migrator in the top
+ * level group is to be set offline, while a timer is
+ * pending. Then another online CPU needs to be notified to
+ * take over the migrator role. Furthermore the information
+ * is required in CPU hotplug path as the CPU is able to go
+ * idle before the timer migration hierarchy hotplug AP is
+ * reached. During this phase, the CPU has to handle the
+ * global timers on its own and must not act as a migrator.
+ * @idle: Indicates whether the CPU is idle in the timer migration
+ * hierarchy
+ * @remote: Is set when timers of the CPU are expired remotely
+ * @tmgroup: Pointer to the parent group
+ * @childmask: childmask of tmigr_cpu in the parent group
+ * @wakeup: Stores the first timer when the timer migration
+ * hierarchy is completely idle and remote expiry was done;
+ * is returned to timer code in the idle path and is only
+ * used in idle path.
+ * @cpuevt: CPU event which could be enqueued into the parent group
+ */
+struct tmigr_cpu {
+ raw_spinlock_t lock;
+ bool online;
+ bool idle;
+ bool remote;
+ struct tmigr_group *tmgroup;
+ u8 childmask;
+ u64 wakeup;
+ struct tmigr_event cpuevt;
+};
+
+/**
+ * union tmigr_state - state of tmigr_group
+ * @state: Combined version of the state - only used for atomic
+ * read/cmpxchg function
+ * @struct: Split version of the state - only use the struct members to
+ * update information to stay independent of endianness
+ */
+union tmigr_state {
+ u32 state;
+ /**
+ * struct - split state of tmigr_group
+ * @active: Contains each childmask bit of the active children
+ * @migrator: Contains childmask of the child which is migrator
+ * @seq: Sequence counter needs to be increased when an update
+ * to the tmigr_state is done. It prevents a race when
+ * updates in the child groups are propagated in changed
+ * order. Detailed information about the scenario is
+ * given in the documentation at the begin of
+ * timer_migration.c.
+ */
+ struct {
+ u8 active;
+ u8 migrator;
+ u16 seq;
+ } __packed;
+};
+
+#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
+extern void tmigr_handle_remote(void);
+extern bool tmigr_requires_handle_remote(void);
+extern void tmigr_cpu_activate(void);
+extern u64 tmigr_cpu_deactivate(u64 nextevt);
+extern u64 tmigr_cpu_new_timer(u64 nextevt);
+extern u64 tmigr_quick_check(u64 nextevt);
+#else
+static inline void tmigr_handle_remote(void) { }
+static inline bool tmigr_requires_handle_remote(void) { return false; }
+static inline void tmigr_cpu_activate(void) { }
+#endif
+
+#endif
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index 0699027b4f4c..aa332ace108b 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -384,7 +384,6 @@ struct rb_irq_work {
struct irq_work work;
wait_queue_head_t waiters;
wait_queue_head_t full_waiters;
- long wait_index;
bool waiters_pending;
bool full_waiters_pending;
bool wakeup_full;
@@ -756,8 +755,19 @@ static void rb_wake_up_waiters(struct irq_work *work)
wake_up_all(&rbwork->waiters);
if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
+ /* Only cpu_buffer sets the above flags */
+ struct ring_buffer_per_cpu *cpu_buffer =
+ container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
+
+ /* Called from interrupt context */
+ raw_spin_lock(&cpu_buffer->reader_lock);
rbwork->wakeup_full = false;
rbwork->full_waiters_pending = false;
+
+ /* Waking up all waiters, they will reset the shortest full */
+ cpu_buffer->shortest_full = 0;
+ raw_spin_unlock(&cpu_buffer->reader_lock);
+
wake_up_all(&rbwork->full_waiters);
}
}
@@ -798,14 +808,40 @@ void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
rbwork = &cpu_buffer->irq_work;
}
- rbwork->wait_index++;
- /* make sure the waiters see the new index */
- smp_wmb();
-
/* This can be called in any context */
irq_work_queue(&rbwork->work);
}
+static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
+{
+ struct ring_buffer_per_cpu *cpu_buffer;
+ bool ret = false;
+
+ /* Reads of all CPUs always waits for any data */
+ if (cpu == RING_BUFFER_ALL_CPUS)
+ return !ring_buffer_empty(buffer);
+
+ cpu_buffer = buffer->buffers[cpu];
+
+ if (!ring_buffer_empty_cpu(buffer, cpu)) {
+ unsigned long flags;
+ bool pagebusy;
+
+ if (!full)
+ return true;
+
+ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+ pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
+ ret = !pagebusy && full_hit(buffer, cpu, full);
+
+ if (!cpu_buffer->shortest_full ||
+ cpu_buffer->shortest_full > full)
+ cpu_buffer->shortest_full = full;
+ raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+ }
+ return ret;
+}
+
/**
* ring_buffer_wait - wait for input to the ring buffer
* @buffer: buffer to wait on
@@ -821,7 +857,6 @@ int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
struct ring_buffer_per_cpu *cpu_buffer;
DEFINE_WAIT(wait);
struct rb_irq_work *work;
- long wait_index;
int ret = 0;
/*
@@ -840,81 +875,54 @@ int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
work = &cpu_buffer->irq_work;
}
- wait_index = READ_ONCE(work->wait_index);
-
- while (true) {
- if (full)
- prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
- else
- prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
-
- /*
- * The events can happen in critical sections where
- * checking a work queue can cause deadlocks.
- * After adding a task to the queue, this flag is set
- * only to notify events to try to wake up the queue
- * using irq_work.
- *
- * We don't clear it even if the buffer is no longer
- * empty. The flag only causes the next event to run
- * irq_work to do the work queue wake up. The worse
- * that can happen if we race with !trace_empty() is that
- * an event will cause an irq_work to try to wake up
- * an empty queue.
- *
- * There's no reason to protect this flag either, as
- * the work queue and irq_work logic will do the necessary
- * synchronization for the wake ups. The only thing
- * that is necessary is that the wake up happens after
- * a task has been queued. It's OK for spurious wake ups.
- */
- if (full)
- work->full_waiters_pending = true;
- else
- work->waiters_pending = true;
-
- if (signal_pending(current)) {
- ret = -EINTR;
- break;
- }
-
- if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
- break;
-
- if (cpu != RING_BUFFER_ALL_CPUS &&
- !ring_buffer_empty_cpu(buffer, cpu)) {
- unsigned long flags;
- bool pagebusy;
- bool done;
-
- if (!full)
- break;
-
- raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
- pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
- done = !pagebusy && full_hit(buffer, cpu, full);
+ if (full)
+ prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
+ else
+ prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
- if (!cpu_buffer->shortest_full ||
- cpu_buffer->shortest_full > full)
- cpu_buffer->shortest_full = full;
- raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
- if (done)
- break;
- }
+ /*
+ * The events can happen in critical sections where
+ * checking a work queue can cause deadlocks.
+ * After adding a task to the queue, this flag is set
+ * only to notify events to try to wake up the queue
+ * using irq_work.
+ *
+ * We don't clear it even if the buffer is no longer
+ * empty. The flag only causes the next event to run
+ * irq_work to do the work queue wake up. The worse
+ * that can happen if we race with !trace_empty() is that
+ * an event will cause an irq_work to try to wake up
+ * an empty queue.
+ *
+ * There's no reason to protect this flag either, as
+ * the work queue and irq_work logic will do the necessary
+ * synchronization for the wake ups. The only thing
+ * that is necessary is that the wake up happens after
+ * a task has been queued. It's OK for spurious wake ups.
+ */
+ if (full)
+ work->full_waiters_pending = true;
+ else
+ work->waiters_pending = true;
- schedule();
+ if (rb_watermark_hit(buffer, cpu, full))
+ goto out;
- /* Make sure to see the new wait index */
- smp_rmb();
- if (wait_index != work->wait_index)
- break;
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ goto out;
}
+ schedule();
+ out:
if (full)
finish_wait(&work->full_waiters, &wait);
else
finish_wait(&work->waiters, &wait);
+ if (!ret && !rb_watermark_hit(buffer, cpu, full) && signal_pending(current))
+ ret = -EINTR;
+
return ret;
}
@@ -937,28 +945,33 @@ __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
struct file *filp, poll_table *poll_table, int full)
{
struct ring_buffer_per_cpu *cpu_buffer;
- struct rb_irq_work *work;
+ struct rb_irq_work *rbwork;
if (cpu == RING_BUFFER_ALL_CPUS) {
- work = &buffer->irq_work;
+ rbwork = &buffer->irq_work;
full = 0;
} else {
if (!cpumask_test_cpu(cpu, buffer->cpumask))
return EPOLLERR;
cpu_buffer = buffer->buffers[cpu];
- work = &cpu_buffer->irq_work;
+ rbwork = &cpu_buffer->irq_work;
}
if (full) {
- poll_wait(filp, &work->full_waiters, poll_table);
- work->full_waiters_pending = true;
+ unsigned long flags;
+
+ poll_wait(filp, &rbwork->full_waiters, poll_table);
+
+ raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+ rbwork->full_waiters_pending = true;
if (!cpu_buffer->shortest_full ||
cpu_buffer->shortest_full > full)
cpu_buffer->shortest_full = full;
+ raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
} else {
- poll_wait(filp, &work->waiters, poll_table);
- work->waiters_pending = true;
+ poll_wait(filp, &rbwork->waiters, poll_table);
+ rbwork->waiters_pending = true;
}
/*
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index 8198bfc54b58..c9c898307348 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -7293,6 +7293,8 @@ tracing_free_buffer_release(struct inode *inode, struct file *filp)
return 0;
}
+#define TRACE_MARKER_MAX_SIZE 4096
+
static ssize_t
tracing_mark_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *fpos)
@@ -7320,6 +7322,9 @@ tracing_mark_write(struct file *filp, const char __user *ubuf,
if ((ssize_t)cnt < 0)
return -EINVAL;
+ if (cnt > TRACE_MARKER_MAX_SIZE)
+ cnt = TRACE_MARKER_MAX_SIZE;
+
meta_size = sizeof(*entry) + 2; /* add '\0' and possible '\n' */
again:
size = cnt + meta_size;
@@ -7328,11 +7333,6 @@ tracing_mark_write(struct file *filp, const char __user *ubuf,
if (cnt < FAULTED_SIZE)
size += FAULTED_SIZE - cnt;
- if (size > TRACE_SEQ_BUFFER_SIZE) {
- cnt -= size - TRACE_SEQ_BUFFER_SIZE;
- goto again;
- }
-
buffer = tr->array_buffer.buffer;
event = __trace_buffer_lock_reserve(buffer, TRACE_PRINT, size,
tracing_gen_ctx());
@@ -8393,6 +8393,20 @@ tracing_buffers_read(struct file *filp, char __user *ubuf,
return size;
}
+static int tracing_buffers_flush(struct file *file, fl_owner_t id)
+{
+ struct ftrace_buffer_info *info = file->private_data;
+ struct trace_iterator *iter = &info->iter;
+
+ iter->wait_index++;
+ /* Make sure the waiters see the new wait_index */
+ smp_wmb();
+
+ ring_buffer_wake_waiters(iter->array_buffer->buffer, iter->cpu_file);
+
+ return 0;
+}
+
static int tracing_buffers_release(struct inode *inode, struct file *file)
{
struct ftrace_buffer_info *info = file->private_data;
@@ -8404,12 +8418,6 @@ static int tracing_buffers_release(struct inode *inode, struct file *file)
__trace_array_put(iter->tr);
- iter->wait_index++;
- /* Make sure the waiters see the new wait_index */
- smp_wmb();
-
- ring_buffer_wake_waiters(iter->array_buffer->buffer, iter->cpu_file);
-
if (info->spare)
ring_buffer_free_read_page(iter->array_buffer->buffer,
info->spare_cpu, info->spare);
@@ -8625,6 +8633,7 @@ static const struct file_operations tracing_buffers_fops = {
.read = tracing_buffers_read,
.poll = tracing_buffers_poll,
.release = tracing_buffers_release,
+ .flush = tracing_buffers_flush,
.splice_read = tracing_buffers_splice_read,
.unlocked_ioctl = tracing_buffers_ioctl,
.llseek = no_llseek,
diff --git a/kernel/trace/trace_output.c b/kernel/trace/trace_output.c
index 3e7fa44dc2b2..d8b302d01083 100644
--- a/kernel/trace/trace_output.c
+++ b/kernel/trace/trace_output.c
@@ -1587,12 +1587,11 @@ static enum print_line_t trace_print_print(struct trace_iterator *iter,
{
struct print_entry *field;
struct trace_seq *s = &iter->seq;
- int max = iter->ent_size - offsetof(struct print_entry, buf);
trace_assign_type(field, iter->ent);
seq_print_ip_sym(s, field->ip, flags);
- trace_seq_printf(s, ": %.*s", max, field->buf);
+ trace_seq_printf(s, ": %s", field->buf);
return trace_handle_return(s);
}
@@ -1601,11 +1600,10 @@ static enum print_line_t trace_print_raw(struct trace_iterator *iter, int flags,
struct trace_event *event)
{
struct print_entry *field;
- int max = iter->ent_size - offsetof(struct print_entry, buf);
trace_assign_type(field, iter->ent);
- trace_seq_printf(&iter->seq, "# %lx %.*s", field->ip, max, field->buf);
+ trace_seq_printf(&iter->seq, "# %lx %s", field->ip, field->buf);
return trace_handle_return(&iter->seq);
}
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 7b482a26d741..bf2bdac46843 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -29,6 +29,7 @@
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/init.h>
+#include <linux/interrupt.h>
#include <linux/signal.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
@@ -53,10 +54,11 @@
#include <linux/nmi.h>
#include <linux/kvm_para.h>
#include <linux/delay.h>
+#include <linux/irq_work.h>
#include "workqueue_internal.h"
-enum {
+enum worker_pool_flags {
/*
* worker_pool flags
*
@@ -72,10 +74,17 @@ enum {
* Note that DISASSOCIATED should be flipped only while holding
* wq_pool_attach_mutex to avoid changing binding state while
* worker_attach_to_pool() is in progress.
+ *
+ * As there can only be one concurrent BH execution context per CPU, a
+ * BH pool is per-CPU and always DISASSOCIATED.
*/
- POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
+ POOL_BH = 1 << 0, /* is a BH pool */
+ POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */
POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
+ POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */
+};
+enum worker_flags {
/* worker flags */
WORKER_DIE = 1 << 1, /* die die die */
WORKER_IDLE = 1 << 2, /* is idle */
@@ -86,7 +95,13 @@ enum {
WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
WORKER_UNBOUND | WORKER_REBOUND,
+};
+enum work_cancel_flags {
+ WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */
+};
+
+enum wq_internal_consts {
NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
@@ -108,10 +123,18 @@ enum {
RESCUER_NICE_LEVEL = MIN_NICE,
HIGHPRI_NICE_LEVEL = MIN_NICE,
- WQ_NAME_LEN = 24,
+ WQ_NAME_LEN = 32,
};
/*
+ * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
+ * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
+ * msecs_to_jiffies() can't be an initializer.
+ */
+#define BH_WORKER_JIFFIES msecs_to_jiffies(2)
+#define BH_WORKER_RESTARTS 10
+
+/*
* Structure fields follow one of the following exclusion rules.
*
* I: Modifiable by initialization/destruction paths and read-only for
@@ -122,6 +145,9 @@ enum {
*
* L: pool->lock protected. Access with pool->lock held.
*
+ * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
+ * reads.
+ *
* K: Only modified by worker while holding pool->lock. Can be safely read by
* self, while holding pool->lock or from IRQ context if %current is the
* kworker.
@@ -143,6 +169,9 @@ enum {
*
* WR: wq->mutex protected for writes. RCU protected for reads.
*
+ * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
+ * with READ_ONCE() without locking.
+ *
* MD: wq_mayday_lock protected.
*
* WD: Used internally by the watchdog.
@@ -219,7 +248,7 @@ enum pool_workqueue_stats {
};
/*
- * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
+ * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT
* of work_struct->data are used for flags and the remaining high bits
* point to the pwq; thus, pwqs need to be aligned at two's power of the
* number of flag bits.
@@ -232,6 +261,7 @@ struct pool_workqueue {
int refcnt; /* L: reference count */
int nr_in_flight[WORK_NR_COLORS];
/* L: nr of in_flight works */
+ bool plugged; /* L: execution suspended */
/*
* nr_active management and WORK_STRUCT_INACTIVE:
@@ -240,18 +270,18 @@ struct pool_workqueue {
* pwq->inactive_works instead of pool->worklist and marked with
* WORK_STRUCT_INACTIVE.
*
- * All work items marked with WORK_STRUCT_INACTIVE do not participate
- * in pwq->nr_active and all work items in pwq->inactive_works are
- * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
- * work items are in pwq->inactive_works. Some of them are ready to
- * run in pool->worklist or worker->scheduled. Those work itmes are
- * only struct wq_barrier which is used for flush_work() and should
- * not participate in pwq->nr_active. For non-barrier work item, it
- * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
+ * All work items marked with WORK_STRUCT_INACTIVE do not participate in
+ * nr_active and all work items in pwq->inactive_works are marked with
+ * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
+ * in pwq->inactive_works. Some of them are ready to run in
+ * pool->worklist or worker->scheduled. Those work itmes are only struct
+ * wq_barrier which is used for flush_work() and should not participate
+ * in nr_active. For non-barrier work item, it is marked with
+ * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
*/
int nr_active; /* L: nr of active works */
- int max_active; /* L: max active works */
struct list_head inactive_works; /* L: inactive works */
+ struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */
struct list_head pwqs_node; /* WR: node on wq->pwqs */
struct list_head mayday_node; /* MD: node on wq->maydays */
@@ -265,7 +295,7 @@ struct pool_workqueue {
*/
struct kthread_work release_work;
struct rcu_head rcu;
-} __aligned(1 << WORK_STRUCT_FLAG_BITS);
+} __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
/*
* Structure used to wait for workqueue flush.
@@ -279,6 +309,26 @@ struct wq_flusher {
struct wq_device;
/*
+ * Unlike in a per-cpu workqueue where max_active limits its concurrency level
+ * on each CPU, in an unbound workqueue, max_active applies to the whole system.
+ * As sharing a single nr_active across multiple sockets can be very expensive,
+ * the counting and enforcement is per NUMA node.
+ *
+ * The following struct is used to enforce per-node max_active. When a pwq wants
+ * to start executing a work item, it should increment ->nr using
+ * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
+ * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
+ * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
+ * round-robin order.
+ */
+struct wq_node_nr_active {
+ int max; /* per-node max_active */
+ atomic_t nr; /* per-node nr_active */
+ raw_spinlock_t lock; /* nests inside pool locks */
+ struct list_head pending_pwqs; /* LN: pwqs with inactive works */
+};
+
+/*
* The externally visible workqueue. It relays the issued work items to
* the appropriate worker_pool through its pool_workqueues.
*/
@@ -298,10 +348,15 @@ struct workqueue_struct {
struct worker *rescuer; /* MD: rescue worker */
int nr_drainers; /* WQ: drain in progress */
- int saved_max_active; /* WQ: saved pwq max_active */
+
+ /* See alloc_workqueue() function comment for info on min/max_active */
+ int max_active; /* WO: max active works */
+ int min_active; /* WO: min active works */
+ int saved_max_active; /* WQ: saved max_active */
+ int saved_min_active; /* WQ: saved min_active */
struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
- struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
+ struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */
#ifdef CONFIG_SYSFS
struct wq_device *wq_dev; /* I: for sysfs interface */
@@ -323,10 +378,9 @@ struct workqueue_struct {
/* hot fields used during command issue, aligned to cacheline */
unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
+ struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
};
-static struct kmem_cache *pwq_cache;
-
/*
* Each pod type describes how CPUs should be grouped for unbound workqueues.
* See the comment above workqueue_attrs->affn_scope.
@@ -338,16 +392,13 @@ struct wq_pod_type {
int *cpu_pod; /* cpu -> pod */
};
-static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
-static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
-
static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
- [WQ_AFFN_DFL] = "default",
- [WQ_AFFN_CPU] = "cpu",
- [WQ_AFFN_SMT] = "smt",
- [WQ_AFFN_CACHE] = "cache",
- [WQ_AFFN_NUMA] = "numa",
- [WQ_AFFN_SYSTEM] = "system",
+ [WQ_AFFN_DFL] = "default",
+ [WQ_AFFN_CPU] = "cpu",
+ [WQ_AFFN_SMT] = "smt",
+ [WQ_AFFN_CACHE] = "cache",
+ [WQ_AFFN_NUMA] = "numa",
+ [WQ_AFFN_SYSTEM] = "system",
};
/*
@@ -359,12 +410,22 @@ static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
*/
static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
+#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
+static unsigned int wq_cpu_intensive_warning_thresh = 4;
+module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
+#endif
/* see the comment above the definition of WQ_POWER_EFFICIENT */
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
module_param_named(power_efficient, wq_power_efficient, bool, 0444);
static bool wq_online; /* can kworkers be created yet? */
+static bool wq_topo_initialized __read_mostly = false;
+
+static struct kmem_cache *pwq_cache;
+
+static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
+static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
static struct workqueue_attrs *wq_update_pod_attrs_buf;
@@ -405,8 +466,17 @@ static bool wq_debug_force_rr_cpu = false;
#endif
module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
+/* to raise softirq for the BH worker pools on other CPUs */
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
+ bh_pool_irq_works);
+
+/* the BH worker pools */
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
+ bh_worker_pools);
+
/* the per-cpu worker pools */
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
+static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
+ cpu_worker_pools);
static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
@@ -420,6 +490,12 @@ static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
/*
+ * Used to synchronize multiple cancel_sync attempts on the same work item. See
+ * work_grab_pending() and __cancel_work_sync().
+ */
+static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);
+
+/*
* I: kthread_worker to release pwq's. pwq release needs to be bounced to a
* process context while holding a pool lock. Bounce to a dedicated kthread
* worker to avoid A-A deadlocks.
@@ -440,6 +516,10 @@ struct workqueue_struct *system_power_efficient_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_power_efficient_wq);
struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
+struct workqueue_struct *system_bh_wq;
+EXPORT_SYMBOL_GPL(system_bh_wq);
+struct workqueue_struct *system_bh_highpri_wq;
+EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
static int worker_thread(void *__worker);
static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
@@ -450,16 +530,21 @@ static void show_one_worker_pool(struct worker_pool *pool);
#include <trace/events/workqueue.h>
#define assert_rcu_or_pool_mutex() \
- RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
+ RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
!lockdep_is_held(&wq_pool_mutex), \
"RCU or wq_pool_mutex should be held")
#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
- RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
+ RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \
!lockdep_is_held(&wq->mutex) && \
!lockdep_is_held(&wq_pool_mutex), \
"RCU, wq->mutex or wq_pool_mutex should be held")
+#define for_each_bh_worker_pool(pool, cpu) \
+ for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \
+ (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
+ (pool)++)
+
#define for_each_cpu_worker_pool(pool, cpu) \
for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
(pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
@@ -632,6 +717,36 @@ static int worker_pool_assign_id(struct worker_pool *pool)
return ret;
}
+static struct pool_workqueue __rcu **
+unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
+{
+ if (cpu >= 0)
+ return per_cpu_ptr(wq->cpu_pwq, cpu);
+ else
+ return &wq->dfl_pwq;
+}
+
+/* @cpu < 0 for dfl_pwq */
+static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
+{
+ return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
+ lockdep_is_held(&wq_pool_mutex) ||
+ lockdep_is_held(&wq->mutex));
+}
+
+/**
+ * unbound_effective_cpumask - effective cpumask of an unbound workqueue
+ * @wq: workqueue of interest
+ *
+ * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
+ * is masked with wq_unbound_cpumask to determine the effective cpumask. The
+ * default pwq is always mapped to the pool with the current effective cpumask.
+ */
+static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
+{
+ return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
+}
+
static unsigned int work_color_to_flags(int color)
{
return color << WORK_STRUCT_COLOR_SHIFT;
@@ -653,10 +768,9 @@ static int work_next_color(int color)
* contain the pointer to the queued pwq. Once execution starts, the flag
* is cleared and the high bits contain OFFQ flags and pool ID.
*
- * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
- * and clear_work_data() can be used to set the pwq, pool or clear
- * work->data. These functions should only be called while the work is
- * owned - ie. while the PENDING bit is set.
+ * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
+ * can be used to set the pwq, pool or clear work->data. These functions should
+ * only be called while the work is owned - ie. while the PENDING bit is set.
*
* get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
* corresponding to a work. Pool is available once the work has been
@@ -668,29 +782,28 @@ static int work_next_color(int color)
* but stay off timer and worklist for arbitrarily long and nobody should
* try to steal the PENDING bit.
*/
-static inline void set_work_data(struct work_struct *work, unsigned long data,
- unsigned long flags)
+static inline void set_work_data(struct work_struct *work, unsigned long data)
{
WARN_ON_ONCE(!work_pending(work));
- atomic_long_set(&work->data, data | flags | work_static(work));
+ atomic_long_set(&work->data, data | work_static(work));
}
static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
- unsigned long extra_flags)
+ unsigned long flags)
{
- set_work_data(work, (unsigned long)pwq,
- WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
+ set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
+ WORK_STRUCT_PWQ | flags);
}
static void set_work_pool_and_keep_pending(struct work_struct *work,
- int pool_id)
+ int pool_id, unsigned long flags)
{
- set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
- WORK_STRUCT_PENDING);
+ set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
+ WORK_STRUCT_PENDING | flags);
}
static void set_work_pool_and_clear_pending(struct work_struct *work,
- int pool_id)
+ int pool_id, unsigned long flags)
{
/*
* The following wmb is paired with the implied mb in
@@ -699,7 +812,8 @@ static void set_work_pool_and_clear_pending(struct work_struct *work,
* owner.
*/
smp_wmb();
- set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
+ set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
+ flags);
/*
* The following mb guarantees that previous clear of a PENDING bit
* will not be reordered with any speculative LOADS or STORES from
@@ -731,15 +845,9 @@ static void set_work_pool_and_clear_pending(struct work_struct *work,
smp_mb();
}
-static void clear_work_data(struct work_struct *work)
-{
- smp_wmb(); /* see set_work_pool_and_clear_pending() */
- set_work_data(work, WORK_STRUCT_NO_POOL, 0);
-}
-
static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
{
- return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
+ return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
}
static struct pool_workqueue *get_work_pwq(struct work_struct *work)
@@ -806,7 +914,7 @@ static void mark_work_canceling(struct work_struct *work)
unsigned long pool_id = get_work_pool_id(work);
pool_id <<= WORK_OFFQ_POOL_SHIFT;
- set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
+ set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
}
static bool work_is_canceling(struct work_struct *work)
@@ -1101,6 +1209,29 @@ static bool assign_work(struct work_struct *work, struct worker *worker,
return true;
}
+static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
+{
+ int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
+
+ return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
+}
+
+static void kick_bh_pool(struct worker_pool *pool)
+{
+#ifdef CONFIG_SMP
+ /* see drain_dead_softirq_workfn() for BH_DRAINING */
+ if (unlikely(pool->cpu != smp_processor_id() &&
+ !(pool->flags & POOL_BH_DRAINING))) {
+ irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
+ return;
+ }
+#endif
+ if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
+ raise_softirq_irqoff(HI_SOFTIRQ);
+ else
+ raise_softirq_irqoff(TASKLET_SOFTIRQ);
+}
+
/**
* kick_pool - wake up an idle worker if necessary
* @pool: pool to kick
@@ -1118,6 +1249,11 @@ static bool kick_pool(struct worker_pool *pool)
if (!need_more_worker(pool) || !worker)
return false;
+ if (pool->flags & POOL_BH) {
+ kick_bh_pool(pool);
+ return true;
+ }
+
p = worker->task;
#ifdef CONFIG_SMP
@@ -1198,11 +1334,13 @@ restart:
u64 cnt;
/*
- * Start reporting from the fourth time and back off
+ * Start reporting from the warning_thresh and back off
* exponentially.
*/
cnt = atomic64_inc_return_relaxed(&ent->cnt);
- if (cnt >= 4 && is_power_of_2(cnt))
+ if (wq_cpu_intensive_warning_thresh &&
+ cnt >= wq_cpu_intensive_warning_thresh &&
+ is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
ent->func, wq_cpu_intensive_thresh_us,
atomic64_read(&ent->cnt));
@@ -1231,10 +1369,12 @@ restart:
ent = &wci_ents[wci_nr_ents++];
ent->func = func;
- atomic64_set(&ent->cnt, 1);
+ atomic64_set(&ent->cnt, 0);
hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
raw_spin_unlock(&wci_lock);
+
+ goto restart;
}
#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
@@ -1402,6 +1542,74 @@ work_func_t wq_worker_last_func(struct task_struct *task)
}
/**
+ * wq_node_nr_active - Determine wq_node_nr_active to use
+ * @wq: workqueue of interest
+ * @node: NUMA node, can be %NUMA_NO_NODE
+ *
+ * Determine wq_node_nr_active to use for @wq on @node. Returns:
+ *
+ * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
+ *
+ * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
+ *
+ * - Otherwise, node_nr_active[@node].
+ */
+static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
+ int node)
+{
+ if (!(wq->flags & WQ_UNBOUND))
+ return NULL;
+
+ if (node == NUMA_NO_NODE)
+ node = nr_node_ids;
+
+ return wq->node_nr_active[node];
+}
+
+/**
+ * wq_update_node_max_active - Update per-node max_actives to use
+ * @wq: workqueue to update
+ * @off_cpu: CPU that's going down, -1 if a CPU is not going down
+ *
+ * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
+ * distributed among nodes according to the proportions of numbers of online
+ * cpus. The result is always between @wq->min_active and max_active.
+ */
+static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
+{
+ struct cpumask *effective = unbound_effective_cpumask(wq);
+ int min_active = READ_ONCE(wq->min_active);
+ int max_active = READ_ONCE(wq->max_active);
+ int total_cpus, node;
+
+ lockdep_assert_held(&wq->mutex);
+
+ if (!wq_topo_initialized)
+ return;
+
+ if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
+ off_cpu = -1;
+
+ total_cpus = cpumask_weight_and(effective, cpu_online_mask);
+ if (off_cpu >= 0)
+ total_cpus--;
+
+ for_each_node(node) {
+ int node_cpus;
+
+ node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
+ if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
+ node_cpus--;
+
+ wq_node_nr_active(wq, node)->max =
+ clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
+ min_active, max_active);
+ }
+
+ wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
+}
+
+/**
* get_pwq - get an extra reference on the specified pool_workqueue
* @pwq: pool_workqueue to get
*
@@ -1453,24 +1661,336 @@ static void put_pwq_unlocked(struct pool_workqueue *pwq)
}
}
-static void pwq_activate_inactive_work(struct work_struct *work)
+static bool pwq_is_empty(struct pool_workqueue *pwq)
{
- struct pool_workqueue *pwq = get_work_pwq(work);
+ return !pwq->nr_active && list_empty(&pwq->inactive_works);
+}
+static void __pwq_activate_work(struct pool_workqueue *pwq,
+ struct work_struct *work)
+{
+ unsigned long *wdb = work_data_bits(work);
+
+ WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
trace_workqueue_activate_work(work);
if (list_empty(&pwq->pool->worklist))
pwq->pool->watchdog_ts = jiffies;
move_linked_works(work, &pwq->pool->worklist, NULL);
- __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
+ __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
+}
+
+/**
+ * pwq_activate_work - Activate a work item if inactive
+ * @pwq: pool_workqueue @work belongs to
+ * @work: work item to activate
+ *
+ * Returns %true if activated. %false if already active.
+ */
+static bool pwq_activate_work(struct pool_workqueue *pwq,
+ struct work_struct *work)
+{
+ struct worker_pool *pool = pwq->pool;
+ struct wq_node_nr_active *nna;
+
+ lockdep_assert_held(&pool->lock);
+
+ if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
+ return false;
+
+ nna = wq_node_nr_active(pwq->wq, pool->node);
+ if (nna)
+ atomic_inc(&nna->nr);
+
pwq->nr_active++;
+ __pwq_activate_work(pwq, work);
+ return true;
}
-static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
+static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
{
- struct work_struct *work = list_first_entry(&pwq->inactive_works,
- struct work_struct, entry);
+ int max = READ_ONCE(nna->max);
- pwq_activate_inactive_work(work);
+ while (true) {
+ int old, tmp;
+
+ old = atomic_read(&nna->nr);
+ if (old >= max)
+ return false;
+ tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
+ if (tmp == old)
+ return true;
+ }
+}
+
+/**
+ * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
+ * @pwq: pool_workqueue of interest
+ * @fill: max_active may have increased, try to increase concurrency level
+ *
+ * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
+ * successfully obtained. %false otherwise.
+ */
+static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
+{
+ struct workqueue_struct *wq = pwq->wq;
+ struct worker_pool *pool = pwq->pool;
+ struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
+ bool obtained = false;
+
+ lockdep_assert_held(&pool->lock);
+
+ if (!nna) {
+ /* BH or per-cpu workqueue, pwq->nr_active is sufficient */
+ obtained = pwq->nr_active < READ_ONCE(wq->max_active);
+ goto out;
+ }
+
+ if (unlikely(pwq->plugged))
+ return false;
+
+ /*
+ * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
+ * already waiting on $nna, pwq_dec_nr_active() will maintain the
+ * concurrency level. Don't jump the line.
+ *
+ * We need to ignore the pending test after max_active has increased as
+ * pwq_dec_nr_active() can only maintain the concurrency level but not
+ * increase it. This is indicated by @fill.
+ */
+ if (!list_empty(&pwq->pending_node) && likely(!fill))
+ goto out;
+
+ obtained = tryinc_node_nr_active(nna);
+ if (obtained)
+ goto out;
+
+ /*
+ * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
+ * and try again. The smp_mb() is paired with the implied memory barrier
+ * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
+ * we see the decremented $nna->nr or they see non-empty
+ * $nna->pending_pwqs.
+ */
+ raw_spin_lock(&nna->lock);
+
+ if (list_empty(&pwq->pending_node))
+ list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
+ else if (likely(!fill))
+ goto out_unlock;
+
+ smp_mb();
+
+ obtained = tryinc_node_nr_active(nna);
+
+ /*
+ * If @fill, @pwq might have already been pending. Being spuriously
+ * pending in cold paths doesn't affect anything. Let's leave it be.
+ */
+ if (obtained && likely(!fill))
+ list_del_init(&pwq->pending_node);
+
+out_unlock:
+ raw_spin_unlock(&nna->lock);
+out:
+ if (obtained)
+ pwq->nr_active++;
+ return obtained;
+}
+
+/**
+ * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
+ * @pwq: pool_workqueue of interest
+ * @fill: max_active may have increased, try to increase concurrency level
+ *
+ * Activate the first inactive work item of @pwq if available and allowed by
+ * max_active limit.
+ *
+ * Returns %true if an inactive work item has been activated. %false if no
+ * inactive work item is found or max_active limit is reached.
+ */
+static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
+{
+ struct work_struct *work =
+ list_first_entry_or_null(&pwq->inactive_works,
+ struct work_struct, entry);
+
+ if (work && pwq_tryinc_nr_active(pwq, fill)) {
+ __pwq_activate_work(pwq, work);
+ return true;
+ } else {
+ return false;
+ }
+}
+
+/**
+ * unplug_oldest_pwq - unplug the oldest pool_workqueue
+ * @wq: workqueue_struct where its oldest pwq is to be unplugged
+ *
+ * This function should only be called for ordered workqueues where only the
+ * oldest pwq is unplugged, the others are plugged to suspend execution to
+ * ensure proper work item ordering::
+ *
+ * dfl_pwq --------------+ [P] - plugged
+ * |
+ * v
+ * pwqs -> A -> B [P] -> C [P] (newest)
+ * | | |
+ * 1 3 5
+ * | | |
+ * 2 4 6
+ *
+ * When the oldest pwq is drained and removed, this function should be called
+ * to unplug the next oldest one to start its work item execution. Note that
+ * pwq's are linked into wq->pwqs with the oldest first, so the first one in
+ * the list is the oldest.
+ */
+static void unplug_oldest_pwq(struct workqueue_struct *wq)
+{
+ struct pool_workqueue *pwq;
+
+ lockdep_assert_held(&wq->mutex);
+
+ /* Caller should make sure that pwqs isn't empty before calling */
+ pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
+ pwqs_node);
+ raw_spin_lock_irq(&pwq->pool->lock);
+ if (pwq->plugged) {
+ pwq->plugged = false;
+ if (pwq_activate_first_inactive(pwq, true))
+ kick_pool(pwq->pool);
+ }
+ raw_spin_unlock_irq(&pwq->pool->lock);
+}
+
+/**
+ * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
+ * @nna: wq_node_nr_active to activate a pending pwq for
+ * @caller_pool: worker_pool the caller is locking
+ *
+ * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
+ * @caller_pool may be unlocked and relocked to lock other worker_pools.
+ */
+static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
+ struct worker_pool *caller_pool)
+{
+ struct worker_pool *locked_pool = caller_pool;
+ struct pool_workqueue *pwq;
+ struct work_struct *work;
+
+ lockdep_assert_held(&caller_pool->lock);
+
+ raw_spin_lock(&nna->lock);
+retry:
+ pwq = list_first_entry_or_null(&nna->pending_pwqs,
+ struct pool_workqueue, pending_node);
+ if (!pwq)
+ goto out_unlock;
+
+ /*
+ * If @pwq is for a different pool than @locked_pool, we need to lock
+ * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
+ * / lock dance. For that, we also need to release @nna->lock as it's
+ * nested inside pool locks.
+ */
+ if (pwq->pool != locked_pool) {
+ raw_spin_unlock(&locked_pool->lock);
+ locked_pool = pwq->pool;
+ if (!raw_spin_trylock(&locked_pool->lock)) {
+ raw_spin_unlock(&nna->lock);
+ raw_spin_lock(&locked_pool->lock);
+ raw_spin_lock(&nna->lock);
+ goto retry;
+ }
+ }
+
+ /*
+ * $pwq may not have any inactive work items due to e.g. cancellations.
+ * Drop it from pending_pwqs and see if there's another one.
+ */
+ work = list_first_entry_or_null(&pwq->inactive_works,
+ struct work_struct, entry);
+ if (!work) {
+ list_del_init(&pwq->pending_node);
+ goto retry;
+ }
+
+ /*
+ * Acquire an nr_active count and activate the inactive work item. If
+ * $pwq still has inactive work items, rotate it to the end of the
+ * pending_pwqs so that we round-robin through them. This means that
+ * inactive work items are not activated in queueing order which is fine
+ * given that there has never been any ordering across different pwqs.
+ */
+ if (likely(tryinc_node_nr_active(nna))) {
+ pwq->nr_active++;
+ __pwq_activate_work(pwq, work);
+
+ if (list_empty(&pwq->inactive_works))
+ list_del_init(&pwq->pending_node);
+ else
+ list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
+
+ /* if activating a foreign pool, make sure it's running */
+ if (pwq->pool != caller_pool)
+ kick_pool(pwq->pool);
+ }
+
+out_unlock:
+ raw_spin_unlock(&nna->lock);
+ if (locked_pool != caller_pool) {
+ raw_spin_unlock(&locked_pool->lock);
+ raw_spin_lock(&caller_pool->lock);
+ }
+}
+
+/**
+ * pwq_dec_nr_active - Retire an active count
+ * @pwq: pool_workqueue of interest
+ *
+ * Decrement @pwq's nr_active and try to activate the first inactive work item.
+ * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
+ */
+static void pwq_dec_nr_active(struct pool_workqueue *pwq)
+{
+ struct worker_pool *pool = pwq->pool;
+ struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
+
+ lockdep_assert_held(&pool->lock);
+
+ /*
+ * @pwq->nr_active should be decremented for both percpu and unbound
+ * workqueues.
+ */
+ pwq->nr_active--;
+
+ /*
+ * For a percpu workqueue, it's simple. Just need to kick the first
+ * inactive work item on @pwq itself.
+ */
+ if (!nna) {
+ pwq_activate_first_inactive(pwq, false);
+ return;
+ }
+
+ /*
+ * If @pwq is for an unbound workqueue, it's more complicated because
+ * multiple pwqs and pools may be sharing the nr_active count. When a
+ * pwq needs to wait for an nr_active count, it puts itself on
+ * $nna->pending_pwqs. The following atomic_dec_return()'s implied
+ * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
+ * guarantee that either we see non-empty pending_pwqs or they see
+ * decremented $nna->nr.
+ *
+ * $nna->max may change as CPUs come online/offline and @pwq->wq's
+ * max_active gets updated. However, it is guaranteed to be equal to or
+ * larger than @pwq->wq->min_active which is above zero unless freezing.
+ * This maintains the forward progress guarantee.
+ */
+ if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
+ return;
+
+ if (!list_empty(&nna->pending_pwqs))
+ node_activate_pending_pwq(nna, pool);
}
/**
@@ -1481,6 +2001,11 @@ static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
* A work either has completed or is removed from pending queue,
* decrement nr_in_flight of its pwq and handle workqueue flushing.
*
+ * NOTE:
+ * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
+ * and thus should be called after all other state updates for the in-flight
+ * work item is complete.
+ *
* CONTEXT:
* raw_spin_lock_irq(pool->lock).
*/
@@ -1488,14 +2013,8 @@ static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_
{
int color = get_work_color(work_data);
- if (!(work_data & WORK_STRUCT_INACTIVE)) {
- pwq->nr_active--;
- if (!list_empty(&pwq->inactive_works)) {
- /* one down, submit an inactive one */
- if (pwq->nr_active < pwq->max_active)
- pwq_activate_first_inactive(pwq);
- }
- }
+ if (!(work_data & WORK_STRUCT_INACTIVE))
+ pwq_dec_nr_active(pwq);
pwq->nr_in_flight[color]--;
@@ -1523,8 +2042,8 @@ out_put:
/**
* try_to_grab_pending - steal work item from worklist and disable irq
* @work: work item to steal
- * @is_dwork: @work is a delayed_work
- * @flags: place to store irq state
+ * @cflags: %WORK_CANCEL_ flags
+ * @irq_flags: place to store irq state
*
* Try to grab PENDING bit of @work. This function can handle @work in any
* stable state - idle, on timer or on worklist.
@@ -1546,20 +2065,20 @@ out_put:
* irqsafe, ensures that we return -EAGAIN for finite short period of time.
*
* On successful return, >= 0, irq is disabled and the caller is
- * responsible for releasing it using local_irq_restore(*@flags).
+ * responsible for releasing it using local_irq_restore(*@irq_flags).
*
* This function is safe to call from any context including IRQ handler.
*/
-static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
- unsigned long *flags)
+static int try_to_grab_pending(struct work_struct *work, u32 cflags,
+ unsigned long *irq_flags)
{
struct worker_pool *pool;
struct pool_workqueue *pwq;
- local_irq_save(*flags);
+ local_irq_save(*irq_flags);
/* try to steal the timer if it exists */
- if (is_dwork) {
+ if (cflags & WORK_CANCEL_DELAYED) {
struct delayed_work *dwork = to_delayed_work(work);
/*
@@ -1595,6 +2114,8 @@ static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
*/
pwq = get_work_pwq(work);
if (pwq && pwq->pool == pool) {
+ unsigned long work_data;
+
debug_work_deactivate(work);
/*
@@ -1608,14 +2129,19 @@ static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
* management later on and cause stall. Make sure the work
* item is activated before grabbing.
*/
- if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
- pwq_activate_inactive_work(work);
+ pwq_activate_work(pwq, work);
list_del_init(&work->entry);
- pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
- /* work->data points to pwq iff queued, point to pool */
- set_work_pool_and_keep_pending(work, pool->id);
+ /*
+ * work->data points to pwq iff queued. Let's point to pool. As
+ * this destroys work->data needed by the next step, stash it.
+ */
+ work_data = *work_data_bits(work);
+ set_work_pool_and_keep_pending(work, pool->id, 0);
+
+ /* must be the last step, see the function comment */
+ pwq_dec_nr_in_flight(pwq, work_data);
raw_spin_unlock(&pool->lock);
rcu_read_unlock();
@@ -1624,13 +2150,82 @@ static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
raw_spin_unlock(&pool->lock);
fail:
rcu_read_unlock();
- local_irq_restore(*flags);
+ local_irq_restore(*irq_flags);
if (work_is_canceling(work))
return -ENOENT;
cpu_relax();
return -EAGAIN;
}
+struct cwt_wait {
+ wait_queue_entry_t wait;
+ struct work_struct *work;
+};
+
+static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
+{
+ struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
+
+ if (cwait->work != key)
+ return 0;
+ return autoremove_wake_function(wait, mode, sync, key);
+}
+
+/**
+ * work_grab_pending - steal work item from worklist and disable irq
+ * @work: work item to steal
+ * @cflags: %WORK_CANCEL_ flags
+ * @irq_flags: place to store IRQ state
+ *
+ * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
+ * or on worklist.
+ *
+ * Must be called in process context. IRQ is disabled on return with IRQ state
+ * stored in *@irq_flags. The caller is responsible for re-enabling it using
+ * local_irq_restore().
+ *
+ * Returns %true if @work was pending. %false if idle.
+ */
+static bool work_grab_pending(struct work_struct *work, u32 cflags,
+ unsigned long *irq_flags)
+{
+ struct cwt_wait cwait;
+ int ret;
+
+ might_sleep();
+repeat:
+ ret = try_to_grab_pending(work, cflags, irq_flags);
+ if (likely(ret >= 0))
+ return ret;
+ if (ret != -ENOENT)
+ goto repeat;
+
+ /*
+ * Someone is already canceling. Wait for it to finish. flush_work()
+ * doesn't work for PREEMPT_NONE because we may get woken up between
+ * @work's completion and the other canceling task resuming and clearing
+ * CANCELING - flush_work() will return false immediately as @work is no
+ * longer busy, try_to_grab_pending() will return -ENOENT as @work is
+ * still being canceled and the other canceling task won't be able to
+ * clear CANCELING as we're hogging the CPU.
+ *
+ * Let's wait for completion using a waitqueue. As this may lead to the
+ * thundering herd problem, use a custom wake function which matches
+ * @work along with exclusive wait and wakeup.
+ */
+ init_wait(&cwait.wait);
+ cwait.wait.func = cwt_wakefn;
+ cwait.work = work;
+
+ prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
+ TASK_UNINTERRUPTIBLE);
+ if (work_is_canceling(work))
+ schedule();
+ finish_wait(&wq_cancel_waitq, &cwait.wait);
+
+ goto repeat;
+}
+
/**
* insert_work - insert a work into a pool
* @pwq: pwq @work belongs to
@@ -1718,7 +2313,6 @@ static void __queue_work(int cpu, struct workqueue_struct *wq,
*/
lockdep_assert_irqs_disabled();
-
/*
* For a draining wq, only works from the same workqueue are
* allowed. The __WQ_DESTROYING helps to spot the issue that
@@ -1793,12 +2387,16 @@ retry:
pwq->nr_in_flight[pwq->work_color]++;
work_flags = work_color_to_flags(pwq->work_color);
- if (likely(pwq->nr_active < pwq->max_active)) {
+ /*
+ * Limit the number of concurrently active work items to max_active.
+ * @work must also queue behind existing inactive work items to maintain
+ * ordering when max_active changes. See wq_adjust_max_active().
+ */
+ if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
if (list_empty(&pool->worklist))
pool->watchdog_ts = jiffies;
trace_workqueue_activate_work(work);
- pwq->nr_active++;
insert_work(pwq, work, &pool->worklist, work_flags);
kick_pool(pool);
} else {
@@ -1829,16 +2427,16 @@ bool queue_work_on(int cpu, struct workqueue_struct *wq,
struct work_struct *work)
{
bool ret = false;
- unsigned long flags;
+ unsigned long irq_flags;
- local_irq_save(flags);
+ local_irq_save(irq_flags);
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
__queue_work(cpu, wq, work);
ret = true;
}
- local_irq_restore(flags);
+ local_irq_restore(irq_flags);
return ret;
}
EXPORT_SYMBOL(queue_work_on);
@@ -1895,7 +2493,7 @@ static int select_numa_node_cpu(int node)
bool queue_work_node(int node, struct workqueue_struct *wq,
struct work_struct *work)
{
- unsigned long flags;
+ unsigned long irq_flags;
bool ret = false;
/*
@@ -1909,7 +2507,7 @@ bool queue_work_node(int node, struct workqueue_struct *wq,
*/
WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
- local_irq_save(flags);
+ local_irq_save(irq_flags);
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
int cpu = select_numa_node_cpu(node);
@@ -1918,7 +2516,7 @@ bool queue_work_node(int node, struct workqueue_struct *wq,
ret = true;
}
- local_irq_restore(flags);
+ local_irq_restore(irq_flags);
return ret;
}
EXPORT_SYMBOL_GPL(queue_work_node);
@@ -1958,10 +2556,18 @@ static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
dwork->cpu = cpu;
timer->expires = jiffies + delay;
- if (unlikely(cpu != WORK_CPU_UNBOUND))
+ if (housekeeping_enabled(HK_TYPE_TIMER)) {
+ /* If the current cpu is a housekeeping cpu, use it. */
+ cpu = smp_processor_id();
+ if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
+ cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
add_timer_on(timer, cpu);
- else
- add_timer(timer);
+ } else {
+ if (likely(cpu == WORK_CPU_UNBOUND))
+ add_timer_global(timer);
+ else
+ add_timer_on(timer, cpu);
+ }
}
/**
@@ -1980,17 +2586,17 @@ bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
{
struct work_struct *work = &dwork->work;
bool ret = false;
- unsigned long flags;
+ unsigned long irq_flags;
/* read the comment in __queue_work() */
- local_irq_save(flags);
+ local_irq_save(irq_flags);
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
__queue_delayed_work(cpu, wq, dwork, delay);
ret = true;
}
- local_irq_restore(flags);
+ local_irq_restore(irq_flags);
return ret;
}
EXPORT_SYMBOL(queue_delayed_work_on);
@@ -2016,16 +2622,17 @@ EXPORT_SYMBOL(queue_delayed_work_on);
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay)
{
- unsigned long flags;
+ unsigned long irq_flags;
int ret;
do {
- ret = try_to_grab_pending(&dwork->work, true, &flags);
+ ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
+ &irq_flags);
} while (unlikely(ret == -EAGAIN));
if (likely(ret >= 0)) {
__queue_delayed_work(cpu, wq, dwork, delay);
- local_irq_restore(flags);
+ local_irq_restore(irq_flags);
}
/* -ENOENT from try_to_grab_pending() becomes %true */
@@ -2100,19 +2707,21 @@ static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
* cpu-[un]hotplugs.
*/
static void worker_attach_to_pool(struct worker *worker,
- struct worker_pool *pool)
+ struct worker_pool *pool)
{
mutex_lock(&wq_pool_attach_mutex);
/*
- * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
- * stable across this function. See the comments above the flag
- * definition for details.
+ * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
+ * across this function. See the comments above the flag definition for
+ * details. BH workers are, while per-CPU, always DISASSOCIATED.
*/
- if (pool->flags & POOL_DISASSOCIATED)
+ if (pool->flags & POOL_DISASSOCIATED) {
worker->flags |= WORKER_UNBOUND;
- else
+ } else {
+ WARN_ON_ONCE(pool->flags & POOL_BH);
kthread_set_per_cpu(worker->task, pool->cpu);
+ }
if (worker->rescue_wq)
set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
@@ -2136,6 +2745,9 @@ static void worker_detach_from_pool(struct worker *worker)
struct worker_pool *pool = worker->pool;
struct completion *detach_completion = NULL;
+ /* there is one permanent BH worker per CPU which should never detach */
+ WARN_ON_ONCE(pool->flags & POOL_BH);
+
mutex_lock(&wq_pool_attach_mutex);
kthread_set_per_cpu(worker->task, -1);
@@ -2187,27 +2799,29 @@ static struct worker *create_worker(struct worker_pool *pool)
worker->id = id;
- if (pool->cpu >= 0)
- snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
- pool->attrs->nice < 0 ? "H" : "");
- else
- snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
-
- worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
- "kworker/%s", id_buf);
- if (IS_ERR(worker->task)) {
- if (PTR_ERR(worker->task) == -EINTR) {
- pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
- id_buf);
- } else {
- pr_err_once("workqueue: Failed to create a worker thread: %pe",
- worker->task);
+ if (!(pool->flags & POOL_BH)) {
+ if (pool->cpu >= 0)
+ snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
+ pool->attrs->nice < 0 ? "H" : "");
+ else
+ snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
+
+ worker->task = kthread_create_on_node(worker_thread, worker,
+ pool->node, "kworker/%s", id_buf);
+ if (IS_ERR(worker->task)) {
+ if (PTR_ERR(worker->task) == -EINTR) {
+ pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
+ id_buf);
+ } else {
+ pr_err_once("workqueue: Failed to create a worker thread: %pe",
+ worker->task);
+ }
+ goto fail;
}
- goto fail;
- }
- set_user_nice(worker->task, pool->attrs->nice);
- kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
+ set_user_nice(worker->task, pool->attrs->nice);
+ kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
+ }
/* successful, attach the worker to the pool */
worker_attach_to_pool(worker, pool);
@@ -2217,14 +2831,14 @@ static struct worker *create_worker(struct worker_pool *pool)
worker->pool->nr_workers++;
worker_enter_idle(worker);
- kick_pool(pool);
/*
* @worker is waiting on a completion in kthread() and will trigger hung
- * check if not woken up soon. As kick_pool() might not have waken it
- * up, wake it up explicitly once more.
+ * check if not woken up soon. As kick_pool() is noop if @pool is empty,
+ * wake it up explicitly.
*/
- wake_up_process(worker->task);
+ if (worker->task)
+ wake_up_process(worker->task);
raw_spin_unlock_irq(&pool->lock);
@@ -2543,6 +3157,8 @@ __acquires(&pool->lock)
struct pool_workqueue *pwq = get_work_pwq(work);
struct worker_pool *pool = worker->pool;
unsigned long work_data;
+ int lockdep_start_depth, rcu_start_depth;
+ bool bh_draining = pool->flags & POOL_BH_DRAINING;
#ifdef CONFIG_LOCKDEP
/*
* It is permissible to free the struct work_struct from
@@ -2565,7 +3181,8 @@ __acquires(&pool->lock)
worker->current_work = work;
worker->current_func = work->func;
worker->current_pwq = pwq;
- worker->current_at = worker->task->se.sum_exec_runtime;
+ if (worker->task)
+ worker->current_at = worker->task->se.sum_exec_runtime;
work_data = *work_data_bits(work);
worker->current_color = get_work_color(work_data);
@@ -2600,12 +3217,16 @@ __acquires(&pool->lock)
* PENDING and queued state changes happen together while IRQ is
* disabled.
*/
- set_work_pool_and_clear_pending(work, pool->id);
+ set_work_pool_and_clear_pending(work, pool->id, 0);
pwq->stats[PWQ_STAT_STARTED]++;
raw_spin_unlock_irq(&pool->lock);
- lock_map_acquire(&pwq->wq->lockdep_map);
+ rcu_start_depth = rcu_preempt_depth();
+ lockdep_start_depth = lockdep_depth(current);
+ /* see drain_dead_softirq_workfn() */
+ if (!bh_draining)
+ lock_map_acquire(&pwq->wq->lockdep_map);
lock_map_acquire(&lockdep_map);
/*
* Strictly speaking we should mark the invariant state without holding
@@ -2638,12 +3259,17 @@ __acquires(&pool->lock)
trace_workqueue_execute_end(work, worker->current_func);
pwq->stats[PWQ_STAT_COMPLETED]++;
lock_map_release(&lockdep_map);
- lock_map_release(&pwq->wq->lockdep_map);
+ if (!bh_draining)
+ lock_map_release(&pwq->wq->lockdep_map);
- if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
- pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
- " last function: %ps\n",
- current->comm, preempt_count(), task_pid_nr(current),
+ if (unlikely((worker->task && in_atomic()) ||
+ lockdep_depth(current) != lockdep_start_depth ||
+ rcu_preempt_depth() != rcu_start_depth)) {
+ pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
+ " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
+ current->comm, task_pid_nr(current), preempt_count(),
+ lockdep_start_depth, lockdep_depth(current),
+ rcu_start_depth, rcu_preempt_depth(),
worker->current_func);
debug_show_held_locks(current);
dump_stack();
@@ -2657,7 +3283,8 @@ __acquires(&pool->lock)
* stop_machine. At the same time, report a quiescent RCU state so
* the same condition doesn't freeze RCU.
*/
- cond_resched();
+ if (worker->task)
+ cond_resched();
raw_spin_lock_irq(&pool->lock);
@@ -2677,6 +3304,8 @@ __acquires(&pool->lock)
worker->current_func = NULL;
worker->current_pwq = NULL;
worker->current_color = INT_MAX;
+
+ /* must be the last step, see the function comment */
pwq_dec_nr_in_flight(pwq, work_data);
}
@@ -2938,6 +3567,139 @@ repeat:
goto repeat;
}
+static void bh_worker(struct worker *worker)
+{
+ struct worker_pool *pool = worker->pool;
+ int nr_restarts = BH_WORKER_RESTARTS;
+ unsigned long end = jiffies + BH_WORKER_JIFFIES;
+
+ raw_spin_lock_irq(&pool->lock);
+ worker_leave_idle(worker);
+
+ /*
+ * This function follows the structure of worker_thread(). See there for
+ * explanations on each step.
+ */
+ if (!need_more_worker(pool))
+ goto done;
+
+ WARN_ON_ONCE(!list_empty(&worker->scheduled));
+ worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
+
+ do {
+ struct work_struct *work =
+ list_first_entry(&pool->worklist,
+ struct work_struct, entry);
+
+ if (assign_work(work, worker, NULL))
+ process_scheduled_works(worker);
+ } while (keep_working(pool) &&
+ --nr_restarts && time_before(jiffies, end));
+
+ worker_set_flags(worker, WORKER_PREP);
+done:
+ worker_enter_idle(worker);
+ kick_pool(pool);
+ raw_spin_unlock_irq(&pool->lock);
+}
+
+/*
+ * TODO: Convert all tasklet users to workqueue and use softirq directly.
+ *
+ * This is currently called from tasklet[_hi]action() and thus is also called
+ * whenever there are tasklets to run. Let's do an early exit if there's nothing
+ * queued. Once conversion from tasklet is complete, the need_more_worker() test
+ * can be dropped.
+ *
+ * After full conversion, we'll add worker->softirq_action, directly use the
+ * softirq action and obtain the worker pointer from the softirq_action pointer.
+ */
+void workqueue_softirq_action(bool highpri)
+{
+ struct worker_pool *pool =
+ &per_cpu(bh_worker_pools, smp_processor_id())[highpri];
+ if (need_more_worker(pool))
+ bh_worker(list_first_entry(&pool->workers, struct worker, node));
+}
+
+struct wq_drain_dead_softirq_work {
+ struct work_struct work;
+ struct worker_pool *pool;
+ struct completion done;
+};
+
+static void drain_dead_softirq_workfn(struct work_struct *work)
+{
+ struct wq_drain_dead_softirq_work *dead_work =
+ container_of(work, struct wq_drain_dead_softirq_work, work);
+ struct worker_pool *pool = dead_work->pool;
+ bool repeat;
+
+ /*
+ * @pool's CPU is dead and we want to execute its still pending work
+ * items from this BH work item which is running on a different CPU. As
+ * its CPU is dead, @pool can't be kicked and, as work execution path
+ * will be nested, a lockdep annotation needs to be suppressed. Mark
+ * @pool with %POOL_BH_DRAINING for the special treatments.
+ */
+ raw_spin_lock_irq(&pool->lock);
+ pool->flags |= POOL_BH_DRAINING;
+ raw_spin_unlock_irq(&pool->lock);
+
+ bh_worker(list_first_entry(&pool->workers, struct worker, node));
+
+ raw_spin_lock_irq(&pool->lock);
+ pool->flags &= ~POOL_BH_DRAINING;
+ repeat = need_more_worker(pool);
+ raw_spin_unlock_irq(&pool->lock);
+
+ /*
+ * bh_worker() might hit consecutive execution limit and bail. If there
+ * still are pending work items, reschedule self and return so that we
+ * don't hog this CPU's BH.
+ */
+ if (repeat) {
+ if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
+ queue_work(system_bh_highpri_wq, work);
+ else
+ queue_work(system_bh_wq, work);
+ } else {
+ complete(&dead_work->done);
+ }
+}
+
+/*
+ * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
+ * possible to allocate dead_work per CPU and avoid flushing. However, then we
+ * have to worry about draining overlapping with CPU coming back online or
+ * nesting (one CPU's dead_work queued on another CPU which is also dead and so
+ * on). Let's keep it simple and drain them synchronously. These are BH work
+ * items which shouldn't be requeued on the same pool. Shouldn't take long.
+ */
+void workqueue_softirq_dead(unsigned int cpu)
+{
+ int i;
+
+ for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
+ struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
+ struct wq_drain_dead_softirq_work dead_work;
+
+ if (!need_more_worker(pool))
+ continue;
+
+ INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
+ dead_work.pool = pool;
+ init_completion(&dead_work.done);
+
+ if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
+ queue_work(system_bh_highpri_wq, &dead_work.work);
+ else
+ queue_work(system_bh_wq, &dead_work.work);
+
+ wait_for_completion(&dead_work.done);
+ }
+}
+
/**
* check_flush_dependency - check for flush dependency sanity
* @target_wq: workqueue being flushed
@@ -3010,6 +3772,7 @@ static void insert_wq_barrier(struct pool_workqueue *pwq,
struct wq_barrier *barr,
struct work_struct *target, struct worker *worker)
{
+ static __maybe_unused struct lock_class_key bh_key, thr_key;
unsigned int work_flags = 0;
unsigned int work_color;
struct list_head *head;
@@ -3019,15 +3782,20 @@ static void insert_wq_barrier(struct pool_workqueue *pwq,
* as we know for sure that this will not trigger any of the
* checks and call back into the fixup functions where we
* might deadlock.
+ *
+ * BH and threaded workqueues need separate lockdep keys to avoid
+ * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
+ * usage".
*/
- INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
+ INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
+ (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
init_completion_map(&barr->done, &target->lockdep_map);
barr->task = current;
- /* The barrier work item does not participate in pwq->nr_active. */
+ /* The barrier work item does not participate in nr_active. */
work_flags |= WORK_STRUCT_INACTIVE;
/*
@@ -3124,6 +3892,35 @@ static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
return wait;
}
+static void touch_wq_lockdep_map(struct workqueue_struct *wq)
+{
+#ifdef CONFIG_LOCKDEP
+ if (wq->flags & WQ_BH)
+ local_bh_disable();
+
+ lock_map_acquire(&wq->lockdep_map);
+ lock_map_release(&wq->lockdep_map);
+
+ if (wq->flags & WQ_BH)
+ local_bh_enable();
+#endif
+}
+
+static void touch_work_lockdep_map(struct work_struct *work,
+ struct workqueue_struct *wq)
+{
+#ifdef CONFIG_LOCKDEP
+ if (wq->flags & WQ_BH)
+ local_bh_disable();
+
+ lock_map_acquire(&work->lockdep_map);
+ lock_map_release(&work->lockdep_map);
+
+ if (wq->flags & WQ_BH)
+ local_bh_enable();
+#endif
+}
+
/**
* __flush_workqueue - ensure that any scheduled work has run to completion.
* @wq: workqueue to flush
@@ -3143,8 +3940,7 @@ void __flush_workqueue(struct workqueue_struct *wq)
if (WARN_ON(!wq_online))
return;
- lock_map_acquire(&wq->lockdep_map);
- lock_map_release(&wq->lockdep_map);
+ touch_wq_lockdep_map(wq);
mutex_lock(&wq->mutex);
@@ -3316,7 +4112,7 @@ reflush:
bool drained;
raw_spin_lock_irq(&pwq->pool->lock);
- drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
+ drained = pwq_is_empty(pwq);
raw_spin_unlock_irq(&pwq->pool->lock);
if (drained)
@@ -3343,6 +4139,7 @@ static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
struct worker *worker = NULL;
struct worker_pool *pool;
struct pool_workqueue *pwq;
+ struct workqueue_struct *wq;
might_sleep();
@@ -3366,11 +4163,14 @@ static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
pwq = worker->current_pwq;
}
- check_flush_dependency(pwq->wq, work);
+ wq = pwq->wq;
+ check_flush_dependency(wq, work);
insert_wq_barrier(pwq, barr, work, worker);
raw_spin_unlock_irq(&pool->lock);
+ touch_work_lockdep_map(work, wq);
+
/*
* Force a lock recursion deadlock when using flush_work() inside a
* single-threaded or rescuer equipped workqueue.
@@ -3380,11 +4180,9 @@ static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
* workqueues the deadlock happens when the rescuer stalls, blocking
* forward progress.
*/
- if (!from_cancel &&
- (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
- lock_map_acquire(&pwq->wq->lockdep_map);
- lock_map_release(&pwq->wq->lockdep_map);
- }
+ if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
+ touch_wq_lockdep_map(wq);
+
rcu_read_unlock();
return true;
already_gone:
@@ -3403,9 +4201,6 @@ static bool __flush_work(struct work_struct *work, bool from_cancel)
if (WARN_ON(!work->func))
return false;
- lock_map_acquire(&work->lockdep_map);
- lock_map_release(&work->lockdep_map);
-
if (start_flush_work(work, &barr, from_cancel)) {
wait_for_completion(&barr.done);
destroy_work_on_stack(&barr.work);
@@ -3432,108 +4227,6 @@ bool flush_work(struct work_struct *work)
}
EXPORT_SYMBOL_GPL(flush_work);
-struct cwt_wait {
- wait_queue_entry_t wait;
- struct work_struct *work;
-};
-
-static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
-{
- struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
-
- if (cwait->work != key)
- return 0;
- return autoremove_wake_function(wait, mode, sync, key);
-}
-
-static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
-{
- static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
- unsigned long flags;
- int ret;
-
- do {
- ret = try_to_grab_pending(work, is_dwork, &flags);
- /*
- * If someone else is already canceling, wait for it to
- * finish. flush_work() doesn't work for PREEMPT_NONE
- * because we may get scheduled between @work's completion
- * and the other canceling task resuming and clearing
- * CANCELING - flush_work() will return false immediately
- * as @work is no longer busy, try_to_grab_pending() will
- * return -ENOENT as @work is still being canceled and the
- * other canceling task won't be able to clear CANCELING as
- * we're hogging the CPU.
- *
- * Let's wait for completion using a waitqueue. As this
- * may lead to the thundering herd problem, use a custom
- * wake function which matches @work along with exclusive
- * wait and wakeup.
- */
- if (unlikely(ret == -ENOENT)) {
- struct cwt_wait cwait;
-
- init_wait(&cwait.wait);
- cwait.wait.func = cwt_wakefn;
- cwait.work = work;
-
- prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
- TASK_UNINTERRUPTIBLE);
- if (work_is_canceling(work))
- schedule();
- finish_wait(&cancel_waitq, &cwait.wait);
- }
- } while (unlikely(ret < 0));
-
- /* tell other tasks trying to grab @work to back off */
- mark_work_canceling(work);
- local_irq_restore(flags);
-
- /*
- * This allows canceling during early boot. We know that @work
- * isn't executing.
- */
- if (wq_online)
- __flush_work(work, true);
-
- clear_work_data(work);
-
- /*
- * Paired with prepare_to_wait() above so that either
- * waitqueue_active() is visible here or !work_is_canceling() is
- * visible there.
- */
- smp_mb();
- if (waitqueue_active(&cancel_waitq))
- __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
-
- return ret;
-}
-
-/**
- * cancel_work_sync - cancel a work and wait for it to finish
- * @work: the work to cancel
- *
- * Cancel @work and wait for its execution to finish. This function
- * can be used even if the work re-queues itself or migrates to
- * another workqueue. On return from this function, @work is
- * guaranteed to be not pending or executing on any CPU.
- *
- * cancel_work_sync(&delayed_work->work) must not be used for
- * delayed_work's. Use cancel_delayed_work_sync() instead.
- *
- * The caller must ensure that the workqueue on which @work was last
- * queued can't be destroyed before this function returns.
- *
- * Return:
- * %true if @work was pending, %false otherwise.
- */
-bool cancel_work_sync(struct work_struct *work)
-{
- return __cancel_work_timer(work, false);
-}
-EXPORT_SYMBOL_GPL(cancel_work_sync);
-
/**
* flush_delayed_work - wait for a dwork to finish executing the last queueing
* @dwork: the delayed work to flush
@@ -3576,20 +4269,50 @@ bool flush_rcu_work(struct rcu_work *rwork)
}
EXPORT_SYMBOL(flush_rcu_work);
-static bool __cancel_work(struct work_struct *work, bool is_dwork)
+static bool __cancel_work(struct work_struct *work, u32 cflags)
{
- unsigned long flags;
+ unsigned long irq_flags;
int ret;
do {
- ret = try_to_grab_pending(work, is_dwork, &flags);
+ ret = try_to_grab_pending(work, cflags, &irq_flags);
} while (unlikely(ret == -EAGAIN));
if (unlikely(ret < 0))
return false;
- set_work_pool_and_clear_pending(work, get_work_pool_id(work));
- local_irq_restore(flags);
+ set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
+ local_irq_restore(irq_flags);
+ return ret;
+}
+
+static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
+{
+ unsigned long irq_flags;
+ bool ret;
+
+ /* claim @work and tell other tasks trying to grab @work to back off */
+ ret = work_grab_pending(work, cflags, &irq_flags);
+ mark_work_canceling(work);
+ local_irq_restore(irq_flags);
+
+ /*
+ * Skip __flush_work() during early boot when we know that @work isn't
+ * executing. This allows canceling during early boot.
+ */
+ if (wq_online)
+ __flush_work(work, true);
+
+ /*
+ * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
+ * with prepare_to_wait() above so that either waitqueue_active() is
+ * visible here or !work_is_canceling() is visible there.
+ */
+ set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);
+
+ if (waitqueue_active(&wq_cancel_waitq))
+ __wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);
+
return ret;
}
@@ -3598,11 +4321,35 @@ static bool __cancel_work(struct work_struct *work, bool is_dwork)
*/
bool cancel_work(struct work_struct *work)
{
- return __cancel_work(work, false);
+ return __cancel_work(work, 0);
}
EXPORT_SYMBOL(cancel_work);
/**
+ * cancel_work_sync - cancel a work and wait for it to finish
+ * @work: the work to cancel
+ *
+ * Cancel @work and wait for its execution to finish. This function
+ * can be used even if the work re-queues itself or migrates to
+ * another workqueue. On return from this function, @work is
+ * guaranteed to be not pending or executing on any CPU.
+ *
+ * cancel_work_sync(&delayed_work->work) must not be used for
+ * delayed_work's. Use cancel_delayed_work_sync() instead.
+ *
+ * The caller must ensure that the workqueue on which @work was last
+ * queued can't be destroyed before this function returns.
+ *
+ * Return:
+ * %true if @work was pending, %false otherwise.
+ */
+bool cancel_work_sync(struct work_struct *work)
+{
+ return __cancel_work_sync(work, 0);
+}
+EXPORT_SYMBOL_GPL(cancel_work_sync);
+
+/**
* cancel_delayed_work - cancel a delayed work
* @dwork: delayed_work to cancel
*
@@ -3620,7 +4367,7 @@ EXPORT_SYMBOL(cancel_work);
*/
bool cancel_delayed_work(struct delayed_work *dwork)
{
- return __cancel_work(&dwork->work, true);
+ return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
}
EXPORT_SYMBOL(cancel_delayed_work);
@@ -3635,7 +4382,7 @@ EXPORT_SYMBOL(cancel_delayed_work);
*/
bool cancel_delayed_work_sync(struct delayed_work *dwork)
{
- return __cancel_work_timer(&dwork->work, true);
+ return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
}
EXPORT_SYMBOL(cancel_delayed_work_sync);
@@ -3927,11 +4674,66 @@ static void wq_free_lockdep(struct workqueue_struct *wq)
}
#endif
+static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
+{
+ int node;
+
+ for_each_node(node) {
+ kfree(nna_ar[node]);
+ nna_ar[node] = NULL;
+ }
+
+ kfree(nna_ar[nr_node_ids]);
+ nna_ar[nr_node_ids] = NULL;
+}
+
+static void init_node_nr_active(struct wq_node_nr_active *nna)
+{
+ nna->max = WQ_DFL_MIN_ACTIVE;
+ atomic_set(&nna->nr, 0);
+ raw_spin_lock_init(&nna->lock);
+ INIT_LIST_HEAD(&nna->pending_pwqs);
+}
+
+/*
+ * Each node's nr_active counter will be accessed mostly from its own node and
+ * should be allocated in the node.
+ */
+static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
+{
+ struct wq_node_nr_active *nna;
+ int node;
+
+ for_each_node(node) {
+ nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
+ if (!nna)
+ goto err_free;
+ init_node_nr_active(nna);
+ nna_ar[node] = nna;
+ }
+
+ /* [nr_node_ids] is used as the fallback */
+ nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
+ if (!nna)
+ goto err_free;
+ init_node_nr_active(nna);
+ nna_ar[nr_node_ids] = nna;
+
+ return 0;
+
+err_free:
+ free_node_nr_active(nna_ar);
+ return -ENOMEM;
+}
+
static void rcu_free_wq(struct rcu_head *rcu)
{
struct workqueue_struct *wq =
container_of(rcu, struct workqueue_struct, rcu);
+ if (wq->flags & WQ_UNBOUND)
+ free_node_nr_active(wq->node_nr_active);
+
wq_free_lockdep(wq);
free_percpu(wq->cpu_pwq);
free_workqueue_attrs(wq->unbound_attrs);
@@ -4121,6 +4923,13 @@ static void pwq_release_workfn(struct kthread_work *work)
mutex_lock(&wq->mutex);
list_del_rcu(&pwq->pwqs_node);
is_last = list_empty(&wq->pwqs);
+
+ /*
+ * For ordered workqueue with a plugged dfl_pwq, restart it now.
+ */
+ if (!is_last && (wq->flags & __WQ_ORDERED))
+ unplug_oldest_pwq(wq);
+
mutex_unlock(&wq->mutex);
}
@@ -4130,6 +4939,15 @@ static void pwq_release_workfn(struct kthread_work *work)
mutex_unlock(&wq_pool_mutex);
}
+ if (!list_empty(&pwq->pending_node)) {
+ struct wq_node_nr_active *nna =
+ wq_node_nr_active(pwq->wq, pwq->pool->node);
+
+ raw_spin_lock_irq(&nna->lock);
+ list_del_init(&pwq->pending_node);
+ raw_spin_unlock_irq(&nna->lock);
+ }
+
call_rcu(&pwq->rcu, rcu_free_pwq);
/*
@@ -4142,55 +4960,11 @@ static void pwq_release_workfn(struct kthread_work *work)
}
}
-/**
- * pwq_adjust_max_active - update a pwq's max_active to the current setting
- * @pwq: target pool_workqueue
- *
- * If @pwq isn't freezing, set @pwq->max_active to the associated
- * workqueue's saved_max_active and activate inactive work items
- * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
- */
-static void pwq_adjust_max_active(struct pool_workqueue *pwq)
-{
- struct workqueue_struct *wq = pwq->wq;
- bool freezable = wq->flags & WQ_FREEZABLE;
- unsigned long flags;
-
- /* for @wq->saved_max_active */
- lockdep_assert_held(&wq->mutex);
-
- /* fast exit for non-freezable wqs */
- if (!freezable && pwq->max_active == wq->saved_max_active)
- return;
-
- /* this function can be called during early boot w/ irq disabled */
- raw_spin_lock_irqsave(&pwq->pool->lock, flags);
-
- /*
- * During [un]freezing, the caller is responsible for ensuring that
- * this function is called at least once after @workqueue_freezing
- * is updated and visible.
- */
- if (!freezable || !workqueue_freezing) {
- pwq->max_active = wq->saved_max_active;
-
- while (!list_empty(&pwq->inactive_works) &&
- pwq->nr_active < pwq->max_active)
- pwq_activate_first_inactive(pwq);
-
- kick_pool(pwq->pool);
- } else {
- pwq->max_active = 0;
- }
-
- raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
-}
-
/* initialize newly allocated @pwq which is associated with @wq and @pool */
static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
struct worker_pool *pool)
{
- BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
+ BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
memset(pwq, 0, sizeof(*pwq));
@@ -4199,6 +4973,7 @@ static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
pwq->flush_color = -1;
pwq->refcnt = 1;
INIT_LIST_HEAD(&pwq->inactive_works);
+ INIT_LIST_HEAD(&pwq->pending_node);
INIT_LIST_HEAD(&pwq->pwqs_node);
INIT_LIST_HEAD(&pwq->mayday_node);
kthread_init_work(&pwq->release_work, pwq_release_workfn);
@@ -4218,11 +4993,8 @@ static void link_pwq(struct pool_workqueue *pwq)
/* set the matching work_color */
pwq->work_color = wq->work_color;
- /* sync max_active to the current setting */
- pwq_adjust_max_active(pwq);
-
/* link in @pwq */
- list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
+ list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
}
/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
@@ -4289,10 +5061,11 @@ static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
"possible intersect\n");
}
-/* install @pwq into @wq's cpu_pwq and return the old pwq */
+/* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
int cpu, struct pool_workqueue *pwq)
{
+ struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
struct pool_workqueue *old_pwq;
lockdep_assert_held(&wq_pool_mutex);
@@ -4301,8 +5074,8 @@ static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
/* link_pwq() can handle duplicate calls */
link_pwq(pwq);
- old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
- rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
+ old_pwq = rcu_access_pointer(*slot);
+ rcu_assign_pointer(*slot, pwq);
return old_pwq;
}
@@ -4383,6 +5156,15 @@ apply_wqattrs_prepare(struct workqueue_struct *wq,
cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
ctx->attrs = new_attrs;
+ /*
+ * For initialized ordered workqueues, there should only be one pwq
+ * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
+ * of newly queued work items until execution of older work items in
+ * the old pwq's have completed.
+ */
+ if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
+ ctx->dfl_pwq->plugged = true;
+
ctx->wq = wq;
return ctx;
@@ -4402,14 +5184,19 @@ static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
- /* save the previous pwq and install the new one */
+ /* save the previous pwqs and install the new ones */
for_each_possible_cpu(cpu)
ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
ctx->pwq_tbl[cpu]);
+ ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
+
+ /* update node_nr_active->max */
+ wq_update_node_max_active(ctx->wq, -1);
- /* @dfl_pwq might not have been used, ensure it's linked */
- link_pwq(ctx->dfl_pwq);
- swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
+ /* rescuer needs to respect wq cpumask changes */
+ if (ctx->wq->rescuer)
+ set_cpus_allowed_ptr(ctx->wq->rescuer->task,
+ unbound_effective_cpumask(ctx->wq));
mutex_unlock(&ctx->wq->mutex);
}
@@ -4423,14 +5210,6 @@ static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
return -EINVAL;
- /* creating multiple pwqs breaks ordering guarantee */
- if (!list_empty(&wq->pwqs)) {
- if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
- return -EINVAL;
-
- wq->flags &= ~__WQ_ORDERED;
- }
-
ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
if (IS_ERR(ctx))
return PTR_ERR(ctx);
@@ -4519,9 +5298,7 @@ static void wq_update_pod(struct workqueue_struct *wq, int cpu,
/* nothing to do if the target cpumask matches the current pwq */
wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
- pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
- lockdep_is_held(&wq_pool_mutex));
- if (wqattrs_equal(target_attrs, pwq->pool->attrs))
+ if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
return;
/* create a new pwq */
@@ -4539,10 +5316,11 @@ static void wq_update_pod(struct workqueue_struct *wq, int cpu,
use_dfl_pwq:
mutex_lock(&wq->mutex);
- raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
- get_pwq(wq->dfl_pwq);
- raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
- old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
+ pwq = unbound_pwq(wq, -1);
+ raw_spin_lock_irq(&pwq->pool->lock);
+ get_pwq(pwq);
+ raw_spin_unlock_irq(&pwq->pool->lock);
+ old_pwq = install_unbound_pwq(wq, cpu, pwq);
out_unlock:
mutex_unlock(&wq->mutex);
put_pwq_unlocked(old_pwq);
@@ -4559,10 +5337,17 @@ static int alloc_and_link_pwqs(struct workqueue_struct *wq)
if (!(wq->flags & WQ_UNBOUND)) {
for_each_possible_cpu(cpu) {
- struct pool_workqueue **pwq_p =
- per_cpu_ptr(wq->cpu_pwq, cpu);
- struct worker_pool *pool =
- &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
+ struct pool_workqueue **pwq_p;
+ struct worker_pool __percpu *pools;
+ struct worker_pool *pool;
+
+ if (wq->flags & WQ_BH)
+ pools = bh_worker_pools;
+ else
+ pools = cpu_worker_pools;
+
+ pool = &(per_cpu_ptr(pools, cpu)[highpri]);
+ pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
pool->node);
@@ -4580,10 +5365,13 @@ static int alloc_and_link_pwqs(struct workqueue_struct *wq)
cpus_read_lock();
if (wq->flags & __WQ_ORDERED) {
+ struct pool_workqueue *dfl_pwq;
+
ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
/* there should only be single pwq for ordering guarantee */
- WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
- wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
+ dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
+ WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
+ wq->pwqs.prev != &dfl_pwq->pwqs_node),
"ordering guarantee broken for workqueue %s\n", wq->name);
} else {
ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
@@ -4652,12 +5440,78 @@ static int init_rescuer(struct workqueue_struct *wq)
}
wq->rescuer = rescuer;
- kthread_bind_mask(rescuer->task, cpu_possible_mask);
+ if (wq->flags & WQ_UNBOUND)
+ kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
+ else
+ kthread_bind_mask(rescuer->task, cpu_possible_mask);
wake_up_process(rescuer->task);
return 0;
}
+/**
+ * wq_adjust_max_active - update a wq's max_active to the current setting
+ * @wq: target workqueue
+ *
+ * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
+ * activate inactive work items accordingly. If @wq is freezing, clear
+ * @wq->max_active to zero.
+ */
+static void wq_adjust_max_active(struct workqueue_struct *wq)
+{
+ bool activated;
+ int new_max, new_min;
+
+ lockdep_assert_held(&wq->mutex);
+
+ if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
+ new_max = 0;
+ new_min = 0;
+ } else {
+ new_max = wq->saved_max_active;
+ new_min = wq->saved_min_active;
+ }
+
+ if (wq->max_active == new_max && wq->min_active == new_min)
+ return;
+
+ /*
+ * Update @wq->max/min_active and then kick inactive work items if more
+ * active work items are allowed. This doesn't break work item ordering
+ * because new work items are always queued behind existing inactive
+ * work items if there are any.
+ */
+ WRITE_ONCE(wq->max_active, new_max);
+ WRITE_ONCE(wq->min_active, new_min);
+
+ if (wq->flags & WQ_UNBOUND)
+ wq_update_node_max_active(wq, -1);
+
+ if (new_max == 0)
+ return;
+
+ /*
+ * Round-robin through pwq's activating the first inactive work item
+ * until max_active is filled.
+ */
+ do {
+ struct pool_workqueue *pwq;
+
+ activated = false;
+ for_each_pwq(pwq, wq) {
+ unsigned long irq_flags;
+
+ /* can be called during early boot w/ irq disabled */
+ raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
+ if (pwq_activate_first_inactive(pwq, true)) {
+ activated = true;
+ kick_pool(pwq->pool);
+ }
+ raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
+ }
+ } while (activated);
+}
+
__printf(1, 4)
struct workqueue_struct *alloc_workqueue(const char *fmt,
unsigned int flags,
@@ -4665,23 +5519,27 @@ struct workqueue_struct *alloc_workqueue(const char *fmt,
{
va_list args;
struct workqueue_struct *wq;
- struct pool_workqueue *pwq;
+ size_t wq_size;
+ int name_len;
- /*
- * Unbound && max_active == 1 used to imply ordered, which is no longer
- * the case on many machines due to per-pod pools. While
- * alloc_ordered_workqueue() is the right way to create an ordered
- * workqueue, keep the previous behavior to avoid subtle breakages.
- */
- if ((flags & WQ_UNBOUND) && max_active == 1)
- flags |= __WQ_ORDERED;
+ if (flags & WQ_BH) {
+ if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
+ return NULL;
+ if (WARN_ON_ONCE(max_active))
+ return NULL;
+ }
/* see the comment above the definition of WQ_POWER_EFFICIENT */
if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
flags |= WQ_UNBOUND;
/* allocate wq and format name */
- wq = kzalloc(sizeof(*wq), GFP_KERNEL);
+ if (flags & WQ_UNBOUND)
+ wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
+ else
+ wq_size = sizeof(*wq);
+
+ wq = kzalloc(wq_size, GFP_KERNEL);
if (!wq)
return NULL;
@@ -4692,15 +5550,30 @@ struct workqueue_struct *alloc_workqueue(const char *fmt,
}
va_start(args, max_active);
- vsnprintf(wq->name, sizeof(wq->name), fmt, args);
+ name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
va_end(args);
- max_active = max_active ?: WQ_DFL_ACTIVE;
- max_active = wq_clamp_max_active(max_active, flags, wq->name);
+ if (name_len >= WQ_NAME_LEN)
+ pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
+ wq->name);
+
+ if (flags & WQ_BH) {
+ /*
+ * BH workqueues always share a single execution context per CPU
+ * and don't impose any max_active limit.
+ */
+ max_active = INT_MAX;
+ } else {
+ max_active = max_active ?: WQ_DFL_ACTIVE;
+ max_active = wq_clamp_max_active(max_active, flags, wq->name);
+ }
/* init wq */
wq->flags = flags;
- wq->saved_max_active = max_active;
+ wq->max_active = max_active;
+ wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
+ wq->saved_max_active = wq->max_active;
+ wq->saved_min_active = wq->min_active;
mutex_init(&wq->mutex);
atomic_set(&wq->nr_pwqs_to_flush, 0);
INIT_LIST_HEAD(&wq->pwqs);
@@ -4711,8 +5584,13 @@ struct workqueue_struct *alloc_workqueue(const char *fmt,
wq_init_lockdep(wq);
INIT_LIST_HEAD(&wq->list);
+ if (flags & WQ_UNBOUND) {
+ if (alloc_node_nr_active(wq->node_nr_active) < 0)
+ goto err_unreg_lockdep;
+ }
+
if (alloc_and_link_pwqs(wq) < 0)
- goto err_unreg_lockdep;
+ goto err_free_node_nr_active;
if (wq_online && init_rescuer(wq) < 0)
goto err_destroy;
@@ -4728,8 +5606,7 @@ struct workqueue_struct *alloc_workqueue(const char *fmt,
mutex_lock(&wq_pool_mutex);
mutex_lock(&wq->mutex);
- for_each_pwq(pwq, wq)
- pwq_adjust_max_active(pwq);
+ wq_adjust_max_active(wq);
mutex_unlock(&wq->mutex);
list_add_tail_rcu(&wq->list, &workqueues);
@@ -4738,6 +5615,9 @@ struct workqueue_struct *alloc_workqueue(const char *fmt,
return wq;
+err_free_node_nr_active:
+ if (wq->flags & WQ_UNBOUND)
+ free_node_nr_active(wq->node_nr_active);
err_unreg_lockdep:
wq_unregister_lockdep(wq);
wq_free_lockdep(wq);
@@ -4759,9 +5639,9 @@ static bool pwq_busy(struct pool_workqueue *pwq)
if (pwq->nr_in_flight[i])
return true;
- if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
+ if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
return true;
- if (pwq->nr_active || !list_empty(&pwq->inactive_works))
+ if (!pwq_is_empty(pwq))
return true;
return false;
@@ -4843,13 +5723,12 @@ void destroy_workqueue(struct workqueue_struct *wq)
rcu_read_lock();
for_each_possible_cpu(cpu) {
- pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
- RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
- put_pwq_unlocked(pwq);
+ put_pwq_unlocked(unbound_pwq(wq, cpu));
+ RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
}
- put_pwq_unlocked(wq->dfl_pwq);
- wq->dfl_pwq = NULL;
+ put_pwq_unlocked(unbound_pwq(wq, -1));
+ RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
rcu_read_unlock();
}
@@ -4860,34 +5739,63 @@ EXPORT_SYMBOL_GPL(destroy_workqueue);
* @wq: target workqueue
* @max_active: new max_active value.
*
- * Set max_active of @wq to @max_active.
+ * Set max_active of @wq to @max_active. See the alloc_workqueue() function
+ * comment.
*
* CONTEXT:
* Don't call from IRQ context.
*/
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
{
- struct pool_workqueue *pwq;
-
+ /* max_active doesn't mean anything for BH workqueues */
+ if (WARN_ON(wq->flags & WQ_BH))
+ return;
/* disallow meddling with max_active for ordered workqueues */
- if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
+ if (WARN_ON(wq->flags & __WQ_ORDERED))
return;
max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
mutex_lock(&wq->mutex);
- wq->flags &= ~__WQ_ORDERED;
wq->saved_max_active = max_active;
+ if (wq->flags & WQ_UNBOUND)
+ wq->saved_min_active = min(wq->saved_min_active, max_active);
- for_each_pwq(pwq, wq)
- pwq_adjust_max_active(pwq);
+ wq_adjust_max_active(wq);
mutex_unlock(&wq->mutex);
}
EXPORT_SYMBOL_GPL(workqueue_set_max_active);
/**
+ * workqueue_set_min_active - adjust min_active of an unbound workqueue
+ * @wq: target unbound workqueue
+ * @min_active: new min_active value
+ *
+ * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
+ * unbound workqueue is not guaranteed to be able to process max_active
+ * interdependent work items. Instead, an unbound workqueue is guaranteed to be
+ * able to process min_active number of interdependent work items which is
+ * %WQ_DFL_MIN_ACTIVE by default.
+ *
+ * Use this function to adjust the min_active value between 0 and the current
+ * max_active.
+ */
+void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
+{
+ /* min_active is only meaningful for non-ordered unbound workqueues */
+ if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
+ WQ_UNBOUND))
+ return;
+
+ mutex_lock(&wq->mutex);
+ wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
+ wq_adjust_max_active(wq);
+ mutex_unlock(&wq->mutex);
+}
+
+/**
* current_work - retrieve %current task's work struct
*
* Determine if %current task is a workqueue worker and what it's working on.
@@ -4972,7 +5880,7 @@ EXPORT_SYMBOL_GPL(workqueue_congested);
unsigned int work_busy(struct work_struct *work)
{
struct worker_pool *pool;
- unsigned long flags;
+ unsigned long irq_flags;
unsigned int ret = 0;
if (work_pending(work))
@@ -4981,10 +5889,10 @@ unsigned int work_busy(struct work_struct *work)
rcu_read_lock();
pool = get_work_pool(work);
if (pool) {
- raw_spin_lock_irqsave(&pool->lock, flags);
+ raw_spin_lock_irqsave(&pool->lock, irq_flags);
if (find_worker_executing_work(pool, work))
ret |= WORK_BUSY_RUNNING;
- raw_spin_unlock_irqrestore(&pool->lock, flags);
+ raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
}
rcu_read_unlock();
@@ -5069,7 +5977,24 @@ static void pr_cont_pool_info(struct worker_pool *pool)
pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
if (pool->node != NUMA_NO_NODE)
pr_cont(" node=%d", pool->node);
- pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
+ pr_cont(" flags=0x%x", pool->flags);
+ if (pool->flags & POOL_BH)
+ pr_cont(" bh%s",
+ pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
+ else
+ pr_cont(" nice=%d", pool->attrs->nice);
+}
+
+static void pr_cont_worker_id(struct worker *worker)
+{
+ struct worker_pool *pool = worker->pool;
+
+ if (pool->flags & WQ_BH)
+ pr_cont("bh%s",
+ pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
+ else
+ pr_cont("%d%s", task_pid_nr(worker->task),
+ worker->rescue_wq ? "(RESCUER)" : "");
}
struct pr_cont_work_struct {
@@ -5128,8 +6053,8 @@ static void show_pwq(struct pool_workqueue *pwq)
pr_info(" pwq %d:", pool->id);
pr_cont_pool_info(pool);
- pr_cont(" active=%d/%d refcnt=%d%s\n",
- pwq->nr_active, pwq->max_active, pwq->refcnt,
+ pr_cont(" active=%d refcnt=%d%s\n",
+ pwq->nr_active, pwq->refcnt,
!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
hash_for_each(pool->busy_hash, bkt, worker, hentry) {
@@ -5146,10 +6071,9 @@ static void show_pwq(struct pool_workqueue *pwq)
if (worker->current_pwq != pwq)
continue;
- pr_cont("%s %d%s:%ps", comma ? "," : "",
- task_pid_nr(worker->task),
- worker->rescue_wq ? "(RESCUER)" : "",
- worker->current_func);
+ pr_cont(" %s", comma ? "," : "");
+ pr_cont_worker_id(worker);
+ pr_cont(":%ps", worker->current_func);
list_for_each_entry(work, &worker->scheduled, entry)
pr_cont_work(false, work, &pcws);
pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
@@ -5200,10 +6124,10 @@ void show_one_workqueue(struct workqueue_struct *wq)
{
struct pool_workqueue *pwq;
bool idle = true;
- unsigned long flags;
+ unsigned long irq_flags;
for_each_pwq(pwq, wq) {
- if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
+ if (!pwq_is_empty(pwq)) {
idle = false;
break;
}
@@ -5214,8 +6138,8 @@ void show_one_workqueue(struct workqueue_struct *wq)
pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
for_each_pwq(pwq, wq) {
- raw_spin_lock_irqsave(&pwq->pool->lock, flags);
- if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
+ raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
+ if (!pwq_is_empty(pwq)) {
/*
* Defer printing to avoid deadlocks in console
* drivers that queue work while holding locks
@@ -5225,7 +6149,7 @@ void show_one_workqueue(struct workqueue_struct *wq)
show_pwq(pwq);
printk_deferred_exit();
}
- raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
+ raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
/*
* We could be printing a lot from atomic context, e.g.
* sysrq-t -> show_all_workqueues(). Avoid triggering
@@ -5244,10 +6168,10 @@ static void show_one_worker_pool(struct worker_pool *pool)
{
struct worker *worker;
bool first = true;
- unsigned long flags;
+ unsigned long irq_flags;
unsigned long hung = 0;
- raw_spin_lock_irqsave(&pool->lock, flags);
+ raw_spin_lock_irqsave(&pool->lock, irq_flags);
if (pool->nr_workers == pool->nr_idle)
goto next_pool;
@@ -5268,14 +6192,14 @@ static void show_one_worker_pool(struct worker_pool *pool)
pr_cont(" manager: %d",
task_pid_nr(pool->manager->task));
list_for_each_entry(worker, &pool->idle_list, entry) {
- pr_cont(" %s%d", first ? "idle: " : "",
- task_pid_nr(worker->task));
+ pr_cont(" %s", first ? "idle: " : "");
+ pr_cont_worker_id(worker);
first = false;
}
pr_cont("\n");
printk_deferred_exit();
next_pool:
- raw_spin_unlock_irqrestore(&pool->lock, flags);
+ raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
/*
* We could be printing a lot from atomic context, e.g.
* sysrq-t -> show_all_workqueues(). Avoid triggering
@@ -5542,13 +6466,15 @@ int workqueue_online_cpu(unsigned int cpu)
mutex_lock(&wq_pool_mutex);
for_each_pool(pool, pi) {
- mutex_lock(&wq_pool_attach_mutex);
+ /* BH pools aren't affected by hotplug */
+ if (pool->flags & POOL_BH)
+ continue;
+ mutex_lock(&wq_pool_attach_mutex);
if (pool->cpu == cpu)
rebind_workers(pool);
else if (pool->cpu < 0)
restore_unbound_workers_cpumask(pool, cpu);
-
mutex_unlock(&wq_pool_attach_mutex);
}
@@ -5562,6 +6488,10 @@ int workqueue_online_cpu(unsigned int cpu)
for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
wq_update_pod(wq, tcpu, cpu, true);
+
+ mutex_lock(&wq->mutex);
+ wq_update_node_max_active(wq, -1);
+ mutex_unlock(&wq->mutex);
}
}
@@ -5590,6 +6520,10 @@ int workqueue_offline_cpu(unsigned int cpu)
for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
wq_update_pod(wq, tcpu, cpu, false);
+
+ mutex_lock(&wq->mutex);
+ wq_update_node_max_active(wq, cpu);
+ mutex_unlock(&wq->mutex);
}
}
mutex_unlock(&wq_pool_mutex);
@@ -5677,7 +6611,6 @@ EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
void freeze_workqueues_begin(void)
{
struct workqueue_struct *wq;
- struct pool_workqueue *pwq;
mutex_lock(&wq_pool_mutex);
@@ -5686,8 +6619,7 @@ void freeze_workqueues_begin(void)
list_for_each_entry(wq, &workqueues, list) {
mutex_lock(&wq->mutex);
- for_each_pwq(pwq, wq)
- pwq_adjust_max_active(pwq);
+ wq_adjust_max_active(wq);
mutex_unlock(&wq->mutex);
}
@@ -5752,7 +6684,6 @@ out_unlock:
void thaw_workqueues(void)
{
struct workqueue_struct *wq;
- struct pool_workqueue *pwq;
mutex_lock(&wq_pool_mutex);
@@ -5764,8 +6695,7 @@ void thaw_workqueues(void)
/* restore max_active and repopulate worklist */
list_for_each_entry(wq, &workqueues, list) {
mutex_lock(&wq->mutex);
- for_each_pwq(pwq, wq)
- pwq_adjust_max_active(pwq);
+ wq_adjust_max_active(wq);
mutex_unlock(&wq->mutex);
}
@@ -5784,10 +6714,7 @@ static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
lockdep_assert_held(&wq_pool_mutex);
list_for_each_entry(wq, &workqueues, list) {
- if (!(wq->flags & WQ_UNBOUND))
- continue;
- /* creating multiple pwqs breaks ordering guarantee */
- if (wq->flags & __WQ_ORDERED)
+ if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
continue;
ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
@@ -6303,11 +7230,10 @@ int workqueue_sysfs_register(struct workqueue_struct *wq)
int ret;
/*
- * Adjusting max_active or creating new pwqs by applying
- * attributes breaks ordering guarantee. Disallow exposing ordered
- * workqueues.
+ * Adjusting max_active breaks ordering guarantee. Disallow exposing
+ * ordered workqueues.
*/
- if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
+ if (WARN_ON(wq->flags & __WQ_ORDERED))
return -EINVAL;
wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
@@ -6404,10 +7330,10 @@ static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
static void show_cpu_pool_hog(struct worker_pool *pool)
{
struct worker *worker;
- unsigned long flags;
+ unsigned long irq_flags;
int bkt;
- raw_spin_lock_irqsave(&pool->lock, flags);
+ raw_spin_lock_irqsave(&pool->lock, irq_flags);
hash_for_each(pool->busy_hash, bkt, worker, hentry) {
if (task_is_running(worker->task)) {
@@ -6425,7 +7351,7 @@ static void show_cpu_pool_hog(struct worker_pool *pool)
}
}
- raw_spin_unlock_irqrestore(&pool->lock, flags);
+ raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
}
static void show_cpu_pools_hogs(void)
@@ -6497,7 +7423,7 @@ static void wq_watchdog_timer_fn(struct timer_list *unused)
/* did we stall? */
if (time_after(now, ts + thresh)) {
lockup_detected = true;
- if (pool->cpu >= 0) {
+ if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
pool->cpu_stall = true;
cpu_pool_stall = true;
}
@@ -6580,6 +7506,16 @@ static inline void wq_watchdog_init(void) { }
#endif /* CONFIG_WQ_WATCHDOG */
+static void bh_pool_kick_normal(struct irq_work *irq_work)
+{
+ raise_softirq_irqoff(TASKLET_SOFTIRQ);
+}
+
+static void bh_pool_kick_highpri(struct irq_work *irq_work)
+{
+ raise_softirq_irqoff(HI_SOFTIRQ);
+}
+
static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
{
if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
@@ -6591,6 +7527,22 @@ static void __init restrict_unbound_cpumask(const char *name, const struct cpuma
cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
}
+static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
+{
+ BUG_ON(init_worker_pool(pool));
+ pool->cpu = cpu;
+ cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
+ cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
+ pool->attrs->nice = nice;
+ pool->attrs->affn_strict = true;
+ pool->node = cpu_to_node(cpu);
+
+ /* alloc pool ID */
+ mutex_lock(&wq_pool_mutex);
+ BUG_ON(worker_pool_assign_id(pool));
+ mutex_unlock(&wq_pool_mutex);
+}
+
/**
* workqueue_init_early - early init for workqueue subsystem
*
@@ -6605,6 +7557,8 @@ void __init workqueue_init_early(void)
{
struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
+ void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
+ bh_pool_kick_highpri };
int i, cpu;
BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
@@ -6626,6 +7580,13 @@ void __init workqueue_init_early(void)
wq_update_pod_attrs_buf = alloc_workqueue_attrs();
BUG_ON(!wq_update_pod_attrs_buf);
+ /*
+ * If nohz_full is enabled, set power efficient workqueue as unbound.
+ * This allows workqueue items to be moved to HK CPUs.
+ */
+ if (housekeeping_enabled(HK_TYPE_TICK))
+ wq_power_efficient = true;
+
/* initialize WQ_AFFN_SYSTEM pods */
pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
@@ -6639,25 +7600,21 @@ void __init workqueue_init_early(void)
pt->pod_node[0] = NUMA_NO_NODE;
pt->cpu_pod[0] = 0;
- /* initialize CPU pools */
+ /* initialize BH and CPU pools */
for_each_possible_cpu(cpu) {
struct worker_pool *pool;
i = 0;
- for_each_cpu_worker_pool(pool, cpu) {
- BUG_ON(init_worker_pool(pool));
- pool->cpu = cpu;
- cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
- cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
- pool->attrs->nice = std_nice[i++];
- pool->attrs->affn_strict = true;
- pool->node = cpu_to_node(cpu);
-
- /* alloc pool ID */
- mutex_lock(&wq_pool_mutex);
- BUG_ON(worker_pool_assign_id(pool));
- mutex_unlock(&wq_pool_mutex);
+ for_each_bh_worker_pool(pool, cpu) {
+ init_cpu_worker_pool(pool, cpu, std_nice[i]);
+ pool->flags |= POOL_BH;
+ init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
+ i++;
}
+
+ i = 0;
+ for_each_cpu_worker_pool(pool, cpu)
+ init_cpu_worker_pool(pool, cpu, std_nice[i++]);
}
/* create default unbound and ordered wq attrs */
@@ -6687,13 +7644,17 @@ void __init workqueue_init_early(void)
WQ_FREEZABLE, 0);
system_power_efficient_wq = alloc_workqueue("events_power_efficient",
WQ_POWER_EFFICIENT, 0);
- system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
+ system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
WQ_FREEZABLE | WQ_POWER_EFFICIENT,
0);
+ system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
+ system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
+ WQ_BH | WQ_HIGHPRI, 0);
BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
!system_unbound_wq || !system_freezable_wq ||
!system_power_efficient_wq ||
- !system_freezable_power_efficient_wq);
+ !system_freezable_power_efficient_wq ||
+ !system_bh_wq || !system_bh_highpri_wq);
}
static void __init wq_cpu_intensive_thresh_init(void)
@@ -6759,9 +7720,10 @@ void __init workqueue_init(void)
* up. Also, create a rescuer for workqueues that requested it.
*/
for_each_possible_cpu(cpu) {
- for_each_cpu_worker_pool(pool, cpu) {
+ for_each_bh_worker_pool(pool, cpu)
+ pool->node = cpu_to_node(cpu);
+ for_each_cpu_worker_pool(pool, cpu)
pool->node = cpu_to_node(cpu);
- }
}
list_for_each_entry(wq, &workqueues, list) {
@@ -6772,7 +7734,16 @@ void __init workqueue_init(void)
mutex_unlock(&wq_pool_mutex);
- /* create the initial workers */
+ /*
+ * Create the initial workers. A BH pool has one pseudo worker that
+ * represents the shared BH execution context and thus doesn't get
+ * affected by hotplug events. Create the BH pseudo workers for all
+ * possible CPUs here.
+ */
+ for_each_possible_cpu(cpu)
+ for_each_bh_worker_pool(pool, cpu)
+ BUG_ON(!create_worker(pool));
+
for_each_online_cpu(cpu) {
for_each_cpu_worker_pool(pool, cpu) {
pool->flags &= ~POOL_DISASSOCIATED;
@@ -6852,7 +7823,7 @@ static bool __init cpus_share_numa(int cpu0, int cpu1)
/**
* workqueue_init_topology - initialize CPU pods for unbound workqueues
*
- * This is the third step of there-staged workqueue subsystem initialization and
+ * This is the third step of three-staged workqueue subsystem initialization and
* invoked after SMP and topology information are fully initialized. It
* initializes the unbound CPU pods accordingly.
*/
@@ -6866,6 +7837,8 @@ void __init workqueue_init_topology(void)
init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
+ wq_topo_initialized = true;
+
mutex_lock(&wq_pool_mutex);
/*
@@ -6874,8 +7847,12 @@ void __init workqueue_init_topology(void)
* combinations to apply per-pod sharing.
*/
list_for_each_entry(wq, &workqueues, list) {
- for_each_online_cpu(cpu) {
+ for_each_online_cpu(cpu)
wq_update_pod(wq, cpu, cpu, true);
+ if (wq->flags & WQ_UNBOUND) {
+ mutex_lock(&wq->mutex);
+ wq_update_node_max_active(wq, -1);
+ mutex_unlock(&wq->mutex);
}
}