aboutsummaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
Diffstat (limited to 'kernel')
-rw-r--r--kernel/Kconfig.kexec2
-rw-r--r--kernel/Kconfig.preempt27
-rw-r--r--kernel/audit.c23
-rw-r--r--kernel/audit.h7
-rw-r--r--kernel/auditfilter.c9
-rw-r--r--kernel/auditsc.c69
-rw-r--r--kernel/bpf/bpf_inode_storage.c1
-rw-r--r--kernel/bpf/bpf_task_storage.c1
-rw-r--r--kernel/bpf/cgroup.c19
-rw-r--r--kernel/bpf/core.c2
-rw-r--r--kernel/bpf/helpers.c64
-rw-r--r--kernel/bpf/inode.c5
-rw-r--r--kernel/bpf/lpm_trie.c2
-rw-r--r--kernel/bpf/memalloc.c14
-rw-r--r--kernel/bpf/ringbuf.c2
-rw-r--r--kernel/bpf/syscall.c16
-rw-r--r--kernel/bpf/task_iter.c6
-rw-r--r--kernel/bpf/token.c1
-rw-r--r--kernel/bpf/verifier.c98
-rw-r--r--kernel/cgroup/cgroup.c25
-rw-r--r--kernel/cpu.c2
-rw-r--r--kernel/entry/common.c2
-rw-r--r--kernel/entry/kvm.c4
-rw-r--r--kernel/events/core.c167
-rw-r--r--kernel/events/internal.h1
-rw-r--r--kernel/events/uprobes.c608
-rw-r--r--kernel/exit.c1
-rw-r--r--kernel/fork.c19
-rw-r--r--kernel/futex/core.c12
-rw-r--r--kernel/futex/pi.c6
-rw-r--r--kernel/irq/devres.c3
-rw-r--r--kernel/irq/irqdesc.c30
-rw-r--r--kernel/irq/irqdomain.c2
-rw-r--r--kernel/irq/msi.c2
-rw-r--r--kernel/irq/proc.c12
-rw-r--r--kernel/kcmp.c4
-rw-r--r--kernel/kcsan/debugfs.c77
-rw-r--r--kernel/locking/lockdep.c46
-rw-r--r--kernel/locking/mutex.c59
-rw-r--r--kernel/locking/mutex.h27
-rw-r--r--kernel/locking/osq_lock.c3
-rw-r--r--kernel/locking/qspinlock_paravirt.h36
-rw-r--r--kernel/locking/rtmutex.c53
-rw-r--r--kernel/locking/rtmutex_api.c20
-rw-r--r--kernel/locking/rtmutex_common.h3
-rw-r--r--kernel/locking/rwbase_rt.c8
-rw-r--r--kernel/locking/rwsem.c4
-rw-r--r--kernel/locking/spinlock.c8
-rw-r--r--kernel/locking/spinlock_rt.c19
-rw-r--r--kernel/locking/test-ww_mutex.c8
-rw-r--r--kernel/locking/ww_mutex.h51
-rw-r--r--kernel/module/dups.c1
-rw-r--r--kernel/module/kmod.c1
-rw-r--r--kernel/module/main.c15
-rw-r--r--kernel/nsproxy.c5
-rw-r--r--kernel/padata.c7
-rw-r--r--kernel/pid.c20
-rw-r--r--kernel/power/energy_model.c52
-rw-r--r--kernel/printk/internal.h3
-rw-r--r--kernel/printk/printk.c56
-rw-r--r--kernel/printk/printk_safe.c18
-rw-r--r--kernel/rcu/Kconfig28
-rw-r--r--kernel/rcu/rcu_segcblist.h1
-rw-r--r--kernel/rcu/rcuscale.c8
-rw-r--r--kernel/rcu/rcutorture.c92
-rw-r--r--kernel/rcu/refscale.c56
-rw-r--r--kernel/rcu/srcutiny.c2
-rw-r--r--kernel/rcu/srcutree.c133
-rw-r--r--kernel/rcu/tasks.h20
-rw-r--r--kernel/rcu/tree.c24
-rw-r--r--kernel/rcu/tree_nocb.h13
-rw-r--r--kernel/rcu/tree_plugin.h22
-rw-r--r--kernel/rcu/tree_stall.h57
-rw-r--r--kernel/resource.c4
-rw-r--r--kernel/scftorture.c54
-rw-r--r--kernel/sched/core.c310
-rw-r--r--kernel/sched/cpufreq_schedutil.c3
-rw-r--r--kernel/sched/deadline.c57
-rw-r--r--kernel/sched/debug.c7
-rw-r--r--kernel/sched/ext.c102
-rw-r--r--kernel/sched/ext.h2
-rw-r--r--kernel/sched/fair.c67
-rw-r--r--kernel/sched/features.h3
-rw-r--r--kernel/sched/idle.c5
-rw-r--r--kernel/sched/pelt.c2
-rw-r--r--kernel/sched/rt.c67
-rw-r--r--kernel/sched/sched.h196
-rw-r--r--kernel/sched/stats.h29
-rw-r--r--kernel/sched/syscalls.c48
-rw-r--r--kernel/sched/wait_bit.c90
-rw-r--r--kernel/signal.c526
-rw-r--r--kernel/smp.c4
-rw-r--r--kernel/softirq.c83
-rw-r--r--kernel/sys.c45
-rw-r--r--kernel/taskstats.c18
-rw-r--r--kernel/time/Kconfig5
-rw-r--r--kernel/time/Makefile2
-rw-r--r--kernel/time/alarmtimer.c96
-rw-r--r--kernel/time/clockevents.c42
-rw-r--r--kernel/time/clocksource.c40
-rw-r--r--kernel/time/hrtimer.c234
-rw-r--r--kernel/time/itimer.c22
-rw-r--r--kernel/time/ntp.c840
-rw-r--r--kernel/time/posix-clock.c6
-rw-r--r--kernel/time/posix-cpu-timers.c72
-rw-r--r--kernel/time/posix-timers.c267
-rw-r--r--kernel/time/posix-timers.h8
-rw-r--r--kernel/time/sched_clock.c34
-rw-r--r--kernel/time/sleep_timeout.c377
-rw-r--r--kernel/time/tick-internal.h3
-rw-r--r--kernel/time/tick-sched.c27
-rw-r--r--kernel/time/time.c20
-rw-r--r--kernel/time/timekeeping.c649
-rw-r--r--kernel/time/timekeeping_debug.c13
-rw-r--r--kernel/time/timekeeping_internal.h25
-rw-r--r--kernel/time/timer.c197
-rw-r--r--kernel/time/vsyscall.c7
-rw-r--r--kernel/trace/bpf_trace.c12
-rw-r--r--kernel/trace/fgraph.c12
-rw-r--r--kernel/trace/ring_buffer.c9
-rw-r--r--kernel/trace/trace.c32
-rw-r--r--kernel/trace/trace_eprobe.c7
-rw-r--r--kernel/trace/trace_fprobe.c6
-rw-r--r--kernel/trace/trace_kprobe.c6
-rw-r--r--kernel/trace/trace_probe.c2
-rw-r--r--kernel/trace/trace_uprobe.c25
-rw-r--r--kernel/ucount.c9
-rw-r--r--kernel/umh.c1
-rw-r--r--kernel/watch_queue.c6
129 files changed, 4189 insertions, 2970 deletions
diff --git a/kernel/Kconfig.kexec b/kernel/Kconfig.kexec
index 6c34e63c88ff..4d111f871951 100644
--- a/kernel/Kconfig.kexec
+++ b/kernel/Kconfig.kexec
@@ -97,7 +97,7 @@ config KEXEC_JUMP
config CRASH_DUMP
bool "kernel crash dumps"
- default y
+ default ARCH_DEFAULT_CRASH_DUMP
depends on ARCH_SUPPORTS_CRASH_DUMP
depends on KEXEC_CORE
select VMCORE_INFO
diff --git a/kernel/Kconfig.preempt b/kernel/Kconfig.preempt
index fe782cd77388..54ea59ff8fbe 100644
--- a/kernel/Kconfig.preempt
+++ b/kernel/Kconfig.preempt
@@ -11,12 +11,16 @@ config PREEMPT_BUILD
select PREEMPTION
select UNINLINE_SPIN_UNLOCK if !ARCH_INLINE_SPIN_UNLOCK
+config ARCH_HAS_PREEMPT_LAZY
+ bool
+
choice
prompt "Preemption Model"
default PREEMPT_NONE
config PREEMPT_NONE
bool "No Forced Preemption (Server)"
+ depends on !PREEMPT_RT
select PREEMPT_NONE_BUILD if !PREEMPT_DYNAMIC
help
This is the traditional Linux preemption model, geared towards
@@ -32,6 +36,7 @@ config PREEMPT_NONE
config PREEMPT_VOLUNTARY
bool "Voluntary Kernel Preemption (Desktop)"
depends on !ARCH_NO_PREEMPT
+ depends on !PREEMPT_RT
select PREEMPT_VOLUNTARY_BUILD if !PREEMPT_DYNAMIC
help
This option reduces the latency of the kernel by adding more
@@ -51,7 +56,7 @@ config PREEMPT_VOLUNTARY
config PREEMPT
bool "Preemptible Kernel (Low-Latency Desktop)"
depends on !ARCH_NO_PREEMPT
- select PREEMPT_BUILD
+ select PREEMPT_BUILD if !PREEMPT_DYNAMIC
help
This option reduces the latency of the kernel by making
all kernel code (that is not executing in a critical section)
@@ -67,9 +72,23 @@ config PREEMPT
embedded system with latency requirements in the milliseconds
range.
+config PREEMPT_LAZY
+ bool "Scheduler controlled preemption model"
+ depends on !ARCH_NO_PREEMPT
+ depends on ARCH_HAS_PREEMPT_LAZY
+ select PREEMPT_BUILD if !PREEMPT_DYNAMIC
+ help
+ This option provides a scheduler driven preemption model that
+ is fundamentally similar to full preemption, but is less
+ eager to preempt SCHED_NORMAL tasks in an attempt to
+ reduce lock holder preemption and recover some of the performance
+ gains seen from using Voluntary preemption.
+
+endchoice
+
config PREEMPT_RT
bool "Fully Preemptible Kernel (Real-Time)"
- depends on EXPERT && ARCH_SUPPORTS_RT
+ depends on EXPERT && ARCH_SUPPORTS_RT && !COMPILE_TEST
select PREEMPTION
help
This option turns the kernel into a real-time kernel by replacing
@@ -84,8 +103,6 @@ config PREEMPT_RT
Select this if you are building a kernel for systems which
require real-time guarantees.
-endchoice
-
config PREEMPT_COUNT
bool
@@ -95,7 +112,7 @@ config PREEMPTION
config PREEMPT_DYNAMIC
bool "Preemption behaviour defined on boot"
- depends on HAVE_PREEMPT_DYNAMIC && !PREEMPT_RT
+ depends on HAVE_PREEMPT_DYNAMIC
select JUMP_LABEL if HAVE_PREEMPT_DYNAMIC_KEY
select PREEMPT_BUILD
default y if HAVE_PREEMPT_DYNAMIC_CALL
diff --git a/kernel/audit.c b/kernel/audit.c
index 1edaa4846a47..6a95a6077953 100644
--- a/kernel/audit.c
+++ b/kernel/audit.c
@@ -123,7 +123,7 @@ static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
/* The identity of the user shutting down the audit system. */
static kuid_t audit_sig_uid = INVALID_UID;
static pid_t audit_sig_pid = -1;
-static u32 audit_sig_sid;
+static struct lsm_prop audit_sig_lsm;
/* Records can be lost in several ways:
0) [suppressed in audit_alloc]
@@ -1473,20 +1473,21 @@ static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
}
case AUDIT_SIGNAL_INFO:
len = 0;
- if (audit_sig_sid) {
- err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
+ if (lsmprop_is_set(&audit_sig_lsm)) {
+ err = security_lsmprop_to_secctx(&audit_sig_lsm, &ctx,
+ &len);
if (err)
return err;
}
sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
if (!sig_data) {
- if (audit_sig_sid)
+ if (lsmprop_is_set(&audit_sig_lsm))
security_release_secctx(ctx, len);
return -ENOMEM;
}
sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
sig_data->pid = audit_sig_pid;
- if (audit_sig_sid) {
+ if (lsmprop_is_set(&audit_sig_lsm)) {
memcpy(sig_data->ctx, ctx, len);
security_release_secctx(ctx, len);
}
@@ -2102,8 +2103,8 @@ bool audit_string_contains_control(const char *string, size_t len)
/**
* audit_log_n_untrustedstring - log a string that may contain random characters
* @ab: audit_buffer
- * @len: length of string (not including trailing null)
* @string: string to be logged
+ * @len: length of string (not including trailing null)
*
* This code will escape a string that is passed to it if the string
* contains a control character, unprintable character, double quote mark,
@@ -2178,16 +2179,16 @@ void audit_log_key(struct audit_buffer *ab, char *key)
int audit_log_task_context(struct audit_buffer *ab)
{
+ struct lsm_prop prop;
char *ctx = NULL;
unsigned len;
int error;
- u32 sid;
- security_current_getsecid_subj(&sid);
- if (!sid)
+ security_current_getlsmprop_subj(&prop);
+ if (!lsmprop_is_set(&prop))
return 0;
- error = security_secid_to_secctx(sid, &ctx, &len);
+ error = security_lsmprop_to_secctx(&prop, &ctx, &len);
if (error) {
if (error != -EINVAL)
goto error_path;
@@ -2404,7 +2405,7 @@ int audit_signal_info(int sig, struct task_struct *t)
audit_sig_uid = auid;
else
audit_sig_uid = uid;
- security_current_getsecid_subj(&audit_sig_sid);
+ security_current_getlsmprop_subj(&audit_sig_lsm);
}
return audit_signal_info_syscall(t);
diff --git a/kernel/audit.h b/kernel/audit.h
index a60d2840559e..0211cb307d30 100644
--- a/kernel/audit.h
+++ b/kernel/audit.h
@@ -11,6 +11,7 @@
#include <linux/fs.h>
#include <linux/audit.h>
+#include <linux/security.h>
#include <linux/skbuff.h>
#include <uapi/linux/mqueue.h>
#include <linux/tty.h>
@@ -81,7 +82,7 @@ struct audit_names {
kuid_t uid;
kgid_t gid;
dev_t rdev;
- u32 osid;
+ struct lsm_prop oprop;
struct audit_cap_data fcap;
unsigned int fcap_ver;
unsigned char type; /* record type */
@@ -143,7 +144,7 @@ struct audit_context {
kuid_t target_auid;
kuid_t target_uid;
unsigned int target_sessionid;
- u32 target_sid;
+ struct lsm_prop target_ref;
char target_comm[TASK_COMM_LEN];
struct audit_tree_refs *trees, *first_trees;
@@ -160,7 +161,7 @@ struct audit_context {
kuid_t uid;
kgid_t gid;
umode_t mode;
- u32 osid;
+ struct lsm_prop oprop;
int has_perm;
uid_t perm_uid;
gid_t perm_gid;
diff --git a/kernel/auditfilter.c b/kernel/auditfilter.c
index 470041c49a44..bceb9f58a09e 100644
--- a/kernel/auditfilter.c
+++ b/kernel/auditfilter.c
@@ -1339,8 +1339,8 @@ int audit_filter(int msgtype, unsigned int listtype)
for (i = 0; i < e->rule.field_count; i++) {
struct audit_field *f = &e->rule.fields[i];
+ struct lsm_prop prop = { };
pid_t pid;
- u32 sid;
switch (f->type) {
case AUDIT_PID:
@@ -1370,9 +1370,10 @@ int audit_filter(int msgtype, unsigned int listtype)
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
if (f->lsm_rule) {
- security_current_getsecid_subj(&sid);
- result = security_audit_rule_match(sid,
- f->type, f->op, f->lsm_rule);
+ security_current_getlsmprop_subj(&prop);
+ result = security_audit_rule_match(
+ &prop, f->type, f->op,
+ f->lsm_rule);
}
break;
case AUDIT_EXE:
diff --git a/kernel/auditsc.c b/kernel/auditsc.c
index cd57053b4a69..91afdd0d036e 100644
--- a/kernel/auditsc.c
+++ b/kernel/auditsc.c
@@ -100,7 +100,7 @@ struct audit_aux_data_pids {
kuid_t target_auid[AUDIT_AUX_PIDS];
kuid_t target_uid[AUDIT_AUX_PIDS];
unsigned int target_sessionid[AUDIT_AUX_PIDS];
- u32 target_sid[AUDIT_AUX_PIDS];
+ struct lsm_prop target_ref[AUDIT_AUX_PIDS];
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
int pid_count;
};
@@ -470,7 +470,7 @@ static int audit_filter_rules(struct task_struct *tsk,
{
const struct cred *cred;
int i, need_sid = 1;
- u32 sid;
+ struct lsm_prop prop = { };
unsigned int sessionid;
if (ctx && rule->prio <= ctx->prio)
@@ -674,14 +674,16 @@ static int audit_filter_rules(struct task_struct *tsk,
* fork()/copy_process() in which case
* the new @tsk creds are still a dup
* of @current's creds so we can still
- * use security_current_getsecid_subj()
+ * use
+ * security_current_getlsmprop_subj()
* here even though it always refs
* @current's creds
*/
- security_current_getsecid_subj(&sid);
+ security_current_getlsmprop_subj(&prop);
need_sid = 0;
}
- result = security_audit_rule_match(sid, f->type,
+ result = security_audit_rule_match(&prop,
+ f->type,
f->op,
f->lsm_rule);
}
@@ -697,14 +699,14 @@ static int audit_filter_rules(struct task_struct *tsk,
/* Find files that match */
if (name) {
result = security_audit_rule_match(
- name->osid,
+ &name->oprop,
f->type,
f->op,
f->lsm_rule);
} else if (ctx) {
list_for_each_entry(n, &ctx->names_list, list) {
if (security_audit_rule_match(
- n->osid,
+ &n->oprop,
f->type,
f->op,
f->lsm_rule)) {
@@ -716,7 +718,7 @@ static int audit_filter_rules(struct task_struct *tsk,
/* Find ipc objects that match */
if (!ctx || ctx->type != AUDIT_IPC)
break;
- if (security_audit_rule_match(ctx->ipc.osid,
+ if (security_audit_rule_match(&ctx->ipc.oprop,
f->type, f->op,
f->lsm_rule))
++result;
@@ -1017,7 +1019,7 @@ static void audit_reset_context(struct audit_context *ctx)
ctx->target_pid = 0;
ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
ctx->target_sessionid = 0;
- ctx->target_sid = 0;
+ lsmprop_init(&ctx->target_ref);
ctx->target_comm[0] = '\0';
unroll_tree_refs(ctx, NULL, 0);
WARN_ON(!list_empty(&ctx->killed_trees));
@@ -1091,8 +1093,9 @@ static inline void audit_free_context(struct audit_context *context)
}
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
- kuid_t auid, kuid_t uid, unsigned int sessionid,
- u32 sid, char *comm)
+ kuid_t auid, kuid_t uid,
+ unsigned int sessionid, struct lsm_prop *prop,
+ char *comm)
{
struct audit_buffer *ab;
char *ctx = NULL;
@@ -1106,8 +1109,8 @@ static int audit_log_pid_context(struct audit_context *context, pid_t pid,
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
from_kuid(&init_user_ns, auid),
from_kuid(&init_user_ns, uid), sessionid);
- if (sid) {
- if (security_secid_to_secctx(sid, &ctx, &len)) {
+ if (lsmprop_is_set(prop)) {
+ if (security_lsmprop_to_secctx(prop, &ctx, &len)) {
audit_log_format(ab, " obj=(none)");
rc = 1;
} else {
@@ -1384,19 +1387,17 @@ static void show_special(struct audit_context *context, int *call_panic)
audit_log_format(ab, " a%d=%lx", i,
context->socketcall.args[i]);
break; }
- case AUDIT_IPC: {
- u32 osid = context->ipc.osid;
-
+ case AUDIT_IPC:
audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
from_kuid(&init_user_ns, context->ipc.uid),
from_kgid(&init_user_ns, context->ipc.gid),
context->ipc.mode);
- if (osid) {
+ if (lsmprop_is_set(&context->ipc.oprop)) {
char *ctx = NULL;
u32 len;
- if (security_secid_to_secctx(osid, &ctx, &len)) {
- audit_log_format(ab, " osid=%u", osid);
+ if (security_lsmprop_to_secctx(&context->ipc.oprop,
+ &ctx, &len)) {
*call_panic = 1;
} else {
audit_log_format(ab, " obj=%s", ctx);
@@ -1416,7 +1417,7 @@ static void show_special(struct audit_context *context, int *call_panic)
context->ipc.perm_gid,
context->ipc.perm_mode);
}
- break; }
+ break;
case AUDIT_MQ_OPEN:
audit_log_format(ab,
"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
@@ -1558,13 +1559,11 @@ static void audit_log_name(struct audit_context *context, struct audit_names *n,
from_kgid(&init_user_ns, n->gid),
MAJOR(n->rdev),
MINOR(n->rdev));
- if (n->osid != 0) {
+ if (lsmprop_is_set(&n->oprop)) {
char *ctx = NULL;
u32 len;
- if (security_secid_to_secctx(
- n->osid, &ctx, &len)) {
- audit_log_format(ab, " osid=%u", n->osid);
+ if (security_lsmprop_to_secctx(&n->oprop, &ctx, &len)) {
if (call_panic)
*call_panic = 2;
} else {
@@ -1653,8 +1652,8 @@ static void audit_log_uring(struct audit_context *ctx)
audit_log_format(ab, "uring_op=%d", ctx->uring_op);
if (ctx->return_valid != AUDITSC_INVALID)
audit_log_format(ab, " success=%s exit=%ld",
- (ctx->return_valid == AUDITSC_SUCCESS ?
- "yes" : "no"),
+ str_yes_no(ctx->return_valid ==
+ AUDITSC_SUCCESS),
ctx->return_code);
audit_log_format(ab,
" items=%d"
@@ -1696,8 +1695,8 @@ static void audit_log_exit(void)
audit_log_format(ab, " per=%lx", context->personality);
if (context->return_valid != AUDITSC_INVALID)
audit_log_format(ab, " success=%s exit=%ld",
- (context->return_valid == AUDITSC_SUCCESS ?
- "yes" : "no"),
+ str_yes_no(context->return_valid ==
+ AUDITSC_SUCCESS),
context->return_code);
audit_log_format(ab,
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
@@ -1780,7 +1779,7 @@ static void audit_log_exit(void)
axs->target_auid[i],
axs->target_uid[i],
axs->target_sessionid[i],
- axs->target_sid[i],
+ &axs->target_ref[i],
axs->target_comm[i]))
call_panic = 1;
}
@@ -1789,7 +1788,7 @@ static void audit_log_exit(void)
audit_log_pid_context(context, context->target_pid,
context->target_auid, context->target_uid,
context->target_sessionid,
- context->target_sid, context->target_comm))
+ &context->target_ref, context->target_comm))
call_panic = 1;
if (context->pwd.dentry && context->pwd.mnt) {
@@ -2278,7 +2277,7 @@ static void audit_copy_inode(struct audit_names *name,
name->uid = inode->i_uid;
name->gid = inode->i_gid;
name->rdev = inode->i_rdev;
- security_inode_getsecid(inode, &name->osid);
+ security_inode_getlsmprop(inode, &name->oprop);
if (flags & AUDIT_INODE_NOEVAL) {
name->fcap_ver = -1;
return;
@@ -2632,7 +2631,7 @@ void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
context->ipc.gid = ipcp->gid;
context->ipc.mode = ipcp->mode;
context->ipc.has_perm = 0;
- security_ipc_getsecid(ipcp, &context->ipc.osid);
+ security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
context->type = AUDIT_IPC;
}
@@ -2729,7 +2728,7 @@ void __audit_ptrace(struct task_struct *t)
context->target_auid = audit_get_loginuid(t);
context->target_uid = task_uid(t);
context->target_sessionid = audit_get_sessionid(t);
- security_task_getsecid_obj(t, &context->target_sid);
+ security_task_getlsmprop_obj(t, &context->target_ref);
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
}
@@ -2756,7 +2755,7 @@ int audit_signal_info_syscall(struct task_struct *t)
ctx->target_auid = audit_get_loginuid(t);
ctx->target_uid = t_uid;
ctx->target_sessionid = audit_get_sessionid(t);
- security_task_getsecid_obj(t, &ctx->target_sid);
+ security_task_getlsmprop_obj(t, &ctx->target_ref);
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
return 0;
}
@@ -2777,7 +2776,7 @@ int audit_signal_info_syscall(struct task_struct *t)
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
axp->target_uid[axp->pid_count] = t_uid;
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
- security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
+ security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
axp->pid_count++;
diff --git a/kernel/bpf/bpf_inode_storage.c b/kernel/bpf/bpf_inode_storage.c
index 29da6d3838f6..e16e79f8cd6d 100644
--- a/kernel/bpf/bpf_inode_storage.c
+++ b/kernel/bpf/bpf_inode_storage.c
@@ -16,7 +16,6 @@
#include <uapi/linux/btf.h>
#include <linux/bpf_lsm.h>
#include <linux/btf_ids.h>
-#include <linux/fdtable.h>
#include <linux/rcupdate_trace.h>
DEFINE_BPF_STORAGE_CACHE(inode_cache);
diff --git a/kernel/bpf/bpf_task_storage.c b/kernel/bpf/bpf_task_storage.c
index adf6dfe0ba68..1eb9852a9f8e 100644
--- a/kernel/bpf/bpf_task_storage.c
+++ b/kernel/bpf/bpf_task_storage.c
@@ -16,7 +16,6 @@
#include <linux/filter.h>
#include <uapi/linux/btf.h>
#include <linux/btf_ids.h>
-#include <linux/fdtable.h>
#include <linux/rcupdate_trace.h>
DEFINE_BPF_STORAGE_CACHE(task_cache);
diff --git a/kernel/bpf/cgroup.c b/kernel/bpf/cgroup.c
index e7113d700b87..025d7e2214ae 100644
--- a/kernel/bpf/cgroup.c
+++ b/kernel/bpf/cgroup.c
@@ -24,6 +24,23 @@
DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
EXPORT_SYMBOL(cgroup_bpf_enabled_key);
+/*
+ * cgroup bpf destruction makes heavy use of work items and there can be a lot
+ * of concurrent destructions. Use a separate workqueue so that cgroup bpf
+ * destruction work items don't end up filling up max_active of system_wq
+ * which may lead to deadlock.
+ */
+static struct workqueue_struct *cgroup_bpf_destroy_wq;
+
+static int __init cgroup_bpf_wq_init(void)
+{
+ cgroup_bpf_destroy_wq = alloc_workqueue("cgroup_bpf_destroy", 0, 1);
+ if (!cgroup_bpf_destroy_wq)
+ panic("Failed to alloc workqueue for cgroup bpf destroy.\n");
+ return 0;
+}
+core_initcall(cgroup_bpf_wq_init);
+
/* __always_inline is necessary to prevent indirect call through run_prog
* function pointer.
*/
@@ -334,7 +351,7 @@ static void cgroup_bpf_release_fn(struct percpu_ref *ref)
struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
- queue_work(system_wq, &cgrp->bpf.release_work);
+ queue_work(cgroup_bpf_destroy_wq, &cgrp->bpf.release_work);
}
/* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
diff --git a/kernel/bpf/core.c b/kernel/bpf/core.c
index 5e77c58e0601..e303626bdb2f 100644
--- a/kernel/bpf/core.c
+++ b/kernel/bpf/core.c
@@ -21,7 +21,7 @@
#include <linux/filter.h>
#include <linux/skbuff.h>
#include <linux/vmalloc.h>
-#include <linux/random.h>
+#include <linux/prandom.h>
#include <linux/bpf.h>
#include <linux/btf.h>
#include <linux/objtool.h>
diff --git a/kernel/bpf/helpers.c b/kernel/bpf/helpers.c
index 1a43d06eab28..3d45ebe8afb4 100644
--- a/kernel/bpf/helpers.c
+++ b/kernel/bpf/helpers.c
@@ -111,7 +111,7 @@ const struct bpf_func_proto bpf_map_pop_elem_proto = {
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
- .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
+ .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
};
BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
@@ -124,7 +124,7 @@ const struct bpf_func_proto bpf_map_peek_elem_proto = {
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
- .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT,
+ .arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
};
BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
@@ -538,7 +538,7 @@ const struct bpf_func_proto bpf_strtol_proto = {
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
- .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED,
+ .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
.arg4_size = sizeof(s64),
};
@@ -566,7 +566,7 @@ const struct bpf_func_proto bpf_strtoul_proto = {
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
- .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED,
+ .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
.arg4_size = sizeof(u64),
};
@@ -1742,7 +1742,7 @@ static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
- .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT,
+ .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
};
BPF_CALL_5(bpf_dynptr_read, void *, dst, u32, len, const struct bpf_dynptr_kern *, src,
@@ -2851,21 +2851,47 @@ struct bpf_iter_bits {
__u64 __opaque[2];
} __aligned(8);
+#define BITS_ITER_NR_WORDS_MAX 511
+
struct bpf_iter_bits_kern {
union {
- unsigned long *bits;
- unsigned long bits_copy;
+ __u64 *bits;
+ __u64 bits_copy;
};
- u32 nr_bits;
+ int nr_bits;
int bit;
} __aligned(8);
+/* On 64-bit hosts, unsigned long and u64 have the same size, so passing
+ * a u64 pointer and an unsigned long pointer to find_next_bit() will
+ * return the same result, as both point to the same 8-byte area.
+ *
+ * For 32-bit little-endian hosts, using a u64 pointer or unsigned long
+ * pointer also makes no difference. This is because the first iterated
+ * unsigned long is composed of bits 0-31 of the u64 and the second unsigned
+ * long is composed of bits 32-63 of the u64.
+ *
+ * However, for 32-bit big-endian hosts, this is not the case. The first
+ * iterated unsigned long will be bits 32-63 of the u64, so swap these two
+ * ulong values within the u64.
+ */
+static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
+{
+#if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
+ unsigned int i;
+
+ for (i = 0; i < nr; i++)
+ bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
+#endif
+}
+
/**
* bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
* @it: The new bpf_iter_bits to be created
* @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
* @nr_words: The size of the specified memory area, measured in 8-byte units.
- * Due to the limitation of memalloc, it can't be greater than 512.
+ * The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
+ * further reduced by the BPF memory allocator implementation.
*
* This function initializes a new bpf_iter_bits structure for iterating over
* a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
@@ -2892,6 +2918,8 @@ bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_w
if (!unsafe_ptr__ign || !nr_words)
return -EINVAL;
+ if (nr_words > BITS_ITER_NR_WORDS_MAX)
+ return -E2BIG;
/* Optimization for u64 mask */
if (nr_bits == 64) {
@@ -2899,10 +2927,15 @@ bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_w
if (err)
return -EFAULT;
+ swap_ulong_in_u64(&kit->bits_copy, nr_words);
+
kit->nr_bits = nr_bits;
return 0;
}
+ if (bpf_mem_alloc_check_size(false, nr_bytes))
+ return -E2BIG;
+
/* Fallback to memalloc */
kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
if (!kit->bits)
@@ -2914,6 +2947,8 @@ bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_w
return err;
}
+ swap_ulong_in_u64(kit->bits, nr_words);
+
kit->nr_bits = nr_bits;
return 0;
}
@@ -2930,17 +2965,16 @@ bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_w
__bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
{
struct bpf_iter_bits_kern *kit = (void *)it;
- u32 nr_bits = kit->nr_bits;
- const unsigned long *bits;
- int bit;
+ int bit = kit->bit, nr_bits = kit->nr_bits;
+ const void *bits;
- if (nr_bits == 0)
+ if (!nr_bits || bit >= nr_bits)
return NULL;
bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
- bit = find_next_bit(bits, nr_bits, kit->bit + 1);
+ bit = find_next_bit(bits, nr_bits, bit + 1);
if (bit >= nr_bits) {
- kit->nr_bits = 0;
+ kit->bit = bit;
return NULL;
}
diff --git a/kernel/bpf/inode.c b/kernel/bpf/inode.c
index d8fc5eba529d..9aaf5124648b 100644
--- a/kernel/bpf/inode.c
+++ b/kernel/bpf/inode.c
@@ -880,7 +880,7 @@ static int bpf_parse_param(struct fs_context *fc, struct fs_parameter *param)
const struct btf_type *enum_t;
const char *enum_pfx;
u64 *delegate_msk, msk = 0;
- char *p;
+ char *p, *str;
int val;
/* ignore errors, fallback to hex */
@@ -911,7 +911,8 @@ static int bpf_parse_param(struct fs_context *fc, struct fs_parameter *param)
return -EINVAL;
}
- while ((p = strsep(&param->string, ":"))) {
+ str = param->string;
+ while ((p = strsep(&str, ":"))) {
if (strcmp(p, "any") == 0) {
msk |= ~0ULL;
} else if (find_btf_enum_const(info.btf, enum_t, enum_pfx, p, &val)) {
diff --git a/kernel/bpf/lpm_trie.c b/kernel/bpf/lpm_trie.c
index 0218a5132ab5..9b60eda0f727 100644
--- a/kernel/bpf/lpm_trie.c
+++ b/kernel/bpf/lpm_trie.c
@@ -655,7 +655,7 @@ static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
if (!key || key->prefixlen > trie->max_prefixlen)
goto find_leftmost;
- node_stack = kmalloc_array(trie->max_prefixlen,
+ node_stack = kmalloc_array(trie->max_prefixlen + 1,
sizeof(struct lpm_trie_node *),
GFP_ATOMIC | __GFP_NOWARN);
if (!node_stack)
diff --git a/kernel/bpf/memalloc.c b/kernel/bpf/memalloc.c
index b3858a76e0b3..146f5b57cfb1 100644
--- a/kernel/bpf/memalloc.c
+++ b/kernel/bpf/memalloc.c
@@ -35,6 +35,8 @@
*/
#define LLIST_NODE_SZ sizeof(struct llist_node)
+#define BPF_MEM_ALLOC_SIZE_MAX 4096
+
/* similar to kmalloc, but sizeof == 8 bucket is gone */
static u8 size_index[24] __ro_after_init = {
3, /* 8 */
@@ -65,7 +67,7 @@ static u8 size_index[24] __ro_after_init = {
static int bpf_mem_cache_idx(size_t size)
{
- if (!size || size > 4096)
+ if (!size || size > BPF_MEM_ALLOC_SIZE_MAX)
return -1;
if (size <= 192)
@@ -1005,3 +1007,13 @@ void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
return !ret ? NULL : ret + LLIST_NODE_SZ;
}
+
+int bpf_mem_alloc_check_size(bool percpu, size_t size)
+{
+ /* The size of percpu allocation doesn't have LLIST_NODE_SZ overhead */
+ if ((percpu && size > BPF_MEM_ALLOC_SIZE_MAX) ||
+ (!percpu && size > BPF_MEM_ALLOC_SIZE_MAX - LLIST_NODE_SZ))
+ return -E2BIG;
+
+ return 0;
+}
diff --git a/kernel/bpf/ringbuf.c b/kernel/bpf/ringbuf.c
index de3b681d1d13..e1cfe890e0be 100644
--- a/kernel/bpf/ringbuf.c
+++ b/kernel/bpf/ringbuf.c
@@ -632,7 +632,7 @@ const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
.arg3_type = ARG_ANYTHING,
- .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
+ .arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE,
};
BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
index 8cfa7183d2ef..c5aa127ed4cc 100644
--- a/kernel/bpf/syscall.c
+++ b/kernel/bpf/syscall.c
@@ -3069,13 +3069,17 @@ static void bpf_link_show_fdinfo(struct seq_file *m, struct file *filp)
{
const struct bpf_link *link = filp->private_data;
const struct bpf_prog *prog = link->prog;
+ enum bpf_link_type type = link->type;
char prog_tag[sizeof(prog->tag) * 2 + 1] = { };
- seq_printf(m,
- "link_type:\t%s\n"
- "link_id:\t%u\n",
- bpf_link_type_strs[link->type],
- link->id);
+ if (type < ARRAY_SIZE(bpf_link_type_strs) && bpf_link_type_strs[type]) {
+ seq_printf(m, "link_type:\t%s\n", bpf_link_type_strs[type]);
+ } else {
+ WARN_ONCE(1, "missing BPF_LINK_TYPE(...) for link type %u\n", type);
+ seq_printf(m, "link_type:\t<%u>\n", type);
+ }
+ seq_printf(m, "link_id:\t%u\n", link->id);
+
if (prog) {
bin2hex(prog_tag, prog->tag, sizeof(prog->tag));
seq_printf(m,
@@ -5892,7 +5896,7 @@ static const struct bpf_func_proto bpf_kallsyms_lookup_name_proto = {
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
.arg3_type = ARG_ANYTHING,
- .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED,
+ .arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
.arg4_size = sizeof(u64),
};
diff --git a/kernel/bpf/task_iter.c b/kernel/bpf/task_iter.c
index 5af9e130e500..98d9b4c0daff 100644
--- a/kernel/bpf/task_iter.c
+++ b/kernel/bpf/task_iter.c
@@ -5,7 +5,6 @@
#include <linux/namei.h>
#include <linux/pid_namespace.h>
#include <linux/fs.h>
-#include <linux/fdtable.h>
#include <linux/filter.h>
#include <linux/bpf_mem_alloc.h>
#include <linux/btf_ids.h>
@@ -286,17 +285,14 @@ again:
curr_fd = 0;
}
- rcu_read_lock();
- f = task_lookup_next_fdget_rcu(curr_task, &curr_fd);
+ f = fget_task_next(curr_task, &curr_fd);
if (f) {
/* set info->fd */
info->fd = curr_fd;
- rcu_read_unlock();
return f;
}
/* the current task is done, go to the next task */
- rcu_read_unlock();
put_task_struct(curr_task);
if (info->common.type == BPF_TASK_ITER_TID) {
diff --git a/kernel/bpf/token.c b/kernel/bpf/token.c
index dcbec1a0dfb3..26057aa13503 100644
--- a/kernel/bpf/token.c
+++ b/kernel/bpf/token.c
@@ -1,6 +1,5 @@
#include <linux/bpf.h>
#include <linux/vmalloc.h>
-#include <linux/fdtable.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/kernel.h>
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index 411ab1b57af4..bb99bada7e2e 100644
--- a/kernel/bpf/verifier.c
+++ b/kernel/bpf/verifier.c
@@ -6804,20 +6804,10 @@ static int check_stack_slot_within_bounds(struct bpf_verifier_env *env,
struct bpf_func_state *state,
enum bpf_access_type t)
{
- struct bpf_insn_aux_data *aux = &env->insn_aux_data[env->insn_idx];
- int min_valid_off, max_bpf_stack;
-
- /* If accessing instruction is a spill/fill from bpf_fastcall pattern,
- * add room for all caller saved registers below MAX_BPF_STACK.
- * In case if bpf_fastcall rewrite won't happen maximal stack depth
- * would be checked by check_max_stack_depth_subprog().
- */
- max_bpf_stack = MAX_BPF_STACK;
- if (aux->fastcall_pattern)
- max_bpf_stack += CALLER_SAVED_REGS * BPF_REG_SIZE;
+ int min_valid_off;
if (t == BPF_WRITE || env->allow_uninit_stack)
- min_valid_off = -max_bpf_stack;
+ min_valid_off = -MAX_BPF_STACK;
else
min_valid_off = -state->allocated_stack;
@@ -7438,7 +7428,8 @@ mark:
}
static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
- int access_size, bool zero_size_allowed,
+ int access_size, enum bpf_access_type access_type,
+ bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
{
struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
@@ -7450,7 +7441,7 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
return check_packet_access(env, regno, reg->off, access_size,
zero_size_allowed);
case PTR_TO_MAP_KEY:
- if (meta && meta->raw_mode) {
+ if (access_type == BPF_WRITE) {
verbose(env, "R%d cannot write into %s\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
@@ -7458,15 +7449,13 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
return check_mem_region_access(env, regno, reg->off, access_size,
reg->map_ptr->key_size, false);
case PTR_TO_MAP_VALUE:
- if (check_map_access_type(env, regno, reg->off, access_size,
- meta && meta->raw_mode ? BPF_WRITE :
- BPF_READ))
+ if (check_map_access_type(env, regno, reg->off, access_size, access_type))
return -EACCES;
return check_map_access(env, regno, reg->off, access_size,
zero_size_allowed, ACCESS_HELPER);
case PTR_TO_MEM:
if (type_is_rdonly_mem(reg->type)) {
- if (meta && meta->raw_mode) {
+ if (access_type == BPF_WRITE) {
verbose(env, "R%d cannot write into %s\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
@@ -7477,7 +7466,7 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
zero_size_allowed);
case PTR_TO_BUF:
if (type_is_rdonly_mem(reg->type)) {
- if (meta && meta->raw_mode) {
+ if (access_type == BPF_WRITE) {
verbose(env, "R%d cannot write into %s\n", regno,
reg_type_str(env, reg->type));
return -EACCES;
@@ -7505,7 +7494,6 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
* Dynamically check it now.
*/
if (!env->ops->convert_ctx_access) {
- enum bpf_access_type atype = meta && meta->raw_mode ? BPF_WRITE : BPF_READ;
int offset = access_size - 1;
/* Allow zero-byte read from PTR_TO_CTX */
@@ -7513,7 +7501,7 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
return zero_size_allowed ? 0 : -EACCES;
return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
- atype, -1, false, false);
+ access_type, -1, false, false);
}
fallthrough;
@@ -7538,6 +7526,7 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
*/
static int check_mem_size_reg(struct bpf_verifier_env *env,
struct bpf_reg_state *reg, u32 regno,
+ enum bpf_access_type access_type,
bool zero_size_allowed,
struct bpf_call_arg_meta *meta)
{
@@ -7553,15 +7542,12 @@ static int check_mem_size_reg(struct bpf_verifier_env *env,
*/
meta->msize_max_value = reg->umax_value;
- /* The register is SCALAR_VALUE; the access check
- * happens using its boundaries.
+ /* The register is SCALAR_VALUE; the access check happens using
+ * its boundaries. For unprivileged variable accesses, disable
+ * raw mode so that the program is required to initialize all
+ * the memory that the helper could just partially fill up.
*/
if (!tnum_is_const(reg->var_off))
- /* For unprivileged variable accesses, disable raw
- * mode so that the program is required to
- * initialize all the memory that the helper could
- * just partially fill up.
- */
meta = NULL;
if (reg->smin_value < 0) {
@@ -7581,9 +7567,8 @@ static int check_mem_size_reg(struct bpf_verifier_env *env,
regno);
return -EACCES;
}
- err = check_helper_mem_access(env, regno - 1,
- reg->umax_value,
- zero_size_allowed, meta);
+ err = check_helper_mem_access(env, regno - 1, reg->umax_value,
+ access_type, zero_size_allowed, meta);
if (!err)
err = mark_chain_precision(env, regno);
return err;
@@ -7594,13 +7579,11 @@ static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg
{
bool may_be_null = type_may_be_null(reg->type);
struct bpf_reg_state saved_reg;
- struct bpf_call_arg_meta meta;
int err;
if (register_is_null(reg))
return 0;
- memset(&meta, 0, sizeof(meta));
/* Assuming that the register contains a value check if the memory
* access is safe. Temporarily save and restore the register's state as
* the conversion shouldn't be visible to a caller.
@@ -7610,10 +7593,8 @@ static int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg
mark_ptr_not_null_reg(reg);
}
- err = check_helper_mem_access(env, regno, mem_size, true, &meta);
- /* Check access for BPF_WRITE */
- meta.raw_mode = true;
- err = err ?: check_helper_mem_access(env, regno, mem_size, true, &meta);
+ err = check_helper_mem_access(env, regno, mem_size, BPF_READ, true, NULL);
+ err = err ?: check_helper_mem_access(env, regno, mem_size, BPF_WRITE, true, NULL);
if (may_be_null)
*reg = saved_reg;
@@ -7639,13 +7620,12 @@ static int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg
mark_ptr_not_null_reg(mem_reg);
}
- err = check_mem_size_reg(env, reg, regno, true, &meta);
- /* Check access for BPF_WRITE */
- meta.raw_mode = true;
- err = err ?: check_mem_size_reg(env, reg, regno, true, &meta);
+ err = check_mem_size_reg(env, reg, regno, BPF_READ, true, &meta);
+ err = err ?: check_mem_size_reg(env, reg, regno, BPF_WRITE, true, &meta);
if (may_be_null)
*mem_reg = saved_reg;
+
return err;
}
@@ -8948,9 +8928,8 @@ skip_type_check:
verbose(env, "invalid map_ptr to access map->key\n");
return -EACCES;
}
- err = check_helper_mem_access(env, regno,
- meta->map_ptr->key_size, false,
- NULL);
+ err = check_helper_mem_access(env, regno, meta->map_ptr->key_size,
+ BPF_READ, false, NULL);
break;
case ARG_PTR_TO_MAP_VALUE:
if (type_may_be_null(arg_type) && register_is_null(reg))
@@ -8965,9 +8944,9 @@ skip_type_check:
return -EACCES;
}
meta->raw_mode = arg_type & MEM_UNINIT;
- err = check_helper_mem_access(env, regno,
- meta->map_ptr->value_size, false,
- meta);
+ err = check_helper_mem_access(env, regno, meta->map_ptr->value_size,
+ arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
+ false, meta);
break;
case ARG_PTR_TO_PERCPU_BTF_ID:
if (!reg->btf_id) {
@@ -9009,7 +8988,9 @@ skip_type_check:
*/
meta->raw_mode = arg_type & MEM_UNINIT;
if (arg_type & MEM_FIXED_SIZE) {
- err = check_helper_mem_access(env, regno, fn->arg_size[arg], false, meta);
+ err = check_helper_mem_access(env, regno, fn->arg_size[arg],
+ arg_type & MEM_WRITE ? BPF_WRITE : BPF_READ,
+ false, meta);
if (err)
return err;
if (arg_type & MEM_ALIGNED)
@@ -9017,10 +8998,16 @@ skip_type_check:
}
break;
case ARG_CONST_SIZE:
- err = check_mem_size_reg(env, reg, regno, false, meta);
+ err = check_mem_size_reg(env, reg, regno,
+ fn->arg_type[arg - 1] & MEM_WRITE ?
+ BPF_WRITE : BPF_READ,
+ false, meta);
break;
case ARG_CONST_SIZE_OR_ZERO:
- err = check_mem_size_reg(env, reg, regno, true, meta);
+ err = check_mem_size_reg(env, reg, regno,
+ fn->arg_type[arg - 1] & MEM_WRITE ?
+ BPF_WRITE : BPF_READ,
+ true, meta);
break;
case ARG_PTR_TO_DYNPTR:
err = process_dynptr_func(env, regno, insn_idx, arg_type, 0);
@@ -17889,9 +17876,11 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
struct bpf_verifier_state_list *sl, **pprev;
struct bpf_verifier_state *cur = env->cur_state, *new, *loop_entry;
int i, j, n, err, states_cnt = 0;
- bool force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx);
- bool add_new_state = force_new_state;
- bool force_exact;
+ bool force_new_state, add_new_state, force_exact;
+
+ force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
+ /* Avoid accumulating infinitely long jmp history */
+ cur->jmp_history_cnt > 40;
/* bpf progs typically have pruning point every 4 instructions
* http://vger.kernel.org/bpfconf2019.html#session-1
@@ -17901,6 +17890,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
* In tests that amounts to up to 50% reduction into total verifier
* memory consumption and 20% verifier time speedup.
*/
+ add_new_state = force_new_state;
if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
env->insn_processed - env->prev_insn_processed >= 8)
add_new_state = true;
@@ -21213,7 +21203,7 @@ patch_map_ops_generic:
delta += cnt - 1;
env->prog = prog = new_prog;
insn = new_prog->insnsi + i + delta;
- continue;
+ goto next_insn;
}
/* Implement bpf_kptr_xchg inline */
diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c
index 5886b95c6eae..9bc4a84bd309 100644
--- a/kernel/cgroup/cgroup.c
+++ b/kernel/cgroup/cgroup.c
@@ -5789,7 +5789,7 @@ static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
{
struct cgroup *cgroup;
int ret = false;
- int level = 1;
+ int level = 0;
lockdep_assert_held(&cgroup_mutex);
@@ -5797,7 +5797,7 @@ static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
if (cgroup->nr_descendants >= cgroup->max_descendants)
goto fail;
- if (level > cgroup->max_depth)
+ if (level >= cgroup->max_depth)
goto fail;
level++;
@@ -6476,7 +6476,6 @@ static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
struct cgroup *dst_cgrp = NULL;
struct css_set *cset;
struct super_block *sb;
- struct file *f;
if (kargs->flags & CLONE_INTO_CGROUP)
cgroup_lock();
@@ -6493,14 +6492,14 @@ static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
return 0;
}
- f = fget_raw(kargs->cgroup);
- if (!f) {
+ CLASS(fd_raw, f)(kargs->cgroup);
+ if (fd_empty(f)) {
ret = -EBADF;
goto err;
}
- sb = f->f_path.dentry->d_sb;
+ sb = fd_file(f)->f_path.dentry->d_sb;
- dst_cgrp = cgroup_get_from_file(f);
+ dst_cgrp = cgroup_get_from_file(fd_file(f));
if (IS_ERR(dst_cgrp)) {
ret = PTR_ERR(dst_cgrp);
dst_cgrp = NULL;
@@ -6548,15 +6547,12 @@ static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
}
put_css_set(cset);
- fput(f);
kargs->cgrp = dst_cgrp;
return ret;
err:
cgroup_threadgroup_change_end(current);
cgroup_unlock();
- if (f)
- fput(f);
if (dst_cgrp)
cgroup_put(dst_cgrp);
put_css_set(cset);
@@ -6966,14 +6962,11 @@ EXPORT_SYMBOL_GPL(cgroup_get_from_path);
*/
struct cgroup *cgroup_v1v2_get_from_fd(int fd)
{
- struct cgroup *cgrp;
- struct fd f = fdget_raw(fd);
- if (!fd_file(f))
+ CLASS(fd_raw, f)(fd);
+ if (fd_empty(f))
return ERR_PTR(-EBADF);
- cgrp = cgroup_v1v2_get_from_file(fd_file(f));
- fdput(f);
- return cgrp;
+ return cgroup_v1v2_get_from_file(fd_file(f));
}
/**
diff --git a/kernel/cpu.c b/kernel/cpu.c
index d293d52a3e00..6e34b52cb5ce 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -1338,7 +1338,7 @@ static int takedown_cpu(unsigned int cpu)
cpuhp_bp_sync_dead(cpu);
- tick_cleanup_dead_cpu(cpu);
+ lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
/*
* Callbacks must be re-integrated right away to the RCU state machine.
diff --git a/kernel/entry/common.c b/kernel/entry/common.c
index 5b6934e23c21..e33691d5adf7 100644
--- a/kernel/entry/common.c
+++ b/kernel/entry/common.c
@@ -98,7 +98,7 @@ __always_inline unsigned long exit_to_user_mode_loop(struct pt_regs *regs,
local_irq_enable_exit_to_user(ti_work);
- if (ti_work & _TIF_NEED_RESCHED)
+ if (ti_work & (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY))
schedule();
if (ti_work & _TIF_UPROBE)
diff --git a/kernel/entry/kvm.c b/kernel/entry/kvm.c
index 2e0f75bcb7fd..8485f63863af 100644
--- a/kernel/entry/kvm.c
+++ b/kernel/entry/kvm.c
@@ -13,7 +13,7 @@ static int xfer_to_guest_mode_work(struct kvm_vcpu *vcpu, unsigned long ti_work)
return -EINTR;
}
- if (ti_work & _TIF_NEED_RESCHED)
+ if (ti_work & (_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY))
schedule();
if (ti_work & _TIF_NOTIFY_RESUME)
@@ -24,7 +24,7 @@ static int xfer_to_guest_mode_work(struct kvm_vcpu *vcpu, unsigned long ti_work)
return ret;
ti_work = read_thread_flags();
- } while (ti_work & XFER_TO_GUEST_MODE_WORK || need_resched());
+ } while (ti_work & XFER_TO_GUEST_MODE_WORK);
return 0;
}
diff --git a/kernel/events/core.c b/kernel/events/core.c
index cdd09769e6c5..5d4a54f50826 100644
--- a/kernel/events/core.c
+++ b/kernel/events/core.c
@@ -966,22 +966,20 @@ static inline int perf_cgroup_connect(int fd, struct perf_event *event,
{
struct perf_cgroup *cgrp;
struct cgroup_subsys_state *css;
- struct fd f = fdget(fd);
+ CLASS(fd, f)(fd);
int ret = 0;
- if (!fd_file(f))
+ if (fd_empty(f))
return -EBADF;
css = css_tryget_online_from_dir(fd_file(f)->f_path.dentry,
&perf_event_cgrp_subsys);
- if (IS_ERR(css)) {
- ret = PTR_ERR(css);
- goto out;
- }
+ if (IS_ERR(css))
+ return PTR_ERR(css);
ret = perf_cgroup_ensure_storage(event, css);
if (ret)
- goto out;
+ return ret;
cgrp = container_of(css, struct perf_cgroup, css);
event->cgrp = cgrp;
@@ -995,8 +993,6 @@ static inline int perf_cgroup_connect(int fd, struct perf_event *event,
perf_detach_cgroup(event);
ret = -EINVAL;
}
-out:
- fdput(f);
return ret;
}
@@ -2146,7 +2142,7 @@ static void perf_put_aux_event(struct perf_event *event)
static bool perf_need_aux_event(struct perf_event *event)
{
- return !!event->attr.aux_output || !!event->attr.aux_sample_size;
+ return event->attr.aux_output || has_aux_action(event);
}
static int perf_get_aux_event(struct perf_event *event,
@@ -2171,6 +2167,10 @@ static int perf_get_aux_event(struct perf_event *event,
!perf_aux_output_match(event, group_leader))
return 0;
+ if ((event->attr.aux_pause || event->attr.aux_resume) &&
+ !(group_leader->pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE))
+ return 0;
+
if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
return 0;
@@ -5998,18 +5998,9 @@ EXPORT_SYMBOL_GPL(perf_event_period);
static const struct file_operations perf_fops;
-static inline int perf_fget_light(int fd, struct fd *p)
+static inline bool is_perf_file(struct fd f)
{
- struct fd f = fdget(fd);
- if (!fd_file(f))
- return -EBADF;
-
- if (fd_file(f)->f_op != &perf_fops) {
- fdput(f);
- return -EBADF;
- }
- *p = f;
- return 0;
+ return !fd_empty(f) && fd_file(f)->f_op == &perf_fops;
}
static int perf_event_set_output(struct perf_event *event,
@@ -6057,20 +6048,14 @@ static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned lon
case PERF_EVENT_IOC_SET_OUTPUT:
{
- int ret;
+ CLASS(fd, output)(arg); // arg == -1 => empty
+ struct perf_event *output_event = NULL;
if (arg != -1) {
- struct perf_event *output_event;
- struct fd output;
- ret = perf_fget_light(arg, &output);
- if (ret)
- return ret;
+ if (!is_perf_file(output))
+ return -EBADF;
output_event = fd_file(output)->private_data;
- ret = perf_event_set_output(event, output_event);
- fdput(output);
- } else {
- ret = perf_event_set_output(event, NULL);
}
- return ret;
+ return perf_event_set_output(event, output_event);
}
case PERF_EVENT_IOC_SET_FILTER:
@@ -7022,6 +7007,29 @@ void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
#endif
+static bool should_sample_guest(struct perf_event *event)
+{
+ return !event->attr.exclude_guest && perf_guest_state();
+}
+
+unsigned long perf_misc_flags(struct perf_event *event,
+ struct pt_regs *regs)
+{
+ if (should_sample_guest(event))
+ return perf_arch_guest_misc_flags(regs);
+
+ return perf_arch_misc_flags(regs);
+}
+
+unsigned long perf_instruction_pointer(struct perf_event *event,
+ struct pt_regs *regs)
+{
+ if (should_sample_guest(event))
+ return perf_guest_get_ip();
+
+ return perf_arch_instruction_pointer(regs);
+}
+
static void
perf_output_sample_regs(struct perf_output_handle *handle,
struct pt_regs *regs, u64 mask)
@@ -7839,7 +7847,7 @@ void perf_prepare_sample(struct perf_sample_data *data,
__perf_event_header__init_id(data, event, filtered_sample_type);
if (filtered_sample_type & PERF_SAMPLE_IP) {
- data->ip = perf_instruction_pointer(regs);
+ data->ip = perf_instruction_pointer(event, regs);
data->sample_flags |= PERF_SAMPLE_IP;
}
@@ -8003,7 +8011,7 @@ void perf_prepare_header(struct perf_event_header *header,
{
header->type = PERF_RECORD_SAMPLE;
header->size = perf_sample_data_size(data, event);
- header->misc = perf_misc_flags(regs);
+ header->misc = perf_misc_flags(event, regs);
/*
* If you're adding more sample types here, you likely need to do
@@ -8016,6 +8024,49 @@ void perf_prepare_header(struct perf_event_header *header,
WARN_ON_ONCE(header->size & 7);
}
+static void __perf_event_aux_pause(struct perf_event *event, bool pause)
+{
+ if (pause) {
+ if (!event->hw.aux_paused) {
+ event->hw.aux_paused = 1;
+ event->pmu->stop(event, PERF_EF_PAUSE);
+ }
+ } else {
+ if (event->hw.aux_paused) {
+ event->hw.aux_paused = 0;
+ event->pmu->start(event, PERF_EF_RESUME);
+ }
+ }
+}
+
+static void perf_event_aux_pause(struct perf_event *event, bool pause)
+{
+ struct perf_buffer *rb;
+
+ if (WARN_ON_ONCE(!event))
+ return;
+
+ rb = ring_buffer_get(event);
+ if (!rb)
+ return;
+
+ scoped_guard (irqsave) {
+ /*
+ * Guard against self-recursion here. Another event could trip
+ * this same from NMI context.
+ */
+ if (READ_ONCE(rb->aux_in_pause_resume))
+ break;
+
+ WRITE_ONCE(rb->aux_in_pause_resume, 1);
+ barrier();
+ __perf_event_aux_pause(event, pause);
+ barrier();
+ WRITE_ONCE(rb->aux_in_pause_resume, 0);
+ }
+ ring_buffer_put(rb);
+}
+
static __always_inline int
__perf_event_output(struct perf_event *event,
struct perf_sample_data *data,
@@ -9818,9 +9869,12 @@ static int __perf_event_overflow(struct perf_event *event,
ret = __perf_event_account_interrupt(event, throttle);
+ if (event->attr.aux_pause)
+ perf_event_aux_pause(event->aux_event, true);
+
if (event->prog && event->prog->type == BPF_PROG_TYPE_PERF_EVENT &&
!bpf_overflow_handler(event, data, regs))
- return ret;
+ goto out;
/*
* XXX event_limit might not quite work as expected on inherited
@@ -9882,6 +9936,9 @@ static int __perf_event_overflow(struct perf_event *event,
event->pending_wakeup = 1;
irq_work_queue(&event->pending_irq);
}
+out:
+ if (event->attr.aux_resume)
+ perf_event_aux_pause(event->aux_event, false);
return ret;
}
@@ -12273,11 +12330,25 @@ perf_event_alloc(struct perf_event_attr *attr, int cpu,
}
if (event->attr.aux_output &&
- !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
+ (!(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT) ||
+ event->attr.aux_pause || event->attr.aux_resume)) {
err = -EOPNOTSUPP;
goto err_pmu;
}
+ if (event->attr.aux_pause && event->attr.aux_resume) {
+ err = -EINVAL;
+ goto err_pmu;
+ }
+
+ if (event->attr.aux_start_paused) {
+ if (!(pmu->capabilities & PERF_PMU_CAP_AUX_PAUSE)) {
+ err = -EOPNOTSUPP;
+ goto err_pmu;
+ }
+ event->hw.aux_paused = 1;
+ }
+
if (cgroup_fd != -1) {
err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
if (err)
@@ -12664,7 +12735,6 @@ SYSCALL_DEFINE5(perf_event_open,
struct perf_event_attr attr;
struct perf_event_context *ctx;
struct file *event_file = NULL;
- struct fd group = EMPTY_FD;
struct task_struct *task = NULL;
struct pmu *pmu;
int event_fd;
@@ -12735,10 +12805,12 @@ SYSCALL_DEFINE5(perf_event_open,
if (event_fd < 0)
return event_fd;
+ CLASS(fd, group)(group_fd); // group_fd == -1 => empty
if (group_fd != -1) {
- err = perf_fget_light(group_fd, &group);
- if (err)
+ if (!is_perf_file(group)) {
+ err = -EBADF;
goto err_fd;
+ }
group_leader = fd_file(group)->private_data;
if (flags & PERF_FLAG_FD_OUTPUT)
output_event = group_leader;
@@ -12750,7 +12822,7 @@ SYSCALL_DEFINE5(perf_event_open,
task = find_lively_task_by_vpid(pid);
if (IS_ERR(task)) {
err = PTR_ERR(task);
- goto err_group_fd;
+ goto err_fd;
}
}
@@ -13017,12 +13089,11 @@ SYSCALL_DEFINE5(perf_event_open,
mutex_unlock(&current->perf_event_mutex);
/*
- * Drop the reference on the group_event after placing the
- * new event on the sibling_list. This ensures destruction
- * of the group leader will find the pointer to itself in
- * perf_group_detach().
+ * File reference in group guarantees that group_leader has been
+ * kept alive until we place the new event on the sibling_list.
+ * This ensures destruction of the group leader will find
+ * the pointer to itself in perf_group_detach().
*/
- fdput(group);
fd_install(event_fd, event_file);
return event_fd;
@@ -13041,8 +13112,6 @@ err_alloc:
err_task:
if (task)
put_task_struct(task);
-err_group_fd:
- fdput(group);
err_fd:
put_unused_fd(event_fd);
return err;
@@ -13073,7 +13142,7 @@ perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
* Grouping is not supported for kernel events, neither is 'AUX',
* make sure the caller's intentions are adjusted.
*/
- if (attr->aux_output)
+ if (attr->aux_output || attr->aux_action)
return ERR_PTR(-EINVAL);
event = perf_event_alloc(attr, cpu, task, NULL, NULL,
@@ -13959,7 +14028,7 @@ static void perf_event_clear_cpumask(unsigned int cpu)
}
/* migrate */
- list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
+ list_for_each_entry(pmu, &pmus, entry) {
if (pmu->scope == PERF_PMU_SCOPE_NONE ||
WARN_ON_ONCE(pmu->scope >= PERF_PMU_MAX_SCOPE))
continue;
diff --git a/kernel/events/internal.h b/kernel/events/internal.h
index e072d995d670..249288d82b8d 100644
--- a/kernel/events/internal.h
+++ b/kernel/events/internal.h
@@ -52,6 +52,7 @@ struct perf_buffer {
void (*free_aux)(void *);
refcount_t aux_refcount;
int aux_in_sampling;
+ int aux_in_pause_resume;
void **aux_pages;
void *aux_priv;
diff --git a/kernel/events/uprobes.c b/kernel/events/uprobes.c
index 4b52cb2ae6d6..a76ddc5fc982 100644
--- a/kernel/events/uprobes.c
+++ b/kernel/events/uprobes.c
@@ -26,6 +26,9 @@
#include <linux/task_work.h>
#include <linux/shmem_fs.h>
#include <linux/khugepaged.h>
+#include <linux/rcupdate_trace.h>
+#include <linux/workqueue.h>
+#include <linux/srcu.h>
#include <linux/uprobes.h>
@@ -42,8 +45,6 @@ static struct rb_root uprobes_tree = RB_ROOT;
static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */
static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
-DEFINE_STATIC_SRCU(uprobes_srcu);
-
#define UPROBES_HASH_SZ 13
/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
@@ -51,6 +52,9 @@ static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
+/* Covers return_instance's uprobe lifetime. */
+DEFINE_STATIC_SRCU(uretprobes_srcu);
+
/* Have a copy of original instruction */
#define UPROBE_COPY_INSN 0
@@ -62,10 +66,13 @@ struct uprobe {
struct list_head pending_list;
struct list_head consumers;
struct inode *inode; /* Also hold a ref to inode */
- struct rcu_head rcu;
+ union {
+ struct rcu_head rcu;
+ struct work_struct work;
+ };
loff_t offset;
loff_t ref_ctr_offset;
- unsigned long flags;
+ unsigned long flags; /* "unsigned long" so bitops work */
/*
* The generic code assumes that it has two members of unknown type
@@ -100,7 +107,6 @@ static LIST_HEAD(delayed_uprobe_list);
*/
struct xol_area {
wait_queue_head_t wq; /* if all slots are busy */
- atomic_t slot_count; /* number of in-use slots */
unsigned long *bitmap; /* 0 = free slot */
struct page *page;
@@ -620,17 +626,23 @@ static inline bool uprobe_is_active(struct uprobe *uprobe)
return !RB_EMPTY_NODE(&uprobe->rb_node);
}
-static void uprobe_free_rcu(struct rcu_head *rcu)
+static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
{
struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
kfree(uprobe);
}
-static void put_uprobe(struct uprobe *uprobe)
+static void uprobe_free_srcu(struct rcu_head *rcu)
{
- if (!refcount_dec_and_test(&uprobe->ref))
- return;
+ struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
+
+ call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
+}
+
+static void uprobe_free_deferred(struct work_struct *work)
+{
+ struct uprobe *uprobe = container_of(work, struct uprobe, work);
write_lock(&uprobes_treelock);
@@ -651,7 +663,162 @@ static void put_uprobe(struct uprobe *uprobe)
delayed_uprobe_remove(uprobe, NULL);
mutex_unlock(&delayed_uprobe_lock);
- call_srcu(&uprobes_srcu, &uprobe->rcu, uprobe_free_rcu);
+ /* start srcu -> rcu_tasks_trace -> kfree chain */
+ call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
+}
+
+static void put_uprobe(struct uprobe *uprobe)
+{
+ if (!refcount_dec_and_test(&uprobe->ref))
+ return;
+
+ INIT_WORK(&uprobe->work, uprobe_free_deferred);
+ schedule_work(&uprobe->work);
+}
+
+/* Initialize hprobe as SRCU-protected "leased" uprobe */
+static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
+{
+ WARN_ON(!uprobe);
+ hprobe->state = HPROBE_LEASED;
+ hprobe->uprobe = uprobe;
+ hprobe->srcu_idx = srcu_idx;
+}
+
+/* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
+static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
+{
+ hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
+ hprobe->uprobe = uprobe;
+ hprobe->srcu_idx = -1;
+}
+
+/*
+ * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
+ * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
+ * used only once for a given hprobe.
+ *
+ * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
+ * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
+ * is appropriate.
+ */
+static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
+{
+ *hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
+ switch (*hstate) {
+ case HPROBE_LEASED:
+ case HPROBE_STABLE:
+ return hprobe->uprobe;
+ case HPROBE_GONE: /* uprobe is NULL, no SRCU */
+ case HPROBE_CONSUMED: /* uprobe was finalized already, do nothing */
+ return NULL;
+ default:
+ WARN(1, "hprobe invalid state %d", *hstate);
+ return NULL;
+ }
+}
+
+/*
+ * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
+ * hprobe_finalize() can only be used from current context after
+ * hprobe_consume() call (which determines uprobe and hstate value).
+ */
+static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
+{
+ switch (hstate) {
+ case HPROBE_LEASED:
+ __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
+ break;
+ case HPROBE_STABLE:
+ put_uprobe(hprobe->uprobe);
+ break;
+ case HPROBE_GONE:
+ case HPROBE_CONSUMED:
+ break;
+ default:
+ WARN(1, "hprobe invalid state %d", hstate);
+ break;
+ }
+}
+
+/*
+ * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
+ * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
+ * them can win the race to perform SRCU unlocking. Whoever wins must perform
+ * SRCU unlock.
+ *
+ * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
+ * to begin with or we failed to bump its refcount and it's going away.
+ *
+ * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
+ * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
+ * an extra refcount for caller to assume and use. Otherwise, it's not
+ * guaranteed that returned uprobe has a positive refcount, so caller has to
+ * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
+ * SRCU lock region. See dup_utask().
+ */
+static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
+{
+ enum hprobe_state hstate;
+
+ /*
+ * return_instance's hprobe is protected by RCU.
+ * Underlying uprobe is itself protected from reuse by SRCU.
+ */
+ lockdep_assert(rcu_read_lock_held() && srcu_read_lock_held(&uretprobes_srcu));
+
+ hstate = READ_ONCE(hprobe->state);
+ switch (hstate) {
+ case HPROBE_STABLE:
+ /* uprobe has positive refcount, bump refcount, if necessary */
+ return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
+ case HPROBE_GONE:
+ /*
+ * SRCU was unlocked earlier and we didn't manage to take
+ * uprobe refcnt, so it's effectively NULL
+ */
+ return NULL;
+ case HPROBE_CONSUMED:
+ /*
+ * uprobe was consumed, so it's effectively NULL as far as
+ * uretprobe processing logic is concerned
+ */
+ return NULL;
+ case HPROBE_LEASED: {
+ struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
+ /*
+ * Try to switch hprobe state, guarding against
+ * hprobe_consume() or another hprobe_expire() racing with us.
+ * Note, if we failed to get uprobe refcount, we use special
+ * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
+ * be used as it will be freed after SRCU is unlocked.
+ */
+ if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
+ /* We won the race, we are the ones to unlock SRCU */
+ __srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
+ return get ? get_uprobe(uprobe) : uprobe;
+ }
+
+ /*
+ * We lost the race, undo refcount bump (if it ever happened),
+ * unless caller would like an extra refcount anyways.
+ */
+ if (uprobe && !get)
+ put_uprobe(uprobe);
+ /*
+ * Even if hprobe_consume() or another hprobe_expire() wins
+ * the state update race and unlocks SRCU from under us, we
+ * still have a guarantee that underyling uprobe won't be
+ * freed due to ongoing caller's SRCU lock region, so we can
+ * return it regardless. Also, if `get` was true, we also have
+ * an extra ref for the caller to own. This is used in dup_utask().
+ */
+ return uprobe;
+ }
+ default:
+ WARN(1, "unknown hprobe state %d", hstate);
+ return NULL;
+ }
}
static __always_inline
@@ -706,7 +873,7 @@ static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
struct rb_node *node;
unsigned int seq;
- lockdep_assert(srcu_read_lock_held(&uprobes_srcu));
+ lockdep_assert(rcu_read_lock_trace_held());
do {
seq = read_seqcount_begin(&uprobes_seqcount);
@@ -825,8 +992,11 @@ static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
{
+ static atomic64_t id;
+
down_write(&uprobe->consumer_rwsem);
list_add_rcu(&uc->cons_node, &uprobe->consumers);
+ uc->id = (__u64) atomic64_inc_return(&id);
up_write(&uprobe->consumer_rwsem);
}
@@ -934,8 +1104,7 @@ static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
bool ret = false;
down_read(&uprobe->consumer_rwsem);
- list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
+ list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
ret = consumer_filter(uc, mm);
if (ret)
break;
@@ -1156,7 +1325,8 @@ void uprobe_unregister_sync(void)
* unlucky enough caller can free consumer's memory and cause
* handler_chain() or handle_uretprobe_chain() to do an use-after-free.
*/
- synchronize_srcu(&uprobes_srcu);
+ synchronize_rcu_tasks_trace();
+ synchronize_srcu(&uretprobes_srcu);
}
EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
@@ -1240,19 +1410,18 @@ EXPORT_SYMBOL_GPL(uprobe_register);
int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
{
struct uprobe_consumer *con;
- int ret = -ENOENT, srcu_idx;
+ int ret = -ENOENT;
down_write(&uprobe->register_rwsem);
- srcu_idx = srcu_read_lock(&uprobes_srcu);
- list_for_each_entry_srcu(con, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
+ rcu_read_lock_trace();
+ list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
if (con == uc) {
ret = register_for_each_vma(uprobe, add ? uc : NULL);
break;
}
}
- srcu_read_unlock(&uprobes_srcu, srcu_idx);
+ rcu_read_unlock_trace();
up_write(&uprobe->register_rwsem);
@@ -1475,9 +1644,15 @@ static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
return 0;
}
+static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
+{
+ return -EPERM;
+}
+
static const struct vm_special_mapping xol_mapping = {
.name = "[uprobes]",
.fault = xol_fault,
+ .mremap = xol_mremap,
};
/* Slot allocation for XOL */
@@ -1553,7 +1728,6 @@ static struct xol_area *__create_xol_area(unsigned long vaddr)
init_waitqueue_head(&area->wq);
/* Reserve the 1st slot for get_trampoline_vaddr() */
set_bit(0, area->bitmap);
- atomic_set(&area->slot_count, 1);
insns = arch_uprobe_trampoline(&insns_size);
arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
@@ -1626,92 +1800,57 @@ void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
}
}
-/*
- * - search for a free slot.
- */
-static unsigned long xol_take_insn_slot(struct xol_area *area)
+static unsigned long xol_get_slot_nr(struct xol_area *area)
{
- unsigned long slot_addr;
- int slot_nr;
-
- do {
- slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
- if (slot_nr < UINSNS_PER_PAGE) {
- if (!test_and_set_bit(slot_nr, area->bitmap))
- break;
+ unsigned long slot_nr;
- slot_nr = UINSNS_PER_PAGE;
- continue;
- }
- wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
- } while (slot_nr >= UINSNS_PER_PAGE);
-
- slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
- atomic_inc(&area->slot_count);
+ slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
+ if (slot_nr < UINSNS_PER_PAGE) {
+ if (!test_and_set_bit(slot_nr, area->bitmap))
+ return slot_nr;
+ }
- return slot_addr;
+ return UINSNS_PER_PAGE;
}
/*
* xol_get_insn_slot - allocate a slot for xol.
- * Returns the allocated slot address or 0.
*/
-static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
+static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
{
- struct xol_area *area;
- unsigned long xol_vaddr;
+ struct xol_area *area = get_xol_area();
+ unsigned long slot_nr;
- area = get_xol_area();
if (!area)
- return 0;
+ return false;
- xol_vaddr = xol_take_insn_slot(area);
- if (unlikely(!xol_vaddr))
- return 0;
+ wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
- arch_uprobe_copy_ixol(area->page, xol_vaddr,
+ utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
+ arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
&uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
-
- return xol_vaddr;
+ return true;
}
/*
- * xol_free_insn_slot - If slot was earlier allocated by
- * @xol_get_insn_slot(), make the slot available for
- * subsequent requests.
+ * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
*/
-static void xol_free_insn_slot(struct task_struct *tsk)
+static void xol_free_insn_slot(struct uprobe_task *utask)
{
- struct xol_area *area;
- unsigned long vma_end;
- unsigned long slot_addr;
-
- if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
- return;
+ struct xol_area *area = current->mm->uprobes_state.xol_area;
+ unsigned long offset = utask->xol_vaddr - area->vaddr;
+ unsigned int slot_nr;
- slot_addr = tsk->utask->xol_vaddr;
- if (unlikely(!slot_addr))
+ utask->xol_vaddr = 0;
+ /* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
+ if (WARN_ON_ONCE(offset >= PAGE_SIZE))
return;
- area = tsk->mm->uprobes_state.xol_area;
- vma_end = area->vaddr + PAGE_SIZE;
- if (area->vaddr <= slot_addr && slot_addr < vma_end) {
- unsigned long offset;
- int slot_nr;
-
- offset = slot_addr - area->vaddr;
- slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
- if (slot_nr >= UINSNS_PER_PAGE)
- return;
-
- clear_bit(slot_nr, area->bitmap);
- atomic_dec(&area->slot_count);
- smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
- if (waitqueue_active(&area->wq))
- wake_up(&area->wq);
-
- tsk->utask->xol_vaddr = 0;
- }
+ slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
+ clear_bit(slot_nr, area->bitmap);
+ smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
+ if (waitqueue_active(&area->wq))
+ wake_up(&area->wq);
}
void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
@@ -1750,11 +1889,18 @@ unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
return instruction_pointer(regs);
}
-static struct return_instance *free_ret_instance(struct return_instance *ri)
+static struct return_instance *free_ret_instance(struct return_instance *ri, bool cleanup_hprobe)
{
struct return_instance *next = ri->next;
- put_uprobe(ri->uprobe);
- kfree(ri);
+
+ if (cleanup_hprobe) {
+ enum hprobe_state hstate;
+
+ (void)hprobe_consume(&ri->hprobe, &hstate);
+ hprobe_finalize(&ri->hprobe, hstate);
+ }
+
+ kfree_rcu(ri, rcu);
return next;
}
@@ -1770,18 +1916,50 @@ void uprobe_free_utask(struct task_struct *t)
if (!utask)
return;
- if (utask->active_uprobe)
- put_uprobe(utask->active_uprobe);
+ WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
+
+ timer_delete_sync(&utask->ri_timer);
ri = utask->return_instances;
while (ri)
- ri = free_ret_instance(ri);
+ ri = free_ret_instance(ri, true /* cleanup_hprobe */);
- xol_free_insn_slot(t);
kfree(utask);
t->utask = NULL;
}
+#define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
+
+#define for_each_ret_instance_rcu(pos, head) \
+ for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
+
+static void ri_timer(struct timer_list *timer)
+{
+ struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
+ struct return_instance *ri;
+
+ /* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
+ guard(srcu)(&uretprobes_srcu);
+ /* RCU protects return_instance from freeing. */
+ guard(rcu)();
+
+ for_each_ret_instance_rcu(ri, utask->return_instances)
+ hprobe_expire(&ri->hprobe, false);
+}
+
+static struct uprobe_task *alloc_utask(void)
+{
+ struct uprobe_task *utask;
+
+ utask = kzalloc(sizeof(*utask), GFP_KERNEL);
+ if (!utask)
+ return NULL;
+
+ timer_setup(&utask->ri_timer, ri_timer, 0);
+
+ return utask;
+}
+
/*
* Allocate a uprobe_task object for the task if necessary.
* Called when the thread hits a breakpoint.
@@ -1793,38 +1971,73 @@ void uprobe_free_utask(struct task_struct *t)
static struct uprobe_task *get_utask(void)
{
if (!current->utask)
- current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
+ current->utask = alloc_utask();
return current->utask;
}
+static size_t ri_size(int consumers_cnt)
+{
+ struct return_instance *ri;
+
+ return sizeof(*ri) + sizeof(ri->consumers[0]) * consumers_cnt;
+}
+
+#define DEF_CNT 4
+
+static struct return_instance *alloc_return_instance(void)
+{
+ struct return_instance *ri;
+
+ ri = kzalloc(ri_size(DEF_CNT), GFP_KERNEL);
+ if (!ri)
+ return ZERO_SIZE_PTR;
+
+ ri->consumers_cnt = DEF_CNT;
+ return ri;
+}
+
+static struct return_instance *dup_return_instance(struct return_instance *old)
+{
+ size_t size = ri_size(old->consumers_cnt);
+
+ return kmemdup(old, size, GFP_KERNEL);
+}
+
static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
{
struct uprobe_task *n_utask;
struct return_instance **p, *o, *n;
+ struct uprobe *uprobe;
- n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
+ n_utask = alloc_utask();
if (!n_utask)
return -ENOMEM;
t->utask = n_utask;
+ /* protect uprobes from freeing, we'll need try_get_uprobe() them */
+ guard(srcu)(&uretprobes_srcu);
+
p = &n_utask->return_instances;
for (o = o_utask->return_instances; o; o = o->next) {
- n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
+ n = dup_return_instance(o);
if (!n)
return -ENOMEM;
- *n = *o;
+ /* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
+ uprobe = hprobe_expire(&o->hprobe, true);
+
/*
- * uprobe's refcnt has to be positive at this point, kept by
- * utask->return_instances items; return_instances can't be
- * removed right now, as task is blocked due to duping; so
- * get_uprobe() is safe to use here.
+ * New utask will have stable properly refcounted uprobe or
+ * NULL. Even if we failed to get refcounted uprobe, we still
+ * need to preserve full set of return_instances for proper
+ * uretprobe handling and nesting in forked task.
*/
- get_uprobe(n->uprobe);
- n->next = NULL;
+ hprobe_init_stable(&n->hprobe, uprobe);
- *p = n;
+ n->next = NULL;
+ rcu_assign_pointer(*p, n);
p = &n->next;
+
n_utask->depth++;
}
@@ -1900,45 +2113,34 @@ static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
- ri = free_ret_instance(ri);
+ ri = free_ret_instance(ri, true /* cleanup_hprobe */);
utask->depth--;
}
- utask->return_instances = ri;
+ rcu_assign_pointer(utask->return_instances, ri);
}
-static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
+static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
+ struct return_instance *ri)
{
- struct return_instance *ri;
- struct uprobe_task *utask;
+ struct uprobe_task *utask = current->utask;
unsigned long orig_ret_vaddr, trampoline_vaddr;
bool chained;
+ int srcu_idx;
if (!get_xol_area())
- return;
-
- utask = get_utask();
- if (!utask)
- return;
+ goto free;
if (utask->depth >= MAX_URETPROBE_DEPTH) {
printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
" nestedness limit pid/tgid=%d/%d\n",
current->pid, current->tgid);
- return;
+ goto free;
}
- /* we need to bump refcount to store uprobe in utask */
- if (!try_get_uprobe(uprobe))
- return;
-
- ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
- if (!ri)
- goto fail;
-
trampoline_vaddr = uprobe_get_trampoline_vaddr();
orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
if (orig_ret_vaddr == -1)
- goto fail;
+ goto free;
/* drop the entries invalidated by longjmp() */
chained = (orig_ret_vaddr == trampoline_vaddr);
@@ -1956,53 +2158,51 @@ static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
* attack from user-space.
*/
uprobe_warn(current, "handle tail call");
- goto fail;
+ goto free;
}
orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
}
- ri->uprobe = uprobe;
+
+ /* __srcu_read_lock() because SRCU lock survives switch to user space */
+ srcu_idx = __srcu_read_lock(&uretprobes_srcu);
+
ri->func = instruction_pointer(regs);
ri->stack = user_stack_pointer(regs);
ri->orig_ret_vaddr = orig_ret_vaddr;
ri->chained = chained;
utask->depth++;
+
+ hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
ri->next = utask->return_instances;
- utask->return_instances = ri;
+ rcu_assign_pointer(utask->return_instances, ri);
+
+ mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
return;
-fail:
+free:
kfree(ri);
- put_uprobe(uprobe);
}
/* Prepare to single-step probed instruction out of line. */
static int
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
{
- struct uprobe_task *utask;
- unsigned long xol_vaddr;
+ struct uprobe_task *utask = current->utask;
int err;
- utask = get_utask();
- if (!utask)
- return -ENOMEM;
-
if (!try_get_uprobe(uprobe))
return -EINVAL;
- xol_vaddr = xol_get_insn_slot(uprobe);
- if (!xol_vaddr) {
+ if (!xol_get_insn_slot(uprobe, utask)) {
err = -ENOMEM;
goto err_out;
}
- utask->xol_vaddr = xol_vaddr;
utask->vaddr = bp_vaddr;
-
err = arch_uprobe_pre_xol(&uprobe->arch, regs);
if (unlikely(err)) {
- xol_free_insn_slot(current);
+ xol_free_insn_slot(utask);
goto err_out;
}
@@ -2125,35 +2325,90 @@ static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swb
return uprobe;
}
+static struct return_instance*
+push_consumer(struct return_instance *ri, int idx, __u64 id, __u64 cookie)
+{
+ if (unlikely(ri == ZERO_SIZE_PTR))
+ return ri;
+
+ if (unlikely(idx >= ri->consumers_cnt)) {
+ struct return_instance *old_ri = ri;
+
+ ri->consumers_cnt += DEF_CNT;
+ ri = krealloc(old_ri, ri_size(old_ri->consumers_cnt), GFP_KERNEL);
+ if (!ri) {
+ kfree(old_ri);
+ return ZERO_SIZE_PTR;
+ }
+ }
+
+ ri->consumers[idx].id = id;
+ ri->consumers[idx].cookie = cookie;
+ return ri;
+}
+
+static struct return_consumer *
+return_consumer_find(struct return_instance *ri, int *iter, int id)
+{
+ struct return_consumer *ric;
+ int idx = *iter;
+
+ for (ric = &ri->consumers[idx]; idx < ri->consumers_cnt; idx++, ric++) {
+ if (ric->id == id) {
+ *iter = idx + 1;
+ return ric;
+ }
+ }
+ return NULL;
+}
+
+static bool ignore_ret_handler(int rc)
+{
+ return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
+}
+
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
struct uprobe_consumer *uc;
- int remove = UPROBE_HANDLER_REMOVE;
- bool need_prep = false; /* prepare return uprobe, when needed */
- bool has_consumers = false;
+ bool has_consumers = false, remove = true;
+ struct return_instance *ri = NULL;
+ int push_idx = 0;
current->utask->auprobe = &uprobe->arch;
- list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
+ list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
+ bool session = uc->handler && uc->ret_handler;
+ __u64 cookie = 0;
int rc = 0;
if (uc->handler) {
- rc = uc->handler(uc, regs);
- WARN(rc & ~UPROBE_HANDLER_MASK,
+ rc = uc->handler(uc, regs, &cookie);
+ WARN(rc < 0 || rc > 2,
"bad rc=0x%x from %ps()\n", rc, uc->handler);
}
- if (uc->ret_handler)
- need_prep = true;
-
- remove &= rc;
+ remove &= rc == UPROBE_HANDLER_REMOVE;
has_consumers = true;
+
+ if (!uc->ret_handler || ignore_ret_handler(rc))
+ continue;
+
+ if (!ri)
+ ri = alloc_return_instance();
+
+ if (session)
+ ri = push_consumer(ri, push_idx++, uc->id, cookie);
}
current->utask->auprobe = NULL;
- if (need_prep && !remove)
- prepare_uretprobe(uprobe, regs); /* put bp at return */
+ if (!ZERO_OR_NULL_PTR(ri)) {
+ /*
+ * The push_idx value has the final number of return consumers,
+ * and ri->consumers_cnt has number of allocated consumers.
+ */
+ ri->consumers_cnt = push_idx;
+ prepare_uretprobe(uprobe, regs, ri);
+ }
if (remove && has_consumers) {
down_read(&uprobe->register_rwsem);
@@ -2169,19 +2424,27 @@ static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
}
static void
-handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
+handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
{
- struct uprobe *uprobe = ri->uprobe;
+ struct return_consumer *ric;
struct uprobe_consumer *uc;
- int srcu_idx;
+ int ric_idx = 0;
+
+ /* all consumers unsubscribed meanwhile */
+ if (unlikely(!uprobe))
+ return;
- srcu_idx = srcu_read_lock(&uprobes_srcu);
- list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node,
- srcu_read_lock_held(&uprobes_srcu)) {
- if (uc->ret_handler)
- uc->ret_handler(uc, ri->func, regs);
+ rcu_read_lock_trace();
+ list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
+ bool session = uc->handler && uc->ret_handler;
+
+ if (uc->ret_handler) {
+ ric = return_consumer_find(ri, &ric_idx, uc->id);
+ if (!session || ric)
+ uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
+ }
}
- srcu_read_unlock(&uprobes_srcu, srcu_idx);
+ rcu_read_unlock_trace();
}
static struct return_instance *find_next_ret_chain(struct return_instance *ri)
@@ -2200,6 +2463,8 @@ void uprobe_handle_trampoline(struct pt_regs *regs)
{
struct uprobe_task *utask;
struct return_instance *ri, *next;
+ struct uprobe *uprobe;
+ enum hprobe_state hstate;
bool valid;
utask = current->utask;
@@ -2230,21 +2495,24 @@ void uprobe_handle_trampoline(struct pt_regs *regs)
* trampoline addresses on the stack are replaced with correct
* original return addresses
*/
- utask->return_instances = ri->next;
+ rcu_assign_pointer(utask->return_instances, ri->next);
+
+ uprobe = hprobe_consume(&ri->hprobe, &hstate);
if (valid)
- handle_uretprobe_chain(ri, regs);
- ri = free_ret_instance(ri);
+ handle_uretprobe_chain(ri, uprobe, regs);
+ hprobe_finalize(&ri->hprobe, hstate);
+
+ /* We already took care of hprobe, no need to waste more time on that. */
+ ri = free_ret_instance(ri, false /* !cleanup_hprobe */);
utask->depth--;
} while (ri != next);
} while (!valid);
- utask->return_instances = ri;
return;
- sigill:
+sigill:
uprobe_warn(current, "handle uretprobe, sending SIGILL.");
force_sig(SIGILL);
-
}
bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
@@ -2266,13 +2534,13 @@ static void handle_swbp(struct pt_regs *regs)
{
struct uprobe *uprobe;
unsigned long bp_vaddr;
- int is_swbp, srcu_idx;
+ int is_swbp;
bp_vaddr = uprobe_get_swbp_addr(regs);
if (bp_vaddr == uprobe_get_trampoline_vaddr())
return uprobe_handle_trampoline(regs);
- srcu_idx = srcu_read_lock(&uprobes_srcu);
+ rcu_read_lock_trace();
uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
if (!uprobe) {
@@ -2330,7 +2598,7 @@ static void handle_swbp(struct pt_regs *regs)
out:
/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
- srcu_read_unlock(&uprobes_srcu, srcu_idx);
+ rcu_read_unlock_trace();
}
/*
@@ -2353,7 +2621,7 @@ static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
put_uprobe(uprobe);
utask->active_uprobe = NULL;
utask->state = UTASK_RUNNING;
- xol_free_insn_slot(current);
+ xol_free_insn_slot(utask);
spin_lock_irq(&current->sighand->siglock);
recalc_sigpending(); /* see uprobe_deny_signal() */
diff --git a/kernel/exit.c b/kernel/exit.c
index 619f0014c33b..1dcddfe537ee 100644
--- a/kernel/exit.c
+++ b/kernel/exit.c
@@ -25,7 +25,6 @@
#include <linux/acct.h>
#include <linux/tsacct_kern.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/freezer.h>
#include <linux/binfmts.h>
#include <linux/nsproxy.h>
diff --git a/kernel/fork.c b/kernel/fork.c
index 89ceb4a68af2..e58d27c05788 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -105,6 +105,7 @@
#include <linux/rseq.h>
#include <uapi/linux/pidfd.h>
#include <linux/pidfs.h>
+#include <linux/tick.h>
#include <asm/pgalloc.h>
#include <linux/uaccess.h>
@@ -653,11 +654,6 @@ static __latent_entropy int dup_mmap(struct mm_struct *mm,
mm->exec_vm = oldmm->exec_vm;
mm->stack_vm = oldmm->stack_vm;
- retval = ksm_fork(mm, oldmm);
- if (retval)
- goto out;
- khugepaged_fork(mm, oldmm);
-
/* Use __mt_dup() to efficiently build an identical maple tree. */
retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
if (unlikely(retval))
@@ -760,6 +756,8 @@ loop_out:
vma_iter_free(&vmi);
if (!retval) {
mt_set_in_rcu(vmi.mas.tree);
+ ksm_fork(mm, oldmm);
+ khugepaged_fork(mm, oldmm);
} else if (mpnt) {
/*
* The entire maple tree has already been duplicated. If the
@@ -775,7 +773,10 @@ out:
mmap_write_unlock(mm);
flush_tlb_mm(oldmm);
mmap_write_unlock(oldmm);
- dup_userfaultfd_complete(&uf);
+ if (!retval)
+ dup_userfaultfd_complete(&uf);
+ else
+ dup_userfaultfd_fail(&uf);
fail_uprobe_end:
uprobe_end_dup_mmap();
return retval;
@@ -1184,7 +1185,7 @@ static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
tsk->active_memcg = NULL;
#endif
-#ifdef CONFIG_CPU_SUP_INTEL
+#ifdef CONFIG_X86_BUS_LOCK_DETECT
tsk->reported_split_lock = 0;
#endif
@@ -1298,7 +1299,7 @@ static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
if (init_new_context(p, mm))
goto fail_nocontext;
- if (mm_alloc_cid(mm))
+ if (mm_alloc_cid(mm, p))
goto fail_cid;
if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
@@ -1861,6 +1862,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
#ifdef CONFIG_POSIX_TIMERS
INIT_HLIST_HEAD(&sig->posix_timers);
+ INIT_HLIST_HEAD(&sig->ignored_posix_timers);
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sig->real_timer.function = it_real_fn;
#endif
@@ -2292,6 +2294,7 @@ __latent_entropy struct task_struct *copy_process(
acct_clear_integrals(p);
posix_cputimers_init(&p->posix_cputimers);
+ tick_dep_init_task(p);
p->io_context = NULL;
audit_set_context(p, NULL);
diff --git a/kernel/futex/core.c b/kernel/futex/core.c
index 136768ae2637..326bfe6549d7 100644
--- a/kernel/futex/core.c
+++ b/kernel/futex/core.c
@@ -140,9 +140,9 @@ futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
if (!time)
return NULL;
- hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
- CLOCK_REALTIME : CLOCK_MONOTONIC,
- HRTIMER_MODE_ABS);
+ hrtimer_setup_sleeper_on_stack(timeout,
+ (flags & FLAGS_CLOCKRT) ? CLOCK_REALTIME : CLOCK_MONOTONIC,
+ HRTIMER_MODE_ABS);
/*
* If range_ns is 0, calling hrtimer_set_expires_range_ns() is
* effectively the same as calling hrtimer_set_expires().
@@ -181,12 +181,12 @@ static u64 get_inode_sequence_number(struct inode *inode)
return old;
for (;;) {
- u64 new = atomic64_add_return(1, &i_seq);
+ u64 new = atomic64_inc_return(&i_seq);
if (WARN_ON_ONCE(!new))
continue;
- old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
- if (old)
+ old = 0;
+ if (!atomic64_try_cmpxchg_relaxed(&inode->i_sequence, &old, new))
return old;
return new;
}
diff --git a/kernel/futex/pi.c b/kernel/futex/pi.c
index 5722467f2737..d62cca5ed8f4 100644
--- a/kernel/futex/pi.c
+++ b/kernel/futex/pi.c
@@ -922,6 +922,7 @@ int futex_lock_pi(u32 __user *uaddr, unsigned int flags, ktime_t *time, int tryl
struct rt_mutex_waiter rt_waiter;
struct futex_hash_bucket *hb;
struct futex_q q = futex_q_init;
+ DEFINE_WAKE_Q(wake_q);
int res, ret;
if (!IS_ENABLED(CONFIG_FUTEX_PI))
@@ -1018,8 +1019,11 @@ retry_private:
* such that futex_unlock_pi() is guaranteed to observe the waiter when
* it sees the futex_q::pi_state.
*/
- ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
+ ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current, &wake_q);
+ preempt_disable();
raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
+ wake_up_q(&wake_q);
+ preempt_enable();
if (ret) {
if (ret == 1)
diff --git a/kernel/irq/devres.c b/kernel/irq/devres.c
index b3e98668f4dd..eb16a58e0322 100644
--- a/kernel/irq/devres.c
+++ b/kernel/irq/devres.c
@@ -141,9 +141,8 @@ void devm_free_irq(struct device *dev, unsigned int irq, void *dev_id)
{
struct irq_devres match_data = { irq, dev_id };
- WARN_ON(devres_destroy(dev, devm_irq_release, devm_irq_match,
+ WARN_ON(devres_release(dev, devm_irq_release, devm_irq_match,
&match_data));
- free_irq(irq, dev_id);
}
EXPORT_SYMBOL(devm_free_irq);
diff --git a/kernel/irq/irqdesc.c b/kernel/irq/irqdesc.c
index 1dee88ba0ae4..0253e77fcd9a 100644
--- a/kernel/irq/irqdesc.c
+++ b/kernel/irq/irqdesc.c
@@ -15,6 +15,7 @@
#include <linux/maple_tree.h>
#include <linux/irqdomain.h>
#include <linux/sysfs.h>
+#include <linux/string_choices.h>
#include "internals.h"
@@ -138,8 +139,30 @@ static void desc_set_defaults(unsigned int irq, struct irq_desc *desc, int node,
desc_smp_init(desc, node, affinity);
}
-int nr_irqs = NR_IRQS;
-EXPORT_SYMBOL_GPL(nr_irqs);
+static unsigned int nr_irqs = NR_IRQS;
+
+/**
+ * irq_get_nr_irqs() - Number of interrupts supported by the system.
+ */
+unsigned int irq_get_nr_irqs(void)
+{
+ return nr_irqs;
+}
+EXPORT_SYMBOL_GPL(irq_get_nr_irqs);
+
+/**
+ * irq_set_nr_irqs() - Set the number of interrupts supported by the system.
+ * @nr: New number of interrupts.
+ *
+ * Return: @nr.
+ */
+unsigned int irq_set_nr_irqs(unsigned int nr)
+{
+ nr_irqs = nr;
+
+ return nr;
+}
+EXPORT_SYMBOL_GPL(irq_set_nr_irqs);
static DEFINE_MUTEX(sparse_irq_lock);
static struct maple_tree sparse_irqs = MTREE_INIT_EXT(sparse_irqs,
@@ -298,8 +321,7 @@ static ssize_t wakeup_show(struct kobject *kobj,
ssize_t ret = 0;
raw_spin_lock_irq(&desc->lock);
- ret = sprintf(buf, "%s\n",
- irqd_is_wakeup_set(&desc->irq_data) ? "enabled" : "disabled");
+ ret = sprintf(buf, "%s\n", str_enabled_disabled(irqd_is_wakeup_set(&desc->irq_data)));
raw_spin_unlock_irq(&desc->lock);
return ret;
diff --git a/kernel/irq/irqdomain.c b/kernel/irq/irqdomain.c
index e0bff21f30e0..ec6d8e72d980 100644
--- a/kernel/irq/irqdomain.c
+++ b/kernel/irq/irqdomain.c
@@ -1225,7 +1225,7 @@ int irq_domain_alloc_descs(int virq, unsigned int cnt, irq_hw_number_t hwirq,
virq = __irq_alloc_descs(virq, virq, cnt, node, THIS_MODULE,
affinity);
} else {
- hint = hwirq % nr_irqs;
+ hint = hwirq % irq_get_nr_irqs();
if (hint == 0)
hint++;
virq = __irq_alloc_descs(-1, hint, cnt, node, THIS_MODULE,
diff --git a/kernel/irq/msi.c b/kernel/irq/msi.c
index 3a24d6b5f559..396a067a8a56 100644
--- a/kernel/irq/msi.c
+++ b/kernel/irq/msi.c
@@ -718,7 +718,7 @@ static int msi_domain_alloc(struct irq_domain *domain, unsigned int virq,
ret = ops->msi_init(domain, info, virq + i, hwirq + i, arg);
if (ret < 0) {
if (ops->msi_free) {
- for (i--; i > 0; i--)
+ for (i--; i >= 0; i--)
ops->msi_free(domain, info, virq + i);
}
irq_domain_free_irqs_top(domain, virq, nr_irqs);
diff --git a/kernel/irq/proc.c b/kernel/irq/proc.c
index 9081ada81c3d..f36c33bd2da4 100644
--- a/kernel/irq/proc.c
+++ b/kernel/irq/proc.c
@@ -457,11 +457,12 @@ int __weak arch_show_interrupts(struct seq_file *p, int prec)
}
#ifndef ACTUAL_NR_IRQS
-# define ACTUAL_NR_IRQS nr_irqs
+# define ACTUAL_NR_IRQS irq_get_nr_irqs()
#endif
int show_interrupts(struct seq_file *p, void *v)
{
+ const unsigned int nr_irqs = irq_get_nr_irqs();
static int prec;
int i = *(loff_t *) v, j;
@@ -494,9 +495,12 @@ int show_interrupts(struct seq_file *p, void *v)
if (!desc->action || irq_desc_is_chained(desc) || !desc->kstat_irqs)
goto outsparse;
- seq_printf(p, "%*d: ", prec, i);
- for_each_online_cpu(j)
- seq_printf(p, "%10u ", desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, j) : 0);
+ seq_printf(p, "%*d:", prec, i);
+ for_each_online_cpu(j) {
+ unsigned int cnt = desc->kstat_irqs ? per_cpu(desc->kstat_irqs->cnt, j) : 0;
+
+ seq_put_decimal_ull_width(p, " ", cnt, 10);
+ }
raw_spin_lock_irqsave(&desc->lock, flags);
if (desc->irq_data.chip) {
diff --git a/kernel/kcmp.c b/kernel/kcmp.c
index b0639f21041f..2c596851f8a9 100644
--- a/kernel/kcmp.c
+++ b/kernel/kcmp.c
@@ -63,9 +63,7 @@ get_file_raw_ptr(struct task_struct *task, unsigned int idx)
{
struct file *file;
- rcu_read_lock();
- file = task_lookup_fdget_rcu(task, idx);
- rcu_read_unlock();
+ file = fget_task(task, idx);
if (file)
fput(file);
diff --git a/kernel/kcsan/debugfs.c b/kernel/kcsan/debugfs.c
index 53b21ae30e00..2af39ba5b70b 100644
--- a/kernel/kcsan/debugfs.c
+++ b/kernel/kcsan/debugfs.c
@@ -46,14 +46,8 @@ static struct {
int used; /* number of elements used */
bool sorted; /* if elements are sorted */
bool whitelist; /* if list is a blacklist or whitelist */
-} report_filterlist = {
- .addrs = NULL,
- .size = 8, /* small initial size */
- .used = 0,
- .sorted = false,
- .whitelist = false, /* default is blacklist */
-};
-static DEFINE_SPINLOCK(report_filterlist_lock);
+} report_filterlist;
+static DEFINE_RAW_SPINLOCK(report_filterlist_lock);
/*
* The microbenchmark allows benchmarking KCSAN core runtime only. To run
@@ -110,7 +104,7 @@ bool kcsan_skip_report_debugfs(unsigned long func_addr)
return false;
func_addr -= offset; /* Get function start */
- spin_lock_irqsave(&report_filterlist_lock, flags);
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
if (report_filterlist.used == 0)
goto out;
@@ -127,7 +121,7 @@ bool kcsan_skip_report_debugfs(unsigned long func_addr)
ret = !ret;
out:
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
return ret;
}
@@ -135,9 +129,9 @@ static void set_report_filterlist_whitelist(bool whitelist)
{
unsigned long flags;
- spin_lock_irqsave(&report_filterlist_lock, flags);
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
report_filterlist.whitelist = whitelist;
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
}
/* Returns 0 on success, error-code otherwise. */
@@ -145,6 +139,9 @@ static ssize_t insert_report_filterlist(const char *func)
{
unsigned long flags;
unsigned long addr = kallsyms_lookup_name(func);
+ unsigned long *delay_free = NULL;
+ unsigned long *new_addrs = NULL;
+ size_t new_size = 0;
ssize_t ret = 0;
if (!addr) {
@@ -152,42 +149,42 @@ static ssize_t insert_report_filterlist(const char *func)
return -ENOENT;
}
- spin_lock_irqsave(&report_filterlist_lock, flags);
+retry_alloc:
+ /*
+ * Check if we need an allocation, and re-validate under the lock. Since
+ * the report_filterlist_lock is a raw, cannot allocate under the lock.
+ */
+ if (data_race(report_filterlist.used == report_filterlist.size)) {
+ new_size = (report_filterlist.size ?: 4) * 2;
+ delay_free = new_addrs = kmalloc_array(new_size, sizeof(unsigned long), GFP_KERNEL);
+ if (!new_addrs)
+ return -ENOMEM;
+ }
- if (report_filterlist.addrs == NULL) {
- /* initial allocation */
- report_filterlist.addrs =
- kmalloc_array(report_filterlist.size,
- sizeof(unsigned long), GFP_ATOMIC);
- if (report_filterlist.addrs == NULL) {
- ret = -ENOMEM;
- goto out;
- }
- } else if (report_filterlist.used == report_filterlist.size) {
- /* resize filterlist */
- size_t new_size = report_filterlist.size * 2;
- unsigned long *new_addrs =
- krealloc(report_filterlist.addrs,
- new_size * sizeof(unsigned long), GFP_ATOMIC);
-
- if (new_addrs == NULL) {
- /* leave filterlist itself untouched */
- ret = -ENOMEM;
- goto out;
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
+ if (report_filterlist.used == report_filterlist.size) {
+ /* Check we pre-allocated enough, and retry if not. */
+ if (report_filterlist.used >= new_size) {
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ kfree(new_addrs); /* kfree(NULL) is safe */
+ delay_free = new_addrs = NULL;
+ goto retry_alloc;
}
+ if (report_filterlist.used)
+ memcpy(new_addrs, report_filterlist.addrs, report_filterlist.used * sizeof(unsigned long));
+ delay_free = report_filterlist.addrs; /* free the old list */
+ report_filterlist.addrs = new_addrs; /* switch to the new list */
report_filterlist.size = new_size;
- report_filterlist.addrs = new_addrs;
}
/* Note: deduplicating should be done in userspace. */
- report_filterlist.addrs[report_filterlist.used++] =
- kallsyms_lookup_name(func);
+ report_filterlist.addrs[report_filterlist.used++] = addr;
report_filterlist.sorted = false;
-out:
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ kfree(delay_free);
return ret;
}
@@ -204,13 +201,13 @@ static int show_info(struct seq_file *file, void *v)
}
/* show filter functions, and filter type */
- spin_lock_irqsave(&report_filterlist_lock, flags);
+ raw_spin_lock_irqsave(&report_filterlist_lock, flags);
seq_printf(file, "\n%s functions: %s\n",
report_filterlist.whitelist ? "whitelisted" : "blacklisted",
report_filterlist.used == 0 ? "none" : "");
for (i = 0; i < report_filterlist.used; ++i)
seq_printf(file, " %ps\n", (void *)report_filterlist.addrs[i]);
- spin_unlock_irqrestore(&report_filterlist_lock, flags);
+ raw_spin_unlock_irqrestore(&report_filterlist_lock, flags);
return 0;
}
diff --git a/kernel/locking/lockdep.c b/kernel/locking/lockdep.c
index 536bd471557f..2d8ec0351ef9 100644
--- a/kernel/locking/lockdep.c
+++ b/kernel/locking/lockdep.c
@@ -4586,6 +4586,30 @@ void lockdep_softirqs_off(unsigned long ip)
debug_atomic_inc(redundant_softirqs_off);
}
+/**
+ * lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
+ *
+ * @cpu: index of offlined CPU
+ * @idle: task pointer for offlined CPU's idle thread
+ *
+ * Invoked after the CPU is dead. Ensures that the tracing infrastructure
+ * is left in a suitable state for the CPU to be subsequently brought
+ * online again.
+ */
+void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
+{
+ if (unlikely(!debug_locks))
+ return;
+
+ if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
+ pr_warn("CPU %u left hardirqs enabled!", cpu);
+ if (idle)
+ print_irqtrace_events(idle);
+ /* Clean it up for when the CPU comes online again. */
+ per_cpu(hardirqs_enabled, cpu) = 0;
+ }
+}
+
static int
mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
{
@@ -6576,17 +6600,17 @@ EXPORT_SYMBOL_GPL(lockdep_unregister_key);
void __init lockdep_init(void)
{
- printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
+ pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
- printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
- printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
- printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
- printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
- printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
- printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
- printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
+ pr_info("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
+ pr_info("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
+ pr_info("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
+ pr_info("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
+ pr_info("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
+ pr_info("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
+ pr_info("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
- printk(" memory used by lock dependency info: %zu kB\n",
+ pr_info(" memory used by lock dependency info: %zu kB\n",
(sizeof(lock_classes) +
sizeof(lock_classes_in_use) +
sizeof(classhash_table) +
@@ -6604,12 +6628,12 @@ void __init lockdep_init(void)
);
#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
- printk(" memory used for stack traces: %zu kB\n",
+ pr_info(" memory used for stack traces: %zu kB\n",
(sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
);
#endif
- printk(" per task-struct memory footprint: %zu bytes\n",
+ pr_info(" per task-struct memory footprint: %zu bytes\n",
sizeof(((struct task_struct *)NULL)->held_locks));
}
diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c
index cbae8c0b89ab..3302e52f0c96 100644
--- a/kernel/locking/mutex.c
+++ b/kernel/locking/mutex.c
@@ -56,31 +56,6 @@ __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
}
EXPORT_SYMBOL(__mutex_init);
-/*
- * @owner: contains: 'struct task_struct *' to the current lock owner,
- * NULL means not owned. Since task_struct pointers are aligned at
- * at least L1_CACHE_BYTES, we have low bits to store extra state.
- *
- * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
- * Bit1 indicates unlock needs to hand the lock to the top-waiter
- * Bit2 indicates handoff has been done and we're waiting for pickup.
- */
-#define MUTEX_FLAG_WAITERS 0x01
-#define MUTEX_FLAG_HANDOFF 0x02
-#define MUTEX_FLAG_PICKUP 0x04
-
-#define MUTEX_FLAGS 0x07
-
-/*
- * Internal helper function; C doesn't allow us to hide it :/
- *
- * DO NOT USE (outside of mutex code).
- */
-static inline struct task_struct *__mutex_owner(struct mutex *lock)
-{
- return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
-}
-
static inline struct task_struct *__owner_task(unsigned long owner)
{
return (struct task_struct *)(owner & ~MUTEX_FLAGS);
@@ -575,8 +550,10 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
struct lockdep_map *nest_lock, unsigned long ip,
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
{
+ DEFINE_WAKE_Q(wake_q);
struct mutex_waiter waiter;
struct ww_mutex *ww;
+ unsigned long flags;
int ret;
if (!use_ww_ctx)
@@ -619,13 +596,13 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
return 0;
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
/*
* After waiting to acquire the wait_lock, try again.
*/
if (__mutex_trylock(lock)) {
if (ww_ctx)
- __ww_mutex_check_waiters(lock, ww_ctx);
+ __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
goto skip_wait;
}
@@ -645,7 +622,7 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
* Add in stamp order, waking up waiters that must kill
* themselves.
*/
- ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
+ ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
if (ret)
goto err_early_kill;
}
@@ -680,7 +657,11 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
goto err;
}
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ /* Make sure we do wakeups before calling schedule */
+ wake_up_q(&wake_q);
+ wake_q_init(&wake_q);
+
schedule_preempt_disabled();
first = __mutex_waiter_is_first(lock, &waiter);
@@ -701,9 +682,9 @@ __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclas
trace_contention_begin(lock, LCB_F_MUTEX);
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
acquired:
__set_current_state(TASK_RUNNING);
@@ -714,7 +695,7 @@ acquired:
*/
if (!ww_ctx->is_wait_die &&
!__mutex_waiter_is_first(lock, &waiter))
- __ww_mutex_check_waiters(lock, ww_ctx);
+ __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
}
__mutex_remove_waiter(lock, &waiter);
@@ -729,7 +710,8 @@ skip_wait:
if (ww_ctx)
ww_mutex_lock_acquired(ww, ww_ctx);
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ wake_up_q(&wake_q);
preempt_enable();
return 0;
@@ -738,9 +720,10 @@ err:
__mutex_remove_waiter(lock, &waiter);
err_early_kill:
trace_contention_end(lock, ret);
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
debug_mutex_free_waiter(&waiter);
mutex_release(&lock->dep_map, ip);
+ wake_up_q(&wake_q);
preempt_enable();
return ret;
}
@@ -908,6 +891,7 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
struct task_struct *next = NULL;
DEFINE_WAKE_Q(wake_q);
unsigned long owner;
+ unsigned long flags;
mutex_release(&lock->dep_map, ip);
@@ -934,7 +918,7 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
}
}
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, flags);
debug_mutex_unlock(lock);
if (!list_empty(&lock->wait_list)) {
/* get the first entry from the wait-list: */
@@ -951,9 +935,10 @@ static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigne
if (owner & MUTEX_FLAG_HANDOFF)
__mutex_handoff(lock, next);
- raw_spin_unlock(&lock->wait_lock);
-
+ preempt_disable();
+ raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
wake_up_q(&wake_q);
+ preempt_enable();
}
#ifndef CONFIG_DEBUG_LOCK_ALLOC
diff --git a/kernel/locking/mutex.h b/kernel/locking/mutex.h
index 0b2a79c4013b..cbff35b9b7ae 100644
--- a/kernel/locking/mutex.h
+++ b/kernel/locking/mutex.h
@@ -20,6 +20,33 @@ struct mutex_waiter {
#endif
};
+/*
+ * @owner: contains: 'struct task_struct *' to the current lock owner,
+ * NULL means not owned. Since task_struct pointers are aligned at
+ * at least L1_CACHE_BYTES, we have low bits to store extra state.
+ *
+ * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
+ * Bit1 indicates unlock needs to hand the lock to the top-waiter
+ * Bit2 indicates handoff has been done and we're waiting for pickup.
+ */
+#define MUTEX_FLAG_WAITERS 0x01
+#define MUTEX_FLAG_HANDOFF 0x02
+#define MUTEX_FLAG_PICKUP 0x04
+
+#define MUTEX_FLAGS 0x07
+
+/*
+ * Internal helper function; C doesn't allow us to hide it :/
+ *
+ * DO NOT USE (outside of mutex & scheduler code).
+ */
+static inline struct task_struct *__mutex_owner(struct mutex *lock)
+{
+ if (!lock)
+ return NULL;
+ return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
+}
+
#ifdef CONFIG_DEBUG_MUTEXES
extern void debug_mutex_lock_common(struct mutex *lock,
struct mutex_waiter *waiter);
diff --git a/kernel/locking/osq_lock.c b/kernel/locking/osq_lock.c
index 75a6f6133866..b4233dc2c2b0 100644
--- a/kernel/locking/osq_lock.c
+++ b/kernel/locking/osq_lock.c
@@ -215,8 +215,7 @@ void osq_unlock(struct optimistic_spin_queue *lock)
/*
* Fast path for the uncontended case.
*/
- if (likely(atomic_cmpxchg_release(&lock->tail, curr,
- OSQ_UNLOCKED_VAL) == curr))
+ if (atomic_try_cmpxchg_release(&lock->tail, &curr, OSQ_UNLOCKED_VAL))
return;
/*
diff --git a/kernel/locking/qspinlock_paravirt.h b/kernel/locking/qspinlock_paravirt.h
index ac2e22502741..dc1cb90e3644 100644
--- a/kernel/locking/qspinlock_paravirt.h
+++ b/kernel/locking/qspinlock_paravirt.h
@@ -38,13 +38,13 @@
#define PV_PREV_CHECK_MASK 0xff
/*
- * Queue node uses: vcpu_running & vcpu_halted.
- * Queue head uses: vcpu_running & vcpu_hashed.
+ * Queue node uses: VCPU_RUNNING & VCPU_HALTED.
+ * Queue head uses: VCPU_RUNNING & VCPU_HASHED.
*/
enum vcpu_state {
- vcpu_running = 0,
- vcpu_halted, /* Used only in pv_wait_node */
- vcpu_hashed, /* = pv_hash'ed + vcpu_halted */
+ VCPU_RUNNING = 0,
+ VCPU_HALTED, /* Used only in pv_wait_node */
+ VCPU_HASHED, /* = pv_hash'ed + VCPU_HALTED */
};
struct pv_node {
@@ -266,7 +266,7 @@ pv_wait_early(struct pv_node *prev, int loop)
if ((loop & PV_PREV_CHECK_MASK) != 0)
return false;
- return READ_ONCE(prev->state) != vcpu_running;
+ return READ_ONCE(prev->state) != VCPU_RUNNING;
}
/*
@@ -279,7 +279,7 @@ static void pv_init_node(struct mcs_spinlock *node)
BUILD_BUG_ON(sizeof(struct pv_node) > sizeof(struct qnode));
pn->cpu = smp_processor_id();
- pn->state = vcpu_running;
+ pn->state = VCPU_RUNNING;
}
/*
@@ -308,26 +308,26 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
/*
* Order pn->state vs pn->locked thusly:
*
- * [S] pn->state = vcpu_halted [S] next->locked = 1
+ * [S] pn->state = VCPU_HALTED [S] next->locked = 1
* MB MB
- * [L] pn->locked [RmW] pn->state = vcpu_hashed
+ * [L] pn->locked [RmW] pn->state = VCPU_HASHED
*
* Matches the cmpxchg() from pv_kick_node().
*/
- smp_store_mb(pn->state, vcpu_halted);
+ smp_store_mb(pn->state, VCPU_HALTED);
if (!READ_ONCE(node->locked)) {
lockevent_inc(pv_wait_node);
lockevent_cond_inc(pv_wait_early, wait_early);
- pv_wait(&pn->state, vcpu_halted);
+ pv_wait(&pn->state, VCPU_HALTED);
}
/*
- * If pv_kick_node() changed us to vcpu_hashed, retain that
+ * If pv_kick_node() changed us to VCPU_HASHED, retain that
* value so that pv_wait_head_or_lock() knows to not also try
* to hash this lock.
*/
- cmpxchg(&pn->state, vcpu_halted, vcpu_running);
+ cmpxchg(&pn->state, VCPU_HALTED, VCPU_RUNNING);
/*
* If the locked flag is still not set after wakeup, it is a
@@ -357,7 +357,7 @@ static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
{
struct pv_node *pn = (struct pv_node *)node;
- u8 old = vcpu_halted;
+ u8 old = VCPU_HALTED;
/*
* If the vCPU is indeed halted, advance its state to match that of
* pv_wait_node(). If OTOH this fails, the vCPU was running and will
@@ -374,7 +374,7 @@ static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
* subsequent writes.
*/
smp_mb__before_atomic();
- if (!try_cmpxchg_relaxed(&pn->state, &old, vcpu_hashed))
+ if (!try_cmpxchg_relaxed(&pn->state, &old, VCPU_HASHED))
return;
/*
@@ -407,7 +407,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
* If pv_kick_node() already advanced our state, we don't need to
* insert ourselves into the hash table anymore.
*/
- if (READ_ONCE(pn->state) == vcpu_hashed)
+ if (READ_ONCE(pn->state) == VCPU_HASHED)
lp = (struct qspinlock **)1;
/*
@@ -420,7 +420,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
* Set correct vCPU state to be used by queue node wait-early
* mechanism.
*/
- WRITE_ONCE(pn->state, vcpu_running);
+ WRITE_ONCE(pn->state, VCPU_RUNNING);
/*
* Set the pending bit in the active lock spinning loop to
@@ -460,7 +460,7 @@ pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
goto gotlock;
}
}
- WRITE_ONCE(pn->state, vcpu_hashed);
+ WRITE_ONCE(pn->state, VCPU_HASHED);
lockevent_inc(pv_wait_head);
lockevent_cond_inc(pv_wait_again, waitcnt);
pv_wait(&lock->locked, _Q_SLOW_VAL);
diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c
index ebebd0eec7f6..ac1365afcc4a 100644
--- a/kernel/locking/rtmutex.c
+++ b/kernel/locking/rtmutex.c
@@ -34,13 +34,15 @@
static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
struct rt_mutex *lock,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
return 0;
}
static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
}
@@ -1201,7 +1203,8 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
struct task_struct *task,
struct ww_acquire_ctx *ww_ctx,
- enum rtmutex_chainwalk chwalk)
+ enum rtmutex_chainwalk chwalk,
+ struct wake_q_head *wake_q)
{
struct task_struct *owner = rt_mutex_owner(lock);
struct rt_mutex_waiter *top_waiter = waiter;
@@ -1245,7 +1248,10 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
/* Check whether the waiter should back out immediately */
rtm = container_of(lock, struct rt_mutex, rtmutex);
- res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
+ preempt_disable();
+ res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx, wake_q);
+ wake_up_q(wake_q);
+ preempt_enable();
if (res) {
raw_spin_lock(&task->pi_lock);
rt_mutex_dequeue(lock, waiter);
@@ -1601,6 +1607,7 @@ static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
unsigned int state,
struct hrtimer_sleeper *timeout,
struct rt_mutex_waiter *waiter)
+ __releases(&lock->wait_lock) __acquires(&lock->wait_lock)
{
struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
struct task_struct *owner;
@@ -1674,12 +1681,14 @@ static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
* @state: The task state for sleeping
* @chwalk: Indicator whether full or partial chainwalk is requested
* @waiter: Initializer waiter for blocking
+ * @wake_q: The wake_q to wake tasks after we release the wait_lock
*/
static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
struct ww_acquire_ctx *ww_ctx,
unsigned int state,
enum rtmutex_chainwalk chwalk,
- struct rt_mutex_waiter *waiter)
+ struct rt_mutex_waiter *waiter,
+ struct wake_q_head *wake_q)
{
struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
struct ww_mutex *ww = ww_container_of(rtm);
@@ -1690,7 +1699,7 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
/* Try to acquire the lock again: */
if (try_to_take_rt_mutex(lock, current, NULL)) {
if (build_ww_mutex() && ww_ctx) {
- __ww_mutex_check_waiters(rtm, ww_ctx);
+ __ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
ww_mutex_lock_acquired(ww, ww_ctx);
}
return 0;
@@ -1700,7 +1709,7 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
trace_contention_begin(lock, LCB_F_RT);
- ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
+ ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk, wake_q);
if (likely(!ret))
ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
@@ -1708,7 +1717,7 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
/* acquired the lock */
if (build_ww_mutex() && ww_ctx) {
if (!ww_ctx->is_wait_die)
- __ww_mutex_check_waiters(rtm, ww_ctx);
+ __ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
ww_mutex_lock_acquired(ww, ww_ctx);
}
} else {
@@ -1730,7 +1739,8 @@ static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
struct ww_acquire_ctx *ww_ctx,
- unsigned int state)
+ unsigned int state,
+ struct wake_q_head *wake_q)
{
struct rt_mutex_waiter waiter;
int ret;
@@ -1739,7 +1749,7 @@ static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
waiter.ww_ctx = ww_ctx;
ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
- &waiter);
+ &waiter, wake_q);
debug_rt_mutex_free_waiter(&waiter);
return ret;
@@ -1755,6 +1765,7 @@ static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
struct ww_acquire_ctx *ww_ctx,
unsigned int state)
{
+ DEFINE_WAKE_Q(wake_q);
unsigned long flags;
int ret;
@@ -1776,8 +1787,11 @@ static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
* irqsave/restore variants.
*/
raw_spin_lock_irqsave(&lock->wait_lock, flags);
- ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
+ ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state, &wake_q);
+ preempt_disable();
raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ wake_up_q(&wake_q);
+ preempt_enable();
rt_mutex_post_schedule();
return ret;
@@ -1803,8 +1817,11 @@ static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
/**
* rtlock_slowlock_locked - Slow path lock acquisition for RT locks
* @lock: The underlying RT mutex
+ * @wake_q: The wake_q to wake tasks after we release the wait_lock
*/
-static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
+static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock,
+ struct wake_q_head *wake_q)
+ __releases(&lock->wait_lock) __acquires(&lock->wait_lock)
{
struct rt_mutex_waiter waiter;
struct task_struct *owner;
@@ -1821,7 +1838,7 @@ static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
trace_contention_begin(lock, LCB_F_RT);
- task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
+ task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK, wake_q);
for (;;) {
/* Try to acquire the lock again */
@@ -1832,7 +1849,11 @@ static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
owner = rt_mutex_owner(lock);
else
owner = NULL;
+ preempt_disable();
raw_spin_unlock_irq(&lock->wait_lock);
+ wake_up_q(wake_q);
+ wake_q_init(wake_q);
+ preempt_enable();
if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
schedule_rtlock();
@@ -1857,10 +1878,14 @@ static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
{
unsigned long flags;
+ DEFINE_WAKE_Q(wake_q);
raw_spin_lock_irqsave(&lock->wait_lock, flags);
- rtlock_slowlock_locked(lock);
+ rtlock_slowlock_locked(lock, &wake_q);
+ preempt_disable();
raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
+ wake_up_q(&wake_q);
+ preempt_enable();
}
#endif /* RT_MUTEX_BUILD_SPINLOCKS */
diff --git a/kernel/locking/rtmutex_api.c b/kernel/locking/rtmutex_api.c
index a6974d044593..33ea31d6a7b3 100644
--- a/kernel/locking/rtmutex_api.c
+++ b/kernel/locking/rtmutex_api.c
@@ -175,10 +175,10 @@ bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
}
/*
- * We've already deboosted, mark_wakeup_next_waiter() will
- * retain preempt_disabled when we drop the wait_lock, to
- * avoid inversion prior to the wakeup. preempt_disable()
- * therein pairs with rt_mutex_postunlock().
+ * mark_wakeup_next_waiter() deboosts and retains preemption
+ * disabled when dropping the wait_lock, to avoid inversion prior
+ * to the wakeup. preempt_disable() therein pairs with the
+ * preempt_enable() in rt_mutex_postunlock().
*/
mark_wakeup_next_waiter(wqh, lock);
@@ -275,6 +275,7 @@ void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
* @lock: the rt_mutex to take
* @waiter: the pre-initialized rt_mutex_waiter
* @task: the task to prepare
+ * @wake_q: the wake_q to wake tasks after we release the wait_lock
*
* Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
* detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
@@ -291,7 +292,8 @@ void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
*/
int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
- struct task_struct *task)
+ struct task_struct *task,
+ struct wake_q_head *wake_q)
{
int ret;
@@ -302,7 +304,7 @@ int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
/* We enforce deadlock detection for futexes */
ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
- RT_MUTEX_FULL_CHAINWALK);
+ RT_MUTEX_FULL_CHAINWALK, wake_q);
if (ret && !rt_mutex_owner(lock)) {
/*
@@ -341,12 +343,16 @@ int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct task_struct *task)
{
int ret;
+ DEFINE_WAKE_Q(wake_q);
raw_spin_lock_irq(&lock->wait_lock);
- ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
+ ret = __rt_mutex_start_proxy_lock(lock, waiter, task, &wake_q);
if (unlikely(ret))
remove_waiter(lock, waiter);
+ preempt_disable();
raw_spin_unlock_irq(&lock->wait_lock);
+ wake_up_q(&wake_q);
+ preempt_enable();
return ret;
}
diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h
index 1162e07cdaea..c38a2d2d4a7e 100644
--- a/kernel/locking/rtmutex_common.h
+++ b/kernel/locking/rtmutex_common.h
@@ -83,7 +83,8 @@ extern void rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
extern void rt_mutex_proxy_unlock(struct rt_mutex_base *lock);
extern int __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
- struct task_struct *task);
+ struct task_struct *task,
+ struct wake_q_head *);
extern int rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
struct rt_mutex_waiter *waiter,
struct task_struct *task);
diff --git a/kernel/locking/rwbase_rt.c b/kernel/locking/rwbase_rt.c
index 34a59569db6b..9f4322c07486 100644
--- a/kernel/locking/rwbase_rt.c
+++ b/kernel/locking/rwbase_rt.c
@@ -69,6 +69,7 @@ static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
unsigned int state)
{
struct rt_mutex_base *rtm = &rwb->rtmutex;
+ DEFINE_WAKE_Q(wake_q);
int ret;
rwbase_pre_schedule();
@@ -110,7 +111,7 @@ static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
* For rwlocks this returns 0 unconditionally, so the below
* !ret conditionals are optimized out.
*/
- ret = rwbase_rtmutex_slowlock_locked(rtm, state);
+ ret = rwbase_rtmutex_slowlock_locked(rtm, state, &wake_q);
/*
* On success the rtmutex is held, so there can't be a writer
@@ -121,7 +122,12 @@ static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
*/
if (!ret)
atomic_inc(&rwb->readers);
+
+ preempt_disable();
raw_spin_unlock_irq(&rtm->wait_lock);
+ wake_up_q(&wake_q);
+ preempt_enable();
+
if (!ret)
rwbase_rtmutex_unlock(rtm);
diff --git a/kernel/locking/rwsem.c b/kernel/locking/rwsem.c
index 2bbb6eca5144..2ddb827e3bea 100644
--- a/kernel/locking/rwsem.c
+++ b/kernel/locking/rwsem.c
@@ -1413,8 +1413,8 @@ static inline void __downgrade_write(struct rw_semaphore *sem)
#define rwbase_rtmutex_lock_state(rtm, state) \
__rt_mutex_lock(rtm, state)
-#define rwbase_rtmutex_slowlock_locked(rtm, state) \
- __rt_mutex_slowlock_locked(rtm, NULL, state)
+#define rwbase_rtmutex_slowlock_locked(rtm, state, wq) \
+ __rt_mutex_slowlock_locked(rtm, NULL, state, wq)
#define rwbase_rtmutex_unlock(rtm) \
__rt_mutex_unlock(rtm)
diff --git a/kernel/locking/spinlock.c b/kernel/locking/spinlock.c
index 438c6086d540..7685defd7c52 100644
--- a/kernel/locking/spinlock.c
+++ b/kernel/locking/spinlock.c
@@ -65,7 +65,7 @@ EXPORT_PER_CPU_SYMBOL(__mmiowb_state);
* towards that other CPU that it should break the lock ASAP.
*/
#define BUILD_LOCK_OPS(op, locktype) \
-void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
+static void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
{ \
for (;;) { \
preempt_disable(); \
@@ -77,7 +77,7 @@ void __lockfunc __raw_##op##_lock(locktype##_t *lock) \
} \
} \
\
-unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
+static unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
{ \
unsigned long flags; \
\
@@ -95,12 +95,12 @@ unsigned long __lockfunc __raw_##op##_lock_irqsave(locktype##_t *lock) \
return flags; \
} \
\
-void __lockfunc __raw_##op##_lock_irq(locktype##_t *lock) \
+static void __lockfunc __raw_##op##_lock_irq(locktype##_t *lock) \
{ \
_raw_##op##_lock_irqsave(lock); \
} \
\
-void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock) \
+static void __lockfunc __raw_##op##_lock_bh(locktype##_t *lock) \
{ \
unsigned long flags; \
\
diff --git a/kernel/locking/spinlock_rt.c b/kernel/locking/spinlock_rt.c
index 38e292454fcc..db1e11b45de6 100644
--- a/kernel/locking/spinlock_rt.c
+++ b/kernel/locking/spinlock_rt.c
@@ -51,7 +51,7 @@ static __always_inline void __rt_spin_lock(spinlock_t *lock)
migrate_disable();
}
-void __sched rt_spin_lock(spinlock_t *lock)
+void __sched rt_spin_lock(spinlock_t *lock) __acquires(RCU)
{
spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
__rt_spin_lock(lock);
@@ -75,7 +75,7 @@ void __sched rt_spin_lock_nest_lock(spinlock_t *lock,
EXPORT_SYMBOL(rt_spin_lock_nest_lock);
#endif
-void __sched rt_spin_unlock(spinlock_t *lock)
+void __sched rt_spin_unlock(spinlock_t *lock) __releases(RCU)
{
spin_release(&lock->dep_map, _RET_IP_);
migrate_enable();
@@ -162,9 +162,10 @@ rwbase_rtmutex_lock_state(struct rt_mutex_base *rtm, unsigned int state)
}
static __always_inline int
-rwbase_rtmutex_slowlock_locked(struct rt_mutex_base *rtm, unsigned int state)
+rwbase_rtmutex_slowlock_locked(struct rt_mutex_base *rtm, unsigned int state,
+ struct wake_q_head *wake_q)
{
- rtlock_slowlock_locked(rtm);
+ rtlock_slowlock_locked(rtm, wake_q);
return 0;
}
@@ -225,7 +226,7 @@ int __sched rt_write_trylock(rwlock_t *rwlock)
}
EXPORT_SYMBOL(rt_write_trylock);
-void __sched rt_read_lock(rwlock_t *rwlock)
+void __sched rt_read_lock(rwlock_t *rwlock) __acquires(RCU)
{
rtlock_might_resched();
rwlock_acquire_read(&rwlock->dep_map, 0, 0, _RET_IP_);
@@ -235,7 +236,7 @@ void __sched rt_read_lock(rwlock_t *rwlock)
}
EXPORT_SYMBOL(rt_read_lock);
-void __sched rt_write_lock(rwlock_t *rwlock)
+void __sched rt_write_lock(rwlock_t *rwlock) __acquires(RCU)
{
rtlock_might_resched();
rwlock_acquire(&rwlock->dep_map, 0, 0, _RET_IP_);
@@ -246,7 +247,7 @@ void __sched rt_write_lock(rwlock_t *rwlock)
EXPORT_SYMBOL(rt_write_lock);
#ifdef CONFIG_DEBUG_LOCK_ALLOC
-void __sched rt_write_lock_nested(rwlock_t *rwlock, int subclass)
+void __sched rt_write_lock_nested(rwlock_t *rwlock, int subclass) __acquires(RCU)
{
rtlock_might_resched();
rwlock_acquire(&rwlock->dep_map, subclass, 0, _RET_IP_);
@@ -257,7 +258,7 @@ void __sched rt_write_lock_nested(rwlock_t *rwlock, int subclass)
EXPORT_SYMBOL(rt_write_lock_nested);
#endif
-void __sched rt_read_unlock(rwlock_t *rwlock)
+void __sched rt_read_unlock(rwlock_t *rwlock) __releases(RCU)
{
rwlock_release(&rwlock->dep_map, _RET_IP_);
migrate_enable();
@@ -266,7 +267,7 @@ void __sched rt_read_unlock(rwlock_t *rwlock)
}
EXPORT_SYMBOL(rt_read_unlock);
-void __sched rt_write_unlock(rwlock_t *rwlock)
+void __sched rt_write_unlock(rwlock_t *rwlock) __releases(RCU)
{
rwlock_release(&rwlock->dep_map, _RET_IP_);
rcu_read_unlock();
diff --git a/kernel/locking/test-ww_mutex.c b/kernel/locking/test-ww_mutex.c
index 10a5736a21c2..5d58b2c0ef98 100644
--- a/kernel/locking/test-ww_mutex.c
+++ b/kernel/locking/test-ww_mutex.c
@@ -62,7 +62,8 @@ static int __test_mutex(unsigned int flags)
int ret;
ww_mutex_init(&mtx.mutex, &ww_class);
- ww_acquire_init(&ctx, &ww_class);
+ if (flags & TEST_MTX_CTX)
+ ww_acquire_init(&ctx, &ww_class);
INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
init_completion(&mtx.ready);
@@ -90,7 +91,8 @@ static int __test_mutex(unsigned int flags)
ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
}
ww_mutex_unlock(&mtx.mutex);
- ww_acquire_fini(&ctx);
+ if (flags & TEST_MTX_CTX)
+ ww_acquire_fini(&ctx);
if (ret) {
pr_err("%s(flags=%x): mutual exclusion failure\n",
@@ -679,7 +681,7 @@ static int __init test_ww_mutex_init(void)
if (ret)
return ret;
- ret = stress(2047, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
+ ret = stress(2046, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
if (ret)
return ret;
diff --git a/kernel/locking/ww_mutex.h b/kernel/locking/ww_mutex.h
index 76d204b7d29c..37f025a096c9 100644
--- a/kernel/locking/ww_mutex.h
+++ b/kernel/locking/ww_mutex.h
@@ -70,14 +70,14 @@ __ww_mutex_has_waiters(struct mutex *lock)
return atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS;
}
-static inline void lock_wait_lock(struct mutex *lock)
+static inline void lock_wait_lock(struct mutex *lock, unsigned long *flags)
{
- raw_spin_lock(&lock->wait_lock);
+ raw_spin_lock_irqsave(&lock->wait_lock, *flags);
}
-static inline void unlock_wait_lock(struct mutex *lock)
+static inline void unlock_wait_lock(struct mutex *lock, unsigned long *flags)
{
- raw_spin_unlock(&lock->wait_lock);
+ raw_spin_unlock_irqrestore(&lock->wait_lock, *flags);
}
static inline void lockdep_assert_wait_lock_held(struct mutex *lock)
@@ -144,14 +144,14 @@ __ww_mutex_has_waiters(struct rt_mutex *lock)
return rt_mutex_has_waiters(&lock->rtmutex);
}
-static inline void lock_wait_lock(struct rt_mutex *lock)
+static inline void lock_wait_lock(struct rt_mutex *lock, unsigned long *flags)
{
- raw_spin_lock(&lock->rtmutex.wait_lock);
+ raw_spin_lock_irqsave(&lock->rtmutex.wait_lock, *flags);
}
-static inline void unlock_wait_lock(struct rt_mutex *lock)
+static inline void unlock_wait_lock(struct rt_mutex *lock, unsigned long *flags)
{
- raw_spin_unlock(&lock->rtmutex.wait_lock);
+ raw_spin_unlock_irqrestore(&lock->rtmutex.wait_lock, *flags);
}
static inline void lockdep_assert_wait_lock_held(struct rt_mutex *lock)
@@ -275,7 +275,7 @@ __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
*/
static bool
__ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx, struct wake_q_head *wake_q)
{
if (!ww_ctx->is_wait_die)
return false;
@@ -284,7 +284,7 @@ __ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
#ifndef WW_RT
debug_mutex_wake_waiter(lock, waiter);
#endif
- wake_up_process(waiter->task);
+ wake_q_add(wake_q, waiter->task);
}
return true;
@@ -299,7 +299,8 @@ __ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
*/
static bool __ww_mutex_wound(struct MUTEX *lock,
struct ww_acquire_ctx *ww_ctx,
- struct ww_acquire_ctx *hold_ctx)
+ struct ww_acquire_ctx *hold_ctx,
+ struct wake_q_head *wake_q)
{
struct task_struct *owner = __ww_mutex_owner(lock);
@@ -331,7 +332,7 @@ static bool __ww_mutex_wound(struct MUTEX *lock,
* wakeup pending to re-read the wounded state.
*/
if (owner != current)
- wake_up_process(owner);
+ wake_q_add(wake_q, owner);
return true;
}
@@ -352,7 +353,8 @@ static bool __ww_mutex_wound(struct MUTEX *lock,
* The current task must not be on the wait list.
*/
static void
-__ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
+__ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
struct MUTEX_WAITER *cur;
@@ -364,8 +366,8 @@ __ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
if (!cur->ww_ctx)
continue;
- if (__ww_mutex_die(lock, cur, ww_ctx) ||
- __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
+ if (__ww_mutex_die(lock, cur, ww_ctx, wake_q) ||
+ __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx, wake_q))
break;
}
}
@@ -377,6 +379,9 @@ __ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx)
static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
{
+ DEFINE_WAKE_Q(wake_q);
+ unsigned long flags;
+
ww_mutex_lock_acquired(lock, ctx);
/*
@@ -404,9 +409,12 @@ ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
* Uh oh, we raced in fastpath, check if any of the waiters need to
* die or wound us.
*/
- lock_wait_lock(&lock->base);
- __ww_mutex_check_waiters(&lock->base, ctx);
- unlock_wait_lock(&lock->base);
+ lock_wait_lock(&lock->base, &flags);
+ __ww_mutex_check_waiters(&lock->base, ctx, &wake_q);
+ preempt_disable();
+ unlock_wait_lock(&lock->base, &flags);
+ wake_up_q(&wake_q);
+ preempt_enable();
}
static __always_inline int
@@ -488,7 +496,8 @@ __ww_mutex_check_kill(struct MUTEX *lock, struct MUTEX_WAITER *waiter,
static inline int
__ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
struct MUTEX *lock,
- struct ww_acquire_ctx *ww_ctx)
+ struct ww_acquire_ctx *ww_ctx,
+ struct wake_q_head *wake_q)
{
struct MUTEX_WAITER *cur, *pos = NULL;
bool is_wait_die;
@@ -532,7 +541,7 @@ __ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
pos = cur;
/* Wait-Die: ensure younger waiters die. */
- __ww_mutex_die(lock, cur, ww_ctx);
+ __ww_mutex_die(lock, cur, ww_ctx, wake_q);
}
__ww_waiter_add(lock, waiter, pos);
@@ -550,7 +559,7 @@ __ww_mutex_add_waiter(struct MUTEX_WAITER *waiter,
* such that either we or the fastpath will wound @ww->ctx.
*/
smp_mb();
- __ww_mutex_wound(lock, ww_ctx, ww->ctx);
+ __ww_mutex_wound(lock, ww_ctx, ww->ctx, wake_q);
}
return 0;
diff --git a/kernel/module/dups.c b/kernel/module/dups.c
index 9a92f2f8c9d3..bd2149fbe117 100644
--- a/kernel/module/dups.c
+++ b/kernel/module/dups.c
@@ -18,7 +18,6 @@
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/mount.h>
diff --git a/kernel/module/kmod.c b/kernel/module/kmod.c
index 0800d9891692..25f253812512 100644
--- a/kernel/module/kmod.c
+++ b/kernel/module/kmod.c
@@ -15,7 +15,6 @@
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/mount.h>
diff --git a/kernel/module/main.c b/kernel/module/main.c
index 49b9bca9de12..4490924fe24e 100644
--- a/kernel/module/main.c
+++ b/kernel/module/main.c
@@ -3202,7 +3202,7 @@ static int idempotent_init_module(struct file *f, const char __user * uargs, int
{
struct idempotent idem;
- if (!f || !(f->f_mode & FMODE_READ))
+ if (!(f->f_mode & FMODE_READ))
return -EBADF;
/* Are we the winners of the race and get to do this? */
@@ -3219,10 +3219,7 @@ static int idempotent_init_module(struct file *f, const char __user * uargs, int
SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
{
- int err;
- struct fd f;
-
- err = may_init_module();
+ int err = may_init_module();
if (err)
return err;
@@ -3233,10 +3230,10 @@ SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
|MODULE_INIT_COMPRESSED_FILE))
return -EINVAL;
- f = fdget(fd);
- err = idempotent_init_module(fd_file(f), uargs, flags);
- fdput(f);
- return err;
+ CLASS(fd, f)(fd);
+ if (fd_empty(f))
+ return -EBADF;
+ return idempotent_init_module(fd_file(f), uargs, flags);
}
/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c
index dc952c3b05af..c9d97ed20122 100644
--- a/kernel/nsproxy.c
+++ b/kernel/nsproxy.c
@@ -545,12 +545,12 @@ static void commit_nsset(struct nsset *nsset)
SYSCALL_DEFINE2(setns, int, fd, int, flags)
{
- struct fd f = fdget(fd);
+ CLASS(fd, f)(fd);
struct ns_common *ns = NULL;
struct nsset nsset = {};
int err = 0;
- if (!fd_file(f))
+ if (fd_empty(f))
return -EBADF;
if (proc_ns_file(fd_file(f))) {
@@ -580,7 +580,6 @@ SYSCALL_DEFINE2(setns, int, fd, int, flags)
}
put_nsset(&nsset);
out:
- fdput(f);
return err;
}
diff --git a/kernel/padata.c b/kernel/padata.c
index d899f34558af..d51bbc76b227 100644
--- a/kernel/padata.c
+++ b/kernel/padata.c
@@ -521,13 +521,6 @@ void __init padata_do_multithreaded(struct padata_mt_job *job)
ps.chunk_size = max(ps.chunk_size, 1ul);
ps.chunk_size = roundup(ps.chunk_size, job->align);
- /*
- * chunk_size can be 0 if the caller sets min_chunk to 0. So force it
- * to at least 1 to prevent divide-by-0 panic in padata_mt_helper().`
- */
- if (!ps.chunk_size)
- ps.chunk_size = 1U;
-
list_for_each_entry(pw, &works, pw_list)
if (job->numa_aware) {
int old_node = atomic_read(&last_used_nid);
diff --git a/kernel/pid.c b/kernel/pid.c
index 2715afb77eab..115448e89c3e 100644
--- a/kernel/pid.c
+++ b/kernel/pid.c
@@ -536,11 +536,10 @@ EXPORT_SYMBOL_GPL(find_ge_pid);
struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
{
- struct fd f;
+ CLASS(fd, f)(fd);
struct pid *pid;
- f = fdget(fd);
- if (!fd_file(f))
+ if (fd_empty(f))
return ERR_PTR(-EBADF);
pid = pidfd_pid(fd_file(f));
@@ -548,8 +547,6 @@ struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
get_pid(pid);
*flags = fd_file(f)->f_flags;
}
-
- fdput(f);
return pid;
}
@@ -747,23 +744,18 @@ SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
unsigned int, flags)
{
struct pid *pid;
- struct fd f;
- int ret;
/* flags is currently unused - make sure it's unset */
if (flags)
return -EINVAL;
- f = fdget(pidfd);
- if (!fd_file(f))
+ CLASS(fd, f)(pidfd);
+ if (fd_empty(f))
return -EBADF;
pid = pidfd_pid(fd_file(f));
if (IS_ERR(pid))
- ret = PTR_ERR(pid);
- else
- ret = pidfd_getfd(pid, fd);
+ return PTR_ERR(pid);
- fdput(f);
- return ret;
+ return pidfd_getfd(pid, fd);
}
diff --git a/kernel/power/energy_model.c b/kernel/power/energy_model.c
index 927cc55ba0b3..d07faf42eace 100644
--- a/kernel/power/energy_model.c
+++ b/kernel/power/energy_model.c
@@ -628,6 +628,8 @@ int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
goto unlock;
dev->em_pd->flags |= flags;
+ dev->em_pd->min_perf_state = 0;
+ dev->em_pd->max_perf_state = nr_states - 1;
em_cpufreq_update_efficiencies(dev, dev->em_pd->em_table->state);
@@ -856,3 +858,53 @@ int em_dev_update_chip_binning(struct device *dev)
return em_recalc_and_update(dev, pd, em_table);
}
EXPORT_SYMBOL_GPL(em_dev_update_chip_binning);
+
+
+/**
+ * em_update_performance_limits() - Update Energy Model with performance
+ * limits information.
+ * @pd : Performance Domain with EM that has to be updated.
+ * @freq_min_khz : New minimum allowed frequency for this device.
+ * @freq_max_khz : New maximum allowed frequency for this device.
+ *
+ * This function allows to update the EM with information about available
+ * performance levels. It takes the minimum and maximum frequency in kHz
+ * and does internal translation to performance levels.
+ * Returns 0 on success or -EINVAL when failed.
+ */
+int em_update_performance_limits(struct em_perf_domain *pd,
+ unsigned long freq_min_khz, unsigned long freq_max_khz)
+{
+ struct em_perf_state *table;
+ int min_ps = -1;
+ int max_ps = -1;
+ int i;
+
+ if (!pd)
+ return -EINVAL;
+
+ rcu_read_lock();
+ table = em_perf_state_from_pd(pd);
+
+ for (i = 0; i < pd->nr_perf_states; i++) {
+ if (freq_min_khz == table[i].frequency)
+ min_ps = i;
+ if (freq_max_khz == table[i].frequency)
+ max_ps = i;
+ }
+ rcu_read_unlock();
+
+ /* Only update when both are found and sane */
+ if (min_ps < 0 || max_ps < 0 || max_ps < min_ps)
+ return -EINVAL;
+
+
+ /* Guard simultaneous updates and make them atomic */
+ mutex_lock(&em_pd_mutex);
+ pd->min_perf_state = min_ps;
+ pd->max_perf_state = max_ps;
+ mutex_unlock(&em_pd_mutex);
+
+ return 0;
+}
+EXPORT_SYMBOL_GPL(em_update_performance_limits);
diff --git a/kernel/printk/internal.h b/kernel/printk/internal.h
index 3fcb48502adb..c6bb47666aef 100644
--- a/kernel/printk/internal.h
+++ b/kernel/printk/internal.h
@@ -53,6 +53,8 @@ int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
/* Flags for a single printk record. */
enum printk_info_flags {
+ /* always show on console, ignore console_loglevel */
+ LOG_FORCE_CON = 1,
LOG_NEWLINE = 2, /* text ended with a newline */
LOG_CONT = 8, /* text is a fragment of a continuation line */
};
@@ -90,6 +92,7 @@ bool printk_percpu_data_ready(void);
void defer_console_output(void);
bool is_printk_legacy_deferred(void);
+bool is_printk_force_console(void);
u16 printk_parse_prefix(const char *text, int *level,
enum printk_info_flags *flags);
diff --git a/kernel/printk/printk.c b/kernel/printk/printk.c
index beb808f4c367..80910bc3470c 100644
--- a/kernel/printk/printk.c
+++ b/kernel/printk/printk.c
@@ -560,10 +560,11 @@ bool printk_percpu_data_ready(void)
/* Must be called under syslog_lock. */
static void latched_seq_write(struct latched_seq *ls, u64 val)
{
- raw_write_seqcount_latch(&ls->latch);
+ write_seqcount_latch_begin(&ls->latch);
ls->val[0] = val;
- raw_write_seqcount_latch(&ls->latch);
+ write_seqcount_latch(&ls->latch);
ls->val[1] = val;
+ write_seqcount_latch_end(&ls->latch);
}
/* Can be called from any context. */
@@ -574,10 +575,10 @@ static u64 latched_seq_read_nolock(struct latched_seq *ls)
u64 val;
do {
- seq = raw_read_seqcount_latch(&ls->latch);
+ seq = read_seqcount_latch(&ls->latch);
idx = seq & 0x1;
val = ls->val[idx];
- } while (raw_read_seqcount_latch_retry(&ls->latch, seq));
+ } while (read_seqcount_latch_retry(&ls->latch, seq));
return val;
}
@@ -1156,6 +1157,17 @@ static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
+static void print_log_buf_usage_stats(void)
+{
+ unsigned int descs_count = log_buf_len >> PRB_AVGBITS;
+ size_t meta_data_size;
+
+ meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info));
+
+ pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n",
+ log_buf_len, meta_data_size, log_buf_len + meta_data_size);
+}
+
void __init setup_log_buf(int early)
{
struct printk_info *new_infos;
@@ -1185,20 +1197,25 @@ void __init setup_log_buf(int early)
if (!early && !new_log_buf_len)
log_buf_add_cpu();
- if (!new_log_buf_len)
+ if (!new_log_buf_len) {
+ /* Show the memory stats only once. */
+ if (!early)
+ goto out;
+
return;
+ }
new_descs_count = new_log_buf_len >> PRB_AVGBITS;
if (new_descs_count == 0) {
pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
- return;
+ goto out;
}
new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
if (unlikely(!new_log_buf)) {
pr_err("log_buf_len: %lu text bytes not available\n",
new_log_buf_len);
- return;
+ goto out;
}
new_descs_size = new_descs_count * sizeof(struct prb_desc);
@@ -1261,7 +1278,7 @@ void __init setup_log_buf(int early)
prb_next_seq(&printk_rb_static) - seq);
}
- pr_info("log_buf_len: %u bytes\n", log_buf_len);
+ print_log_buf_usage_stats();
pr_info("early log buf free: %u(%u%%)\n",
free, (free * 100) / __LOG_BUF_LEN);
return;
@@ -1270,6 +1287,8 @@ err_free_descs:
memblock_free(new_descs, new_descs_size);
err_free_log_buf:
memblock_free(new_log_buf, new_log_buf_len);
+out:
+ print_log_buf_usage_stats();
}
static bool __read_mostly ignore_loglevel;
@@ -1319,11 +1338,11 @@ static void boot_delay_msec(int level)
{
unsigned long long k;
unsigned long timeout;
+ bool suppress = !is_printk_force_console() &&
+ suppress_message_printing(level);
- if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
- || suppress_message_printing(level)) {
+ if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) || suppress)
return;
- }
k = (unsigned long long)loops_per_msec * boot_delay;
@@ -2273,6 +2292,9 @@ int vprintk_store(int facility, int level,
if (dev_info)
flags |= LOG_NEWLINE;
+ if (is_printk_force_console())
+ flags |= LOG_FORCE_CON;
+
if (flags & LOG_CONT) {
prb_rec_init_wr(&r, reserve_size);
if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
@@ -2280,6 +2302,9 @@ int vprintk_store(int facility, int level,
facility, &flags, fmt, args);
r.info->text_len += text_len;
+ if (flags & LOG_FORCE_CON)
+ r.info->flags |= LOG_FORCE_CON;
+
if (flags & LOG_NEWLINE) {
r.info->flags |= LOG_NEWLINE;
prb_final_commit(&e);
@@ -2947,6 +2972,7 @@ bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
struct printk_info info;
struct printk_record r;
size_t len = 0;
+ bool force_con;
/*
* Formatting extended messages requires a separate buffer, so use the
@@ -2965,9 +2991,13 @@ bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
pmsg->seq = r.info->seq;
pmsg->dropped = r.info->seq - seq;
+ force_con = r.info->flags & LOG_FORCE_CON;
- /* Skip record that has level above the console loglevel. */
- if (may_suppress && suppress_message_printing(r.info->level))
+ /*
+ * Skip records that are not forced to be printed on consoles and that
+ * has level above the console loglevel.
+ */
+ if (!force_con && may_suppress && suppress_message_printing(r.info->level))
goto out;
if (is_extended) {
diff --git a/kernel/printk/printk_safe.c b/kernel/printk/printk_safe.c
index 2b35a9d3919d..6f94418d53ff 100644
--- a/kernel/printk/printk_safe.c
+++ b/kernel/printk/printk_safe.c
@@ -12,6 +12,24 @@
#include "internal.h"
+/* Context where printk messages are never suppressed */
+static atomic_t force_con;
+
+void printk_force_console_enter(void)
+{
+ atomic_inc(&force_con);
+}
+
+void printk_force_console_exit(void)
+{
+ atomic_dec(&force_con);
+}
+
+bool is_printk_force_console(void)
+{
+ return atomic_read(&force_con);
+}
+
static DEFINE_PER_CPU(int, printk_context);
/* Can be preempted by NMI. */
diff --git a/kernel/rcu/Kconfig b/kernel/rcu/Kconfig
index 3e079de0f5b4..b9b6bc55185d 100644
--- a/kernel/rcu/Kconfig
+++ b/kernel/rcu/Kconfig
@@ -249,16 +249,24 @@ config RCU_NOCB_CPU
workloads will incur significant increases in context-switch
rates.
- This option offloads callback invocation from the set of CPUs
- specified at boot time by the rcu_nocbs parameter. For each
- such CPU, a kthread ("rcuox/N") will be created to invoke
- callbacks, where the "N" is the CPU being offloaded, and where
- the "x" is "p" for RCU-preempt (PREEMPTION kernels) and "s" for
- RCU-sched (!PREEMPTION kernels). Nothing prevents this kthread
- from running on the specified CPUs, but (1) the kthreads may be
- preempted between each callback, and (2) affinity or cgroups can
- be used to force the kthreads to run on whatever set of CPUs is
- desired.
+ This option offloads callback invocation from the set of
+ CPUs specified at boot time by the rcu_nocbs parameter.
+ For each such CPU, a kthread ("rcuox/N") will be created to
+ invoke callbacks, where the "N" is the CPU being offloaded,
+ and where the "x" is "p" for RCU-preempt (PREEMPTION kernels)
+ and "s" for RCU-sched (!PREEMPTION kernels). This option
+ also creates another kthread for each sqrt(nr_cpu_ids) CPUs
+ ("rcuog/N", where N is the first CPU in that group to come
+ online), which handles grace periods for its group. Nothing
+ prevents these kthreads from running on the specified CPUs,
+ but (1) the kthreads may be preempted between each callback,
+ and (2) affinity or cgroups can be used to force the kthreads
+ to run on whatever set of CPUs is desired.
+
+ The sqrt(nr_cpu_ids) grouping may be overridden using the
+ rcutree.rcu_nocb_gp_stride kernel boot parameter. This can
+ be especially helpful for smaller numbers of CPUs, where
+ sqrt(nr_cpu_ids) can be a bit of a blunt instrument.
Say Y here if you need reduced OS jitter, despite added overhead.
Say N here if you are unsure.
diff --git a/kernel/rcu/rcu_segcblist.h b/kernel/rcu/rcu_segcblist.h
index 259904075636..fadc08ad4b7b 100644
--- a/kernel/rcu/rcu_segcblist.h
+++ b/kernel/rcu/rcu_segcblist.h
@@ -120,7 +120,6 @@ void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp);
void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v);
void rcu_segcblist_init(struct rcu_segcblist *rsclp);
void rcu_segcblist_disable(struct rcu_segcblist *rsclp);
-void rcu_segcblist_offload(struct rcu_segcblist *rsclp, bool offload);
bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp);
bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp);
struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp);
diff --git a/kernel/rcu/rcuscale.c b/kernel/rcu/rcuscale.c
index 6d37596deb1f..0f3059b1b80d 100644
--- a/kernel/rcu/rcuscale.c
+++ b/kernel/rcu/rcuscale.c
@@ -889,14 +889,14 @@ kfree_scale_init(void)
if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
- WARN_ON_ONCE(1);
- return -1;
+ firsterr = -1;
+ goto unwind;
}
if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
- WARN_ON_ONCE(1);
- return -1;
+ firsterr = -1;
+ goto unwind;
}
}
diff --git a/kernel/rcu/rcutorture.c b/kernel/rcu/rcutorture.c
index bb75dbf5c800..612d27690335 100644
--- a/kernel/rcu/rcutorture.c
+++ b/kernel/rcu/rcutorture.c
@@ -57,9 +57,9 @@ MODULE_AUTHOR("Paul E. McKenney <[email protected]> and Josh Triplett <josh@
/* Bits for ->extendables field, extendables param, and related definitions. */
#define RCUTORTURE_RDR_SHIFT_1 8 /* Put SRCU index in upper bits. */
-#define RCUTORTURE_RDR_MASK_1 (1 << RCUTORTURE_RDR_SHIFT_1)
-#define RCUTORTURE_RDR_SHIFT_2 9 /* Put SRCU index in upper bits. */
-#define RCUTORTURE_RDR_MASK_2 (1 << RCUTORTURE_RDR_SHIFT_2)
+#define RCUTORTURE_RDR_MASK_1 (0xff << RCUTORTURE_RDR_SHIFT_1)
+#define RCUTORTURE_RDR_SHIFT_2 16 /* Put SRCU index in upper bits. */
+#define RCUTORTURE_RDR_MASK_2 (0xff << RCUTORTURE_RDR_SHIFT_2)
#define RCUTORTURE_RDR_BH 0x01 /* Extend readers by disabling bh. */
#define RCUTORTURE_RDR_IRQ 0x02 /* ... disabling interrupts. */
#define RCUTORTURE_RDR_PREEMPT 0x04 /* ... disabling preemption. */
@@ -71,6 +71,9 @@ MODULE_AUTHOR("Paul E. McKenney <[email protected]> and Josh Triplett <josh@
#define RCUTORTURE_MAX_EXTEND \
(RCUTORTURE_RDR_BH | RCUTORTURE_RDR_IRQ | RCUTORTURE_RDR_PREEMPT | \
RCUTORTURE_RDR_RBH | RCUTORTURE_RDR_SCHED)
+#define RCUTORTURE_RDR_ALLBITS \
+ (RCUTORTURE_MAX_EXTEND | RCUTORTURE_RDR_RCU_1 | RCUTORTURE_RDR_RCU_2 | \
+ RCUTORTURE_RDR_MASK_1 | RCUTORTURE_RDR_MASK_2)
#define RCUTORTURE_RDR_MAX_LOOPS 0x7 /* Maximum reader extensions. */
/* Must be power of two minus one. */
#define RCUTORTURE_RDR_MAX_SEGS (RCUTORTURE_RDR_MAX_LOOPS + 3)
@@ -108,6 +111,7 @@ torture_param(int, nocbs_nthreads, 0, "Number of NOCB toggle threads, 0 to disab
torture_param(int, nocbs_toggle, 1000, "Time between toggling nocb state (ms)");
torture_param(int, read_exit_delay, 13, "Delay between read-then-exit episodes (s)");
torture_param(int, read_exit_burst, 16, "# of read-then-exit bursts per episode, zero to disable");
+torture_param(int, reader_flavor, 0x1, "Reader flavors to use, one per bit.");
torture_param(int, shuffle_interval, 3, "Number of seconds between shuffles");
torture_param(int, shutdown_secs, 0, "Shutdown time (s), <= zero to disable.");
torture_param(int, stall_cpu, 0, "Stall duration (s), zero to disable.");
@@ -393,6 +397,7 @@ struct rcu_torture_ops {
int slow_gps;
int no_pi_lock;
int debug_objects;
+ int start_poll_irqsoff;
const char *name;
};
@@ -581,6 +586,7 @@ static struct rcu_torture_ops rcu_ops = {
.can_boost = IS_ENABLED(CONFIG_RCU_BOOST),
.extendables = RCUTORTURE_MAX_EXTEND,
.debug_objects = 1,
+ .start_poll_irqsoff = 1,
.name = "rcu"
};
@@ -641,10 +647,25 @@ static void srcu_get_gp_data(int *flags, unsigned long *gp_seq)
static int srcu_torture_read_lock(void)
{
- if (cur_ops == &srcud_ops)
- return srcu_read_lock_nmisafe(srcu_ctlp);
- else
- return srcu_read_lock(srcu_ctlp);
+ int idx;
+ int ret = 0;
+
+ if ((reader_flavor & 0x1) || !(reader_flavor & 0x7)) {
+ idx = srcu_read_lock(srcu_ctlp);
+ WARN_ON_ONCE(idx & ~0x1);
+ ret += idx;
+ }
+ if (reader_flavor & 0x2) {
+ idx = srcu_read_lock_nmisafe(srcu_ctlp);
+ WARN_ON_ONCE(idx & ~0x1);
+ ret += idx << 1;
+ }
+ if (reader_flavor & 0x4) {
+ idx = srcu_read_lock_lite(srcu_ctlp);
+ WARN_ON_ONCE(idx & ~0x1);
+ ret += idx << 2;
+ }
+ return ret;
}
static void
@@ -668,10 +689,13 @@ srcu_read_delay(struct torture_random_state *rrsp, struct rt_read_seg *rtrsp)
static void srcu_torture_read_unlock(int idx)
{
- if (cur_ops == &srcud_ops)
- srcu_read_unlock_nmisafe(srcu_ctlp, idx);
- else
- srcu_read_unlock(srcu_ctlp, idx);
+ WARN_ON_ONCE((reader_flavor && (idx & ~reader_flavor)) || (!reader_flavor && (idx & ~0x1)));
+ if (reader_flavor & 0x4)
+ srcu_read_unlock_lite(srcu_ctlp, (idx & 0x4) >> 2);
+ if (reader_flavor & 0x2)
+ srcu_read_unlock_nmisafe(srcu_ctlp, (idx & 0x2) >> 1);
+ if ((reader_flavor & 0x1) || !(reader_flavor & 0x7))
+ srcu_read_unlock(srcu_ctlp, idx & 0x1);
}
static int torture_srcu_read_lock_held(void)
@@ -1059,8 +1083,13 @@ static bool rcu_torture_boost_failed(unsigned long gp_state, unsigned long *star
// At most one persisted message per boost test.
j = jiffies;
lp = READ_ONCE(last_persist);
- if (time_after(j, lp + mininterval) && cmpxchg(&last_persist, lp, j) == lp)
- pr_info("Boost inversion persisted: No QS from CPU %d\n", cpu);
+ if (time_after(j, lp + mininterval) &&
+ cmpxchg(&last_persist, lp, j) == lp) {
+ if (cpu < 0)
+ pr_info("Boost inversion persisted: QS from all CPUs\n");
+ else
+ pr_info("Boost inversion persisted: No QS from CPU %d\n", cpu);
+ }
return false; // passed on a technicality
}
VERBOSE_TOROUT_STRING("rcu_torture_boost boosting failed");
@@ -1695,14 +1724,22 @@ rcu_torture_fakewriter(void *arg)
cur_ops->cond_sync_exp_full(&gp_snap_full);
break;
case RTWS_POLL_GET:
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_disable();
gp_snap = cur_ops->start_gp_poll();
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_enable();
while (!cur_ops->poll_gp_state(gp_snap)) {
torture_hrtimeout_jiffies(torture_random(&rand) % 16,
&rand);
}
break;
case RTWS_POLL_GET_FULL:
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_disable();
cur_ops->start_gp_poll_full(&gp_snap_full);
+ if (cur_ops->start_poll_irqsoff)
+ local_irq_enable();
while (!cur_ops->poll_gp_state_full(&gp_snap_full)) {
torture_hrtimeout_jiffies(torture_random(&rand) % 16,
&rand);
@@ -1820,7 +1857,7 @@ static void rcutorture_one_extend(int *readstate, int newstate,
int statesold = *readstate & ~newstate;
WARN_ON_ONCE(idxold2 < 0);
- WARN_ON_ONCE((idxold2 >> RCUTORTURE_RDR_SHIFT_2) > 1);
+ WARN_ON_ONCE(idxold2 & ~RCUTORTURE_RDR_ALLBITS);
rtrsp->rt_readstate = newstate;
/* First, put new protection in place to avoid critical-section gap. */
@@ -1835,9 +1872,9 @@ static void rcutorture_one_extend(int *readstate, int newstate,
if (statesnew & RCUTORTURE_RDR_SCHED)
rcu_read_lock_sched();
if (statesnew & RCUTORTURE_RDR_RCU_1)
- idxnew1 = (cur_ops->readlock() & 0x1) << RCUTORTURE_RDR_SHIFT_1;
+ idxnew1 = (cur_ops->readlock() << RCUTORTURE_RDR_SHIFT_1) & RCUTORTURE_RDR_MASK_1;
if (statesnew & RCUTORTURE_RDR_RCU_2)
- idxnew2 = (cur_ops->readlock() & 0x1) << RCUTORTURE_RDR_SHIFT_2;
+ idxnew2 = (cur_ops->readlock() << RCUTORTURE_RDR_SHIFT_2) & RCUTORTURE_RDR_MASK_2;
/*
* Next, remove old protection, in decreasing order of strength
@@ -1857,7 +1894,7 @@ static void rcutorture_one_extend(int *readstate, int newstate,
if (statesold & RCUTORTURE_RDR_RBH)
rcu_read_unlock_bh();
if (statesold & RCUTORTURE_RDR_RCU_2) {
- cur_ops->readunlock((idxold2 >> RCUTORTURE_RDR_SHIFT_2) & 0x1);
+ cur_ops->readunlock((idxold2 & RCUTORTURE_RDR_MASK_2) >> RCUTORTURE_RDR_SHIFT_2);
WARN_ON_ONCE(idxnew2 != -1);
idxold2 = 0;
}
@@ -1867,7 +1904,7 @@ static void rcutorture_one_extend(int *readstate, int newstate,
lockit = !cur_ops->no_pi_lock && !statesnew && !(torture_random(trsp) & 0xffff);
if (lockit)
raw_spin_lock_irqsave(&current->pi_lock, flags);
- cur_ops->readunlock((idxold1 >> RCUTORTURE_RDR_SHIFT_1) & 0x1);
+ cur_ops->readunlock((idxold1 & RCUTORTURE_RDR_MASK_1) >> RCUTORTURE_RDR_SHIFT_1);
WARN_ON_ONCE(idxnew1 != -1);
idxold1 = 0;
if (lockit)
@@ -1882,16 +1919,13 @@ static void rcutorture_one_extend(int *readstate, int newstate,
if (idxnew1 == -1)
idxnew1 = idxold1 & RCUTORTURE_RDR_MASK_1;
WARN_ON_ONCE(idxnew1 < 0);
- if (WARN_ON_ONCE((idxnew1 >> RCUTORTURE_RDR_SHIFT_1) > 1))
- pr_info("Unexpected idxnew1 value of %#x\n", idxnew1);
if (idxnew2 == -1)
idxnew2 = idxold2 & RCUTORTURE_RDR_MASK_2;
WARN_ON_ONCE(idxnew2 < 0);
- WARN_ON_ONCE((idxnew2 >> RCUTORTURE_RDR_SHIFT_2) > 1);
*readstate = idxnew1 | idxnew2 | newstate;
WARN_ON_ONCE(*readstate < 0);
- if (WARN_ON_ONCE((*readstate >> RCUTORTURE_RDR_SHIFT_2) > 1))
- pr_info("Unexpected idxnew2 value of %#x\n", idxnew2);
+ if (WARN_ON_ONCE(*readstate & ~RCUTORTURE_RDR_ALLBITS))
+ pr_info("Unexpected readstate value of %#x\n", *readstate);
}
/* Return the biggest extendables mask given current RCU and boot parameters. */
@@ -1916,7 +1950,7 @@ rcutorture_extend_mask(int oldmask, struct torture_random_state *trsp)
unsigned long preempts_irq = preempts | RCUTORTURE_RDR_IRQ;
unsigned long bhs = RCUTORTURE_RDR_BH | RCUTORTURE_RDR_RBH;
- WARN_ON_ONCE(mask >> RCUTORTURE_RDR_SHIFT_1);
+ WARN_ON_ONCE(mask >> RCUTORTURE_RDR_SHIFT_1); // Can't have reader idx bits.
/* Mostly only one bit (need preemption!), sometimes lots of bits. */
if (!(randmask1 & 0x7))
mask = mask & randmask2;
@@ -2389,6 +2423,7 @@ rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, const char *tag)
"n_barrier_cbs=%d "
"onoff_interval=%d onoff_holdoff=%d "
"read_exit_delay=%d read_exit_burst=%d "
+ "reader_flavor=%x "
"nocbs_nthreads=%d nocbs_toggle=%d "
"test_nmis=%d\n",
torture_type, tag, nrealreaders, nfakewriters,
@@ -2401,6 +2436,7 @@ rcu_torture_print_module_parms(struct rcu_torture_ops *cur_ops, const char *tag)
n_barrier_cbs,
onoff_interval, onoff_holdoff,
read_exit_delay, read_exit_burst,
+ reader_flavor,
nocbs_nthreads, nocbs_toggle,
test_nmis);
}
@@ -2440,6 +2476,14 @@ static int rcutorture_booster_init(unsigned int cpu)
WARN_ON_ONCE(!t);
sp.sched_priority = 2;
sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
+#ifdef CONFIG_IRQ_FORCED_THREADING
+ if (force_irqthreads()) {
+ t = per_cpu(ktimerd, cpu);
+ WARN_ON_ONCE(!t);
+ sp.sched_priority = 2;
+ sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
+ }
+#endif
}
/* Don't allow time recalculation while creating a new task. */
diff --git a/kernel/rcu/refscale.c b/kernel/rcu/refscale.c
index 0db9db73f57f..aacfcc9838b3 100644
--- a/kernel/rcu/refscale.c
+++ b/kernel/rcu/refscale.c
@@ -75,6 +75,9 @@ MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
+// Number of seconds to extend warm-up and cool-down for multiple guest OSes
+torture_param(long, guest_os_delay, 0,
+ "Number of seconds to extend warm-up/cool-down for multiple guest OSes.");
// Wait until there are multiple CPUs before starting test.
torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
"Holdoff time before test start (s)");
@@ -212,6 +215,36 @@ static const struct ref_scale_ops srcu_ops = {
.name = "srcu"
};
+static void srcu_lite_ref_scale_read_section(const int nloops)
+{
+ int i;
+ int idx;
+
+ for (i = nloops; i >= 0; i--) {
+ idx = srcu_read_lock_lite(srcu_ctlp);
+ srcu_read_unlock_lite(srcu_ctlp, idx);
+ }
+}
+
+static void srcu_lite_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
+{
+ int i;
+ int idx;
+
+ for (i = nloops; i >= 0; i--) {
+ idx = srcu_read_lock_lite(srcu_ctlp);
+ un_delay(udl, ndl);
+ srcu_read_unlock_lite(srcu_ctlp, idx);
+ }
+}
+
+static const struct ref_scale_ops srcu_lite_ops = {
+ .init = rcu_sync_scale_init,
+ .readsection = srcu_lite_ref_scale_read_section,
+ .delaysection = srcu_lite_ref_scale_delay_section,
+ .name = "srcu-lite"
+};
+
#ifdef CONFIG_TASKS_RCU
// Definitions for RCU Tasks ref scale testing: Empty read markers.
@@ -801,6 +834,18 @@ static void rcu_scale_one_reader(void)
cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
}
+// Warm up cache, or, if needed run a series of rcu_scale_one_reader()
+// to allow multiple rcuscale guest OSes to collect mutually valid data.
+static void rcu_scale_warm_cool(void)
+{
+ unsigned long jdone = jiffies + (guest_os_delay > 0 ? guest_os_delay * HZ : -1);
+
+ do {
+ rcu_scale_one_reader();
+ cond_resched();
+ } while (time_before(jiffies, jdone));
+}
+
// Reader kthread. Repeatedly does empty RCU read-side
// critical section, minimizing update-side interference.
static int
@@ -829,7 +874,7 @@ repeat:
goto end;
// Make sure that the CPU is affinitized appropriately during testing.
- WARN_ON_ONCE(raw_smp_processor_id() != me);
+ WARN_ON_ONCE(raw_smp_processor_id() != me % nr_cpu_ids);
WRITE_ONCE(rt->start_reader, 0);
if (!atomic_dec_return(&n_started))
@@ -957,6 +1002,7 @@ static int main_func(void *arg)
schedule_timeout_uninterruptible(1);
// Start exp readers up per experiment
+ rcu_scale_warm_cool();
for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
if (torture_must_stop())
goto end;
@@ -987,6 +1033,7 @@ static int main_func(void *arg)
result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
}
+ rcu_scale_warm_cool();
// Print the average of all experiments
SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
@@ -1082,9 +1129,10 @@ ref_scale_init(void)
long i;
int firsterr = 0;
static const struct ref_scale_ops *scale_ops[] = {
- &rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
- &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
- &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
+ &rcu_ops, &srcu_ops, &srcu_lite_ops, RCU_TRACE_OPS RCU_TASKS_OPS
+ &refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops,
+ &clock_ops, &jiffies_ops, &typesafe_ref_ops, &typesafe_lock_ops,
+ &typesafe_seqlock_ops,
};
if (!torture_init_begin(scale_type, verbose))
diff --git a/kernel/rcu/srcutiny.c b/kernel/rcu/srcutiny.c
index 549c03336ee9..4dcbf8aa80ff 100644
--- a/kernel/rcu/srcutiny.c
+++ b/kernel/rcu/srcutiny.c
@@ -122,8 +122,8 @@ void srcu_drive_gp(struct work_struct *wp)
ssp = container_of(wp, struct srcu_struct, srcu_work);
preempt_disable(); // Needed for PREEMPT_AUTO
if (ssp->srcu_gp_running || ULONG_CMP_GE(ssp->srcu_idx, READ_ONCE(ssp->srcu_idx_max))) {
- return; /* Already running or nothing to do. */
preempt_enable();
+ return; /* Already running or nothing to do. */
}
/* Remove recently arrived callbacks and wait for readers. */
diff --git a/kernel/rcu/srcutree.c b/kernel/rcu/srcutree.c
index 31706e3293bc..5e2e53464794 100644
--- a/kernel/rcu/srcutree.c
+++ b/kernel/rcu/srcutree.c
@@ -128,7 +128,7 @@ static void init_srcu_struct_data(struct srcu_struct *ssp)
* Initialize the per-CPU srcu_data array, which feeds into the
* leaves of the srcu_node tree.
*/
- WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
+ BUILD_BUG_ON(ARRAY_SIZE(sdp->srcu_lock_count) !=
ARRAY_SIZE(sdp->srcu_unlock_count));
for_each_possible_cpu(cpu) {
sdp = per_cpu_ptr(ssp->sda, cpu);
@@ -187,7 +187,7 @@ static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
/* Each pass through this loop initializes one srcu_node structure. */
srcu_for_each_node_breadth_first(ssp, snp) {
spin_lock_init(&ACCESS_PRIVATE(snp, lock));
- WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
+ BUILD_BUG_ON(ARRAY_SIZE(snp->srcu_have_cbs) !=
ARRAY_SIZE(snp->srcu_data_have_cbs));
for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
@@ -419,41 +419,60 @@ static void check_init_srcu_struct(struct srcu_struct *ssp)
}
/*
- * Returns approximate total of the readers' ->srcu_lock_count[] values
- * for the rank of per-CPU counters specified by idx.
+ * Is the current or any upcoming grace period to be expedited?
*/
-static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
+static bool srcu_gp_is_expedited(struct srcu_struct *ssp)
+{
+ struct srcu_usage *sup = ssp->srcu_sup;
+
+ return ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp));
+}
+
+/*
+ * Computes approximate total of the readers' ->srcu_lock_count[] values
+ * for the rank of per-CPU counters specified by idx, and returns true if
+ * the caller did the proper barrier (gp), and if the count of the locks
+ * matches that of the unlocks passed in.
+ */
+static bool srcu_readers_lock_idx(struct srcu_struct *ssp, int idx, bool gp, unsigned long unlocks)
{
int cpu;
+ unsigned long mask = 0;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
- struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
+ struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
- sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
+ sum += atomic_long_read(&sdp->srcu_lock_count[idx]);
+ if (IS_ENABLED(CONFIG_PROVE_RCU))
+ mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
}
- return sum;
+ WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
+ "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
+ if (mask & SRCU_READ_FLAVOR_LITE && !gp)
+ return false;
+ return sum == unlocks;
}
/*
* Returns approximate total of the readers' ->srcu_unlock_count[] values
* for the rank of per-CPU counters specified by idx.
*/
-static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
+static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx, unsigned long *rdm)
{
int cpu;
unsigned long mask = 0;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
- struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
+ struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
- sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
- if (IS_ENABLED(CONFIG_PROVE_RCU))
- mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
+ sum += atomic_long_read(&sdp->srcu_unlock_count[idx]);
+ mask = mask | READ_ONCE(sdp->srcu_reader_flavor);
}
- WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
- "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
+ WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask - 1)),
+ "Mixed reader flavors for srcu_struct at %ps.\n", ssp);
+ *rdm = mask;
return sum;
}
@@ -463,22 +482,28 @@ static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
*/
static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
{
+ bool did_gp;
+ unsigned long rdm;
unsigned long unlocks;
- unlocks = srcu_readers_unlock_idx(ssp, idx);
+ unlocks = srcu_readers_unlock_idx(ssp, idx, &rdm);
+ did_gp = !!(rdm & SRCU_READ_FLAVOR_LITE);
/*
* Make sure that a lock is always counted if the corresponding
* unlock is counted. Needs to be a smp_mb() as the read side may
* contain a read from a variable that is written to before the
* synchronize_srcu() in the write side. In this case smp_mb()s
- * A and B act like the store buffering pattern.
+ * A and B (or X and Y) act like the store buffering pattern.
*
- * This smp_mb() also pairs with smp_mb() C to prevent accesses
- * after the synchronize_srcu() from being executed before the
- * grace period ends.
+ * This smp_mb() also pairs with smp_mb() C (or, in the case of X,
+ * Z) to prevent accesses after the synchronize_srcu() from being
+ * executed before the grace period ends.
*/
- smp_mb(); /* A */
+ if (!did_gp)
+ smp_mb(); /* A */
+ else
+ synchronize_rcu(); /* X */
/*
* If the locks are the same as the unlocks, then there must have
@@ -536,7 +561,7 @@ static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
* which are unlikely to be configured with an address space fully
* populated with memory, at least not anytime soon.
*/
- return srcu_readers_lock_idx(ssp, idx) == unlocks;
+ return srcu_readers_lock_idx(ssp, idx, did_gp, unlocks);
}
/**
@@ -554,12 +579,12 @@ static bool srcu_readers_active(struct srcu_struct *ssp)
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
- struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
+ struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
- sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
- sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
- sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
- sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
+ sum += atomic_long_read(&sdp->srcu_lock_count[0]);
+ sum += atomic_long_read(&sdp->srcu_lock_count[1]);
+ sum -= atomic_long_read(&sdp->srcu_unlock_count[0]);
+ sum -= atomic_long_read(&sdp->srcu_unlock_count[1]);
}
return sum;
}
@@ -622,7 +647,7 @@ static unsigned long srcu_get_delay(struct srcu_struct *ssp)
unsigned long jbase = SRCU_INTERVAL;
struct srcu_usage *sup = ssp->srcu_sup;
- if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
+ if (srcu_gp_is_expedited(ssp))
jbase = 0;
if (rcu_seq_state(READ_ONCE(sup->srcu_gp_seq))) {
j = jiffies - 1;
@@ -687,28 +712,28 @@ void cleanup_srcu_struct(struct srcu_struct *ssp)
}
EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
-#ifdef CONFIG_PROVE_RCU
/*
- * Check for consistent NMI safety.
+ * Check for consistent reader flavor.
*/
-void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
+void __srcu_check_read_flavor(struct srcu_struct *ssp, int read_flavor)
{
- int nmi_safe_mask = 1 << nmi_safe;
- int old_nmi_safe_mask;
+ int old_read_flavor;
struct srcu_data *sdp;
- /* NMI-unsafe use in NMI is a bad sign */
- WARN_ON_ONCE(!nmi_safe && in_nmi());
+ /* NMI-unsafe use in NMI is a bad sign, as is multi-bit read_flavor values. */
+ WARN_ON_ONCE((read_flavor != SRCU_READ_FLAVOR_NMI) && in_nmi());
+ WARN_ON_ONCE(read_flavor & (read_flavor - 1));
+
sdp = raw_cpu_ptr(ssp->sda);
- old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
- if (!old_nmi_safe_mask) {
- WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
- return;
+ old_read_flavor = READ_ONCE(sdp->srcu_reader_flavor);
+ if (!old_read_flavor) {
+ old_read_flavor = cmpxchg(&sdp->srcu_reader_flavor, 0, read_flavor);
+ if (!old_read_flavor)
+ return;
}
- WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
+ WARN_ONCE(old_read_flavor != read_flavor, "CPU %d old state %d new state %d\n", sdp->cpu, old_read_flavor, read_flavor);
}
-EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
-#endif /* CONFIG_PROVE_RCU */
+EXPORT_SYMBOL_GPL(__srcu_check_read_flavor);
/*
* Counts the new reader in the appropriate per-CPU element of the
@@ -867,7 +892,7 @@ static void srcu_gp_end(struct srcu_struct *ssp)
spin_lock_irq_rcu_node(sup);
idx = rcu_seq_state(sup->srcu_gp_seq);
WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
- if (ULONG_CMP_LT(READ_ONCE(sup->srcu_gp_seq), READ_ONCE(sup->srcu_gp_seq_needed_exp)))
+ if (srcu_gp_is_expedited(ssp))
cbdelay = 0;
WRITE_ONCE(sup->srcu_last_gp_end, ktime_get_mono_fast_ns());
@@ -1122,6 +1147,8 @@ static void srcu_flip(struct srcu_struct *ssp)
* it stays until either (1) Compilers learn about this sort of
* control dependency or (2) Some production workload running on
* a production system is unduly delayed by this slowpath smp_mb().
+ * Except for _lite() readers, where it is inoperative, which
+ * means that it is a good thing that it is redundant.
*/
smp_mb(); /* E */ /* Pairs with B and C. */
@@ -1139,7 +1166,9 @@ static void srcu_flip(struct srcu_struct *ssp)
}
/*
- * If SRCU is likely idle, return true, otherwise return false.
+ * If SRCU is likely idle, in other words, the next SRCU grace period
+ * should be expedited, return true, otherwise return false. Except that
+ * in the presence of _lite() readers, always return false.
*
* Note that it is OK for several current from-idle requests for a new
* grace period from idle to specify expediting because they will all end
@@ -1159,7 +1188,7 @@ static void srcu_flip(struct srcu_struct *ssp)
* negligible when amortized over that time period, and the extra latency
* of a needlessly non-expedited grace period is similarly negligible.
*/
-static bool srcu_might_be_idle(struct srcu_struct *ssp)
+static bool srcu_should_expedite(struct srcu_struct *ssp)
{
unsigned long curseq;
unsigned long flags;
@@ -1168,6 +1197,9 @@ static bool srcu_might_be_idle(struct srcu_struct *ssp)
unsigned long tlast;
check_init_srcu_struct(ssp);
+ /* If _lite() readers, don't do unsolicited expediting. */
+ if (this_cpu_read(ssp->sda->srcu_reader_flavor) & SRCU_READ_FLAVOR_LITE)
+ return false;
/* If the local srcu_data structure has callbacks, not idle. */
sdp = raw_cpu_ptr(ssp->sda);
spin_lock_irqsave_rcu_node(sdp, flags);
@@ -1469,14 +1501,15 @@ EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
* Implementation of these memory-ordering guarantees is similar to
* that of synchronize_rcu().
*
- * If SRCU is likely idle, expedite the first request. This semantic
- * was provided by Classic SRCU, and is relied upon by its users, so TREE
- * SRCU must also provide it. Note that detecting idleness is heuristic
- * and subject to both false positives and negatives.
+ * If SRCU is likely idle as determined by srcu_should_expedite(),
+ * expedite the first request. This semantic was provided by Classic SRCU,
+ * and is relied upon by its users, so TREE SRCU must also provide it.
+ * Note that detecting idleness is heuristic and subject to both false
+ * positives and negatives.
*/
void synchronize_srcu(struct srcu_struct *ssp)
{
- if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
+ if (srcu_should_expedite(ssp) || rcu_gp_is_expedited())
synchronize_srcu_expedited(ssp);
else
__synchronize_srcu(ssp, true);
diff --git a/kernel/rcu/tasks.h b/kernel/rcu/tasks.h
index 4d7ee95df06e..59314da5eb60 100644
--- a/kernel/rcu/tasks.h
+++ b/kernel/rcu/tasks.h
@@ -1407,7 +1407,8 @@ static void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
*/
void synchronize_rcu_tasks_rude(void)
{
- synchronize_rcu_tasks_generic(&rcu_tasks_rude);
+ if (!IS_ENABLED(CONFIG_ARCH_WANTS_NO_INSTR) || IS_ENABLED(CONFIG_FORCE_TASKS_RUDE_RCU))
+ synchronize_rcu_tasks_generic(&rcu_tasks_rude);
}
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
@@ -1549,22 +1550,7 @@ static void rcu_st_need_qs(struct task_struct *t, u8 v)
*/
u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
{
- union rcu_special ret;
- union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
- union rcu_special trs_new = trs_old;
-
- if (trs_old.b.need_qs != old)
- return trs_old.b.need_qs;
- trs_new.b.need_qs = new;
-
- // Although cmpxchg() appears to KCSAN to update all four bytes,
- // only the .b.need_qs byte actually changes.
- instrument_atomic_read_write(&t->trc_reader_special.b.need_qs,
- sizeof(t->trc_reader_special.b.need_qs));
- // Avoid false-positive KCSAN failures.
- ret.s = data_race(cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s));
-
- return ret.b.need_qs;
+ return cmpxchg(&t->trc_reader_special.b.need_qs, old, new);
}
EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c
index b1f883fcd918..ff98233d4aa5 100644
--- a/kernel/rcu/tree.c
+++ b/kernel/rcu/tree.c
@@ -3511,7 +3511,7 @@ static int krc_count(struct kfree_rcu_cpu *krcp)
}
static void
-schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
+__schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
{
long delay, delay_left;
@@ -3526,6 +3526,16 @@ schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
}
static void
+schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
+{
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&krcp->lock, flags);
+ __schedule_delayed_monitor_work(krcp);
+ raw_spin_unlock_irqrestore(&krcp->lock, flags);
+}
+
+static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
{
struct list_head bulk_ready[FREE_N_CHANNELS];
@@ -3836,7 +3846,7 @@ void kvfree_call_rcu(struct rcu_head *head, void *ptr)
// Set timer to drain after KFREE_DRAIN_JIFFIES.
if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
- schedule_delayed_monitor_work(krcp);
+ __schedule_delayed_monitor_work(krcp);
unlock_return:
krc_this_cpu_unlock(krcp, flags);
@@ -4194,7 +4204,6 @@ static void start_poll_synchronize_rcu_common(void)
struct rcu_data *rdp;
struct rcu_node *rnp;
- lockdep_assert_irqs_enabled();
local_irq_save(flags);
rdp = this_cpu_ptr(&rcu_data);
rnp = rdp->mynode;
@@ -4219,9 +4228,6 @@ static void start_poll_synchronize_rcu_common(void)
* grace period has elapsed in the meantime. If the needed grace period
* is not already slated to start, notifies RCU core of the need for that
* grace period.
- *
- * Interrupts must be enabled for the case where it is necessary to awaken
- * the grace-period kthread.
*/
unsigned long start_poll_synchronize_rcu(void)
{
@@ -4242,9 +4248,6 @@ EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
* grace period (whether normal or expedited) has elapsed in the meantime.
* If the needed grace period is not already slated to start, notifies
* RCU core of the need for that grace period.
- *
- * Interrupts must be enabled for the case where it is necessary to awaken
- * the grace-period kthread.
*/
void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
{
@@ -5580,8 +5583,7 @@ void rcu_init_geometry(void)
* Complain and fall back to the compile-time values if this
* limit is exceeded.
*/
- if (rcu_fanout_leaf < 2 ||
- rcu_fanout_leaf > sizeof(unsigned long) * 8) {
+ if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
rcu_fanout_leaf = RCU_FANOUT_LEAF;
WARN_ON(1);
return;
diff --git a/kernel/rcu/tree_nocb.h b/kernel/rcu/tree_nocb.h
index 16865475120b..2605dd234a13 100644
--- a/kernel/rcu/tree_nocb.h
+++ b/kernel/rcu/tree_nocb.h
@@ -891,7 +891,18 @@ static void nocb_cb_wait(struct rcu_data *rdp)
swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
nocb_cb_wait_cond(rdp));
if (kthread_should_park()) {
- kthread_parkme();
+ /*
+ * kthread_park() must be preceded by an rcu_barrier().
+ * But yet another rcu_barrier() might have sneaked in between
+ * the barrier callback execution and the callbacks counter
+ * decrement.
+ */
+ if (rdp->nocb_cb_sleep) {
+ rcu_nocb_lock_irqsave(rdp, flags);
+ WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
+ rcu_nocb_unlock_irqrestore(rdp, flags);
+ kthread_parkme();
+ }
} else if (READ_ONCE(rdp->nocb_cb_sleep)) {
WARN_ON(signal_pending(current));
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
diff --git a/kernel/rcu/tree_plugin.h b/kernel/rcu/tree_plugin.h
index 1c7cbd145d5e..3927ea5f7955 100644
--- a/kernel/rcu/tree_plugin.h
+++ b/kernel/rcu/tree_plugin.h
@@ -183,9 +183,9 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
switch (blkd_state) {
case 0:
case RCU_EXP_TASKS:
- case RCU_EXP_TASKS + RCU_GP_BLKD:
+ case RCU_EXP_TASKS | RCU_GP_BLKD:
case RCU_GP_TASKS:
- case RCU_GP_TASKS + RCU_EXP_TASKS:
+ case RCU_GP_TASKS | RCU_EXP_TASKS:
/*
* Blocking neither GP, or first task blocking the normal
@@ -198,10 +198,10 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
case RCU_EXP_BLKD:
case RCU_GP_BLKD:
- case RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
+ case RCU_GP_BLKD | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
/*
* First task arriving that blocks either GP, or first task
@@ -214,9 +214,9 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
break;
- case RCU_EXP_TASKS + RCU_EXP_BLKD:
- case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
+ case RCU_EXP_TASKS | RCU_EXP_BLKD:
+ case RCU_EXP_TASKS | RCU_GP_BLKD | RCU_EXP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_EXP_BLKD:
/*
* Second or subsequent task blocking the expedited GP.
@@ -227,8 +227,8 @@ static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
list_add(&t->rcu_node_entry, rnp->exp_tasks);
break;
- case RCU_GP_TASKS + RCU_GP_BLKD:
- case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
+ case RCU_GP_TASKS | RCU_GP_BLKD:
+ case RCU_GP_TASKS | RCU_EXP_TASKS | RCU_GP_BLKD:
/*
* Second or subsequent task blocking the normal GP.
diff --git a/kernel/rcu/tree_stall.h b/kernel/rcu/tree_stall.h
index 4432db6d0b99..925fcdad5dea 100644
--- a/kernel/rcu/tree_stall.h
+++ b/kernel/rcu/tree_stall.h
@@ -76,36 +76,6 @@ int rcu_jiffies_till_stall_check(void)
}
EXPORT_SYMBOL_GPL(rcu_jiffies_till_stall_check);
-/**
- * rcu_gp_might_be_stalled - Is it likely that the grace period is stalled?
- *
- * Returns @true if the current grace period is sufficiently old that
- * it is reasonable to assume that it might be stalled. This can be
- * useful when deciding whether to allocate memory to enable RCU-mediated
- * freeing on the one hand or just invoking synchronize_rcu() on the other.
- * The latter is preferable when the grace period is stalled.
- *
- * Note that sampling of the .gp_start and .gp_seq fields must be done
- * carefully to avoid false positives at the beginnings and ends of
- * grace periods.
- */
-bool rcu_gp_might_be_stalled(void)
-{
- unsigned long d = rcu_jiffies_till_stall_check() / RCU_STALL_MIGHT_DIV;
- unsigned long j = jiffies;
-
- if (d < RCU_STALL_MIGHT_MIN)
- d = RCU_STALL_MIGHT_MIN;
- smp_mb(); // jiffies before .gp_seq to avoid false positives.
- if (!rcu_gp_in_progress())
- return false;
- // Long delays at this point avoids false positive, but a delay
- // of ULONG_MAX/4 jiffies voids your no-false-positive warranty.
- smp_mb(); // .gp_seq before second .gp_start
- // And ditto here.
- return !time_before(j, READ_ONCE(rcu_state.gp_start) + d);
-}
-
/* Don't do RCU CPU stall warnings during long sysrq printouts. */
void rcu_sysrq_start(void)
{
@@ -365,7 +335,7 @@ static int rcu_print_task_stall(struct rcu_node *rnp, unsigned long flags)
* that don't support NMI-based stack dumps. The NMI-triggered stack
* traces are more accurate because they are printed by the target CPU.
*/
-static void rcu_dump_cpu_stacks(void)
+static void rcu_dump_cpu_stacks(unsigned long gp_seq)
{
int cpu;
unsigned long flags;
@@ -373,15 +343,23 @@ static void rcu_dump_cpu_stacks(void)
rcu_for_each_leaf_node(rnp) {
printk_deferred_enter();
- raw_spin_lock_irqsave_rcu_node(rnp, flags);
- for_each_leaf_node_possible_cpu(rnp, cpu)
+ for_each_leaf_node_possible_cpu(rnp, cpu) {
+ if (gp_seq != data_race(rcu_state.gp_seq)) {
+ printk_deferred_exit();
+ pr_err("INFO: Stall ended during stack backtracing.\n");
+ return;
+ }
+ if (!(data_race(rnp->qsmask) & leaf_node_cpu_bit(rnp, cpu)))
+ continue;
+ raw_spin_lock_irqsave_rcu_node(rnp, flags);
if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
if (cpu_is_offline(cpu))
pr_err("Offline CPU %d blocking current GP.\n", cpu);
else
dump_cpu_task(cpu);
}
- raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
+ raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
+ }
printk_deferred_exit();
}
}
@@ -638,7 +616,7 @@ static void print_other_cpu_stall(unsigned long gp_seq, unsigned long gps)
(long)rcu_seq_current(&rcu_state.gp_seq), totqlen,
data_race(rcu_state.n_online_cpus)); // Diagnostic read
if (ndetected) {
- rcu_dump_cpu_stacks();
+ rcu_dump_cpu_stacks(gp_seq);
/* Complain about tasks blocking the grace period. */
rcu_for_each_leaf_node(rnp)
@@ -670,7 +648,7 @@ static void print_other_cpu_stall(unsigned long gp_seq, unsigned long gps)
rcu_force_quiescent_state(); /* Kick them all. */
}
-static void print_cpu_stall(unsigned long gps)
+static void print_cpu_stall(unsigned long gp_seq, unsigned long gps)
{
int cpu;
unsigned long flags;
@@ -707,7 +685,7 @@ static void print_cpu_stall(unsigned long gps)
rcu_check_gp_kthread_expired_fqs_timer();
rcu_check_gp_kthread_starvation();
- rcu_dump_cpu_stacks();
+ rcu_dump_cpu_stacks(gp_seq);
raw_spin_lock_irqsave_rcu_node(rnp, flags);
/* Rewrite if needed in case of slow consoles. */
@@ -789,7 +767,8 @@ static void check_cpu_stall(struct rcu_data *rdp)
gs2 = READ_ONCE(rcu_state.gp_seq);
if (gs1 != gs2 ||
ULONG_CMP_LT(j, js) ||
- ULONG_CMP_GE(gps, js))
+ ULONG_CMP_GE(gps, js) ||
+ !rcu_seq_state(gs2))
return; /* No stall or GP completed since entering function. */
rnp = rdp->mynode;
jn = jiffies + ULONG_MAX / 2;
@@ -810,7 +789,7 @@ static void check_cpu_stall(struct rcu_data *rdp)
pr_err("INFO: %s detected stall, but suppressed full report due to a stuck CSD-lock.\n", rcu_state.name);
} else if (self_detected) {
/* We haven't checked in, so go dump stack. */
- print_cpu_stall(gps);
+ print_cpu_stall(gs2, gps);
} else {
/* They had a few time units to dump stack, so complain. */
print_other_cpu_stall(gs2, gps);
diff --git a/kernel/resource.c b/kernel/resource.c
index b730bd28b422..4101016e8b20 100644
--- a/kernel/resource.c
+++ b/kernel/resource.c
@@ -459,9 +459,7 @@ int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
rams_size += 16;
}
- rams[i].start = res.start;
- rams[i++].end = res.end;
-
+ rams[i++] = res;
start = res.end + 1;
}
diff --git a/kernel/scftorture.c b/kernel/scftorture.c
index 44e83a646264..d86d2d9c4624 100644
--- a/kernel/scftorture.c
+++ b/kernel/scftorture.c
@@ -97,6 +97,7 @@ struct scf_statistics {
static struct scf_statistics *scf_stats_p;
static struct task_struct *scf_torture_stats_task;
static DEFINE_PER_CPU(long long, scf_invoked_count);
+static DEFINE_PER_CPU(struct llist_head, scf_free_pool);
// Data for random primitive selection
#define SCF_PRIM_RESCHED 0
@@ -133,6 +134,7 @@ struct scf_check {
bool scfc_wait;
bool scfc_rpc;
struct completion scfc_completion;
+ struct llist_node scf_node;
};
// Use to wait for all threads to start.
@@ -148,6 +150,33 @@ static DEFINE_TORTURE_RANDOM_PERCPU(scf_torture_rand);
extern void resched_cpu(int cpu); // An alternative IPI vector.
+static void scf_add_to_free_list(struct scf_check *scfcp)
+{
+ struct llist_head *pool;
+ unsigned int cpu;
+
+ if (!scfcp)
+ return;
+ cpu = raw_smp_processor_id() % nthreads;
+ pool = &per_cpu(scf_free_pool, cpu);
+ llist_add(&scfcp->scf_node, pool);
+}
+
+static void scf_cleanup_free_list(unsigned int cpu)
+{
+ struct llist_head *pool;
+ struct llist_node *node;
+ struct scf_check *scfcp;
+
+ pool = &per_cpu(scf_free_pool, cpu);
+ node = llist_del_all(pool);
+ while (node) {
+ scfcp = llist_entry(node, struct scf_check, scf_node);
+ node = node->next;
+ kfree(scfcp);
+ }
+}
+
// Print torture statistics. Caller must ensure serialization.
static void scf_torture_stats_print(void)
{
@@ -296,7 +325,7 @@ out:
if (scfcp->scfc_rpc)
complete(&scfcp->scfc_completion);
} else {
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
}
}
@@ -320,10 +349,6 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
struct scf_check *scfcp = NULL;
struct scf_selector *scfsp = scf_sel_rand(trsp);
- if (use_cpus_read_lock)
- cpus_read_lock();
- else
- preempt_disable();
if (scfsp->scfs_prim == SCF_PRIM_SINGLE || scfsp->scfs_wait) {
scfcp = kmalloc(sizeof(*scfcp), GFP_ATOMIC);
if (!scfcp) {
@@ -337,6 +362,10 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
scfcp->scfc_rpc = false;
}
}
+ if (use_cpus_read_lock)
+ cpus_read_lock();
+ else
+ preempt_disable();
switch (scfsp->scfs_prim) {
case SCF_PRIM_RESCHED:
if (IS_BUILTIN(CONFIG_SCF_TORTURE_TEST)) {
@@ -363,7 +392,7 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
scfp->n_single_wait_ofl++;
else
scfp->n_single_ofl++;
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
scfcp = NULL;
}
break;
@@ -391,7 +420,7 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
preempt_disable();
} else {
scfp->n_single_rpc_ofl++;
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
scfcp = NULL;
}
break;
@@ -428,7 +457,7 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
pr_warn("%s: Memory-ordering failure, scfs_prim: %d.\n", __func__, scfsp->scfs_prim);
atomic_inc(&n_mb_out_errs); // Leak rather than trash!
} else {
- kfree(scfcp);
+ scf_add_to_free_list(scfcp);
}
barrier(); // Prevent race-reduction compiler optimizations.
}
@@ -463,7 +492,7 @@ static int scftorture_invoker(void *arg)
// Make sure that the CPU is affinitized appropriately during testing.
curcpu = raw_smp_processor_id();
- WARN_ONCE(curcpu != scfp->cpu % nr_cpu_ids,
+ WARN_ONCE(curcpu != cpu,
"%s: Wanted CPU %d, running on %d, nr_cpu_ids = %d\n",
__func__, scfp->cpu, curcpu, nr_cpu_ids);
@@ -479,6 +508,8 @@ static int scftorture_invoker(void *arg)
VERBOSE_SCFTORTOUT("scftorture_invoker %d started", scfp->cpu);
do {
+ scf_cleanup_free_list(cpu);
+
scftorture_invoke_one(scfp, &rand);
while (cpu_is_offline(cpu) && !torture_must_stop()) {
schedule_timeout_interruptible(HZ / 5);
@@ -523,12 +554,15 @@ static void scf_torture_cleanup(void)
torture_stop_kthread("scftorture_invoker", scf_stats_p[i].task);
else
goto end;
- smp_call_function(scf_cleanup_handler, NULL, 0);
+ smp_call_function(scf_cleanup_handler, NULL, 1);
torture_stop_kthread(scf_torture_stats, scf_torture_stats_task);
scf_torture_stats_print(); // -After- the stats thread is stopped!
kfree(scf_stats_p); // -After- the last stats print has completed!
scf_stats_p = NULL;
+ for (i = 0; i < nr_cpu_ids; i++)
+ scf_cleanup_free_list(i);
+
if (atomic_read(&n_errs) || atomic_read(&n_mb_in_errs) || atomic_read(&n_mb_out_errs))
scftorture_print_module_parms("End of test: FAILURE");
else if (torture_onoff_failures())
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index dbfb5717d6af..95e40895a519 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -832,7 +832,7 @@ static enum hrtimer_restart hrtick(struct hrtimer *timer)
rq_lock(rq, &rf);
update_rq_clock(rq);
- rq->curr->sched_class->task_tick(rq, rq->curr, 1);
+ rq->donor->sched_class->task_tick(rq, rq->curr, 1);
rq_unlock(rq, &rf);
return HRTIMER_NORESTART;
@@ -941,10 +941,9 @@ static inline void hrtick_rq_init(struct rq *rq)
* this avoids any races wrt polling state changes and thereby avoids
* spurious IPIs.
*/
-static inline bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
{
- struct thread_info *ti = task_thread_info(p);
- return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
+ return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG);
}
/*
@@ -969,9 +968,9 @@ static bool set_nr_if_polling(struct task_struct *p)
}
#else
-static inline bool set_nr_and_not_polling(struct task_struct *p)
+static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif)
{
- set_tsk_need_resched(p);
+ set_ti_thread_flag(ti, tif);
return true;
}
@@ -1076,28 +1075,70 @@ void wake_up_q(struct wake_q_head *head)
* might also involve a cross-CPU call to trigger the scheduler on
* the target CPU.
*/
-void resched_curr(struct rq *rq)
+static void __resched_curr(struct rq *rq, int tif)
{
struct task_struct *curr = rq->curr;
+ struct thread_info *cti = task_thread_info(curr);
int cpu;
lockdep_assert_rq_held(rq);
- if (test_tsk_need_resched(curr))
+ /*
+ * Always immediately preempt the idle task; no point in delaying doing
+ * actual work.
+ */
+ if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY)
+ tif = TIF_NEED_RESCHED;
+
+ if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED))
return;
cpu = cpu_of(rq);
if (cpu == smp_processor_id()) {
- set_tsk_need_resched(curr);
- set_preempt_need_resched();
+ set_ti_thread_flag(cti, tif);
+ if (tif == TIF_NEED_RESCHED)
+ set_preempt_need_resched();
return;
}
- if (set_nr_and_not_polling(curr))
- smp_send_reschedule(cpu);
- else
+ if (set_nr_and_not_polling(cti, tif)) {
+ if (tif == TIF_NEED_RESCHED)
+ smp_send_reschedule(cpu);
+ } else {
trace_sched_wake_idle_without_ipi(cpu);
+ }
+}
+
+void resched_curr(struct rq *rq)
+{
+ __resched_curr(rq, TIF_NEED_RESCHED);
+}
+
+#ifdef CONFIG_PREEMPT_DYNAMIC
+static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy);
+static __always_inline bool dynamic_preempt_lazy(void)
+{
+ return static_branch_unlikely(&sk_dynamic_preempt_lazy);
+}
+#else
+static __always_inline bool dynamic_preempt_lazy(void)
+{
+ return IS_ENABLED(CONFIG_PREEMPT_LAZY);
+}
+#endif
+
+static __always_inline int get_lazy_tif_bit(void)
+{
+ if (dynamic_preempt_lazy())
+ return TIF_NEED_RESCHED_LAZY;
+
+ return TIF_NEED_RESCHED;
+}
+
+void resched_curr_lazy(struct rq *rq)
+{
+ __resched_curr(rq, get_lazy_tif_bit());
}
void resched_cpu(int cpu)
@@ -1192,7 +1233,7 @@ static void wake_up_idle_cpu(int cpu)
* and testing of the above solutions didn't appear to report
* much benefits.
*/
- if (set_nr_and_not_polling(rq->idle))
+ if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED))
smp_send_reschedule(cpu);
else
trace_sched_wake_idle_without_ipi(cpu);
@@ -1399,7 +1440,7 @@ void set_load_weight(struct task_struct *p, bool update_load)
* requests are serialized using a mutex to reduce the risk of conflicting
* updates or API abuses.
*/
-static DEFINE_MUTEX(uclamp_mutex);
+static __maybe_unused DEFINE_MUTEX(uclamp_mutex);
/* Max allowed minimum utilization */
static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
@@ -2024,10 +2065,10 @@ void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
*/
uclamp_rq_inc(rq, p);
- if (!(flags & ENQUEUE_RESTORE)) {
+ psi_enqueue(p, flags);
+
+ if (!(flags & ENQUEUE_RESTORE))
sched_info_enqueue(rq, p);
- psi_enqueue(p, flags & ENQUEUE_MIGRATED);
- }
if (sched_core_enabled(rq))
sched_core_enqueue(rq, p);
@@ -2044,10 +2085,10 @@ inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags)
if (!(flags & DEQUEUE_NOCLOCK))
update_rq_clock(rq);
- if (!(flags & DEQUEUE_SAVE)) {
+ if (!(flags & DEQUEUE_SAVE))
sched_info_dequeue(rq, p);
- psi_dequeue(p, !(flags & DEQUEUE_SLEEP));
- }
+
+ psi_dequeue(p, flags);
/*
* Must be before ->dequeue_task() because ->dequeue_task() can 'fail'
@@ -2135,16 +2176,18 @@ void check_class_changed(struct rq *rq, struct task_struct *p,
void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
{
- if (p->sched_class == rq->curr->sched_class)
- rq->curr->sched_class->wakeup_preempt(rq, p, flags);
- else if (sched_class_above(p->sched_class, rq->curr->sched_class))
+ struct task_struct *donor = rq->donor;
+
+ if (p->sched_class == donor->sched_class)
+ donor->sched_class->wakeup_preempt(rq, p, flags);
+ else if (sched_class_above(p->sched_class, donor->sched_class))
resched_curr(rq);
/*
* A queue event has occurred, and we're going to schedule. In
* this case, we can save a useless back to back clock update.
*/
- if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
+ if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr))
rq_clock_skip_update(rq);
}
@@ -2620,9 +2663,7 @@ int push_cpu_stop(void *arg)
// XXX validate p is still the highest prio task
if (task_rq(p) == rq) {
- deactivate_task(rq, p, 0);
- set_task_cpu(p, lowest_rq->cpu);
- activate_task(lowest_rq, p, 0);
+ move_queued_task_locked(rq, lowest_rq, p);
resched_curr(lowest_rq);
}
@@ -2682,7 +2723,7 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
lockdep_assert_held(&p->pi_lock);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued) {
/*
@@ -2696,6 +2737,7 @@ __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
put_prev_task(rq, p);
p->sched_class->set_cpus_allowed(p, ctx);
+ mm_set_cpus_allowed(p->mm, ctx->new_mask);
if (queued)
enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
@@ -3308,9 +3350,7 @@ static void __migrate_swap_task(struct task_struct *p, int cpu)
rq_pin_lock(src_rq, &srf);
rq_pin_lock(dst_rq, &drf);
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, cpu);
- activate_task(dst_rq, p, 0);
+ move_queued_task_locked(src_rq, dst_rq, p);
wakeup_preempt(dst_rq, p, 0);
rq_unpin_lock(dst_rq, &drf);
@@ -4424,7 +4464,8 @@ int wake_up_state(struct task_struct *p, unsigned int state)
* Perform scheduler related setup for a newly forked process p.
* p is forked by current.
*
- * __sched_fork() is basic setup used by init_idle() too:
+ * __sched_fork() is basic setup which is also used by sched_init() to
+ * initialize the boot CPU's idle task.
*/
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
{
@@ -4711,7 +4752,7 @@ int sched_fork(unsigned long clone_flags, struct task_struct *p)
if (rt_prio(p->prio)) {
p->sched_class = &rt_sched_class;
#ifdef CONFIG_SCHED_CLASS_EXT
- } else if (task_should_scx(p)) {
+ } else if (task_should_scx(p->policy)) {
p->sched_class = &ext_sched_class;
#endif
} else {
@@ -5517,7 +5558,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)
* project cycles that may never be accounted to this
* thread, breaking clock_gettime().
*/
- if (task_current(rq, p) && task_on_rq_queued(p)) {
+ if (task_current_donor(rq, p) && task_on_rq_queued(p)) {
prefetch_curr_exec_start(p);
update_rq_clock(rq);
p->sched_class->update_curr(rq);
@@ -5585,7 +5626,8 @@ void sched_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
- struct task_struct *curr;
+ /* accounting goes to the donor task */
+ struct task_struct *donor;
struct rq_flags rf;
unsigned long hw_pressure;
u64 resched_latency;
@@ -5596,19 +5638,23 @@ void sched_tick(void)
sched_clock_tick();
rq_lock(rq, &rf);
+ donor = rq->donor;
- curr = rq->curr;
- psi_account_irqtime(rq, curr, NULL);
+ psi_account_irqtime(rq, donor, NULL);
update_rq_clock(rq);
hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
- curr->sched_class->task_tick(rq, curr, 0);
+
+ if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY))
+ resched_curr(rq);
+
+ donor->sched_class->task_tick(rq, donor, 0);
if (sched_feat(LATENCY_WARN))
resched_latency = cpu_resched_latency(rq);
calc_global_load_tick(rq);
sched_core_tick(rq);
- task_tick_mm_cid(rq, curr);
+ task_tick_mm_cid(rq, donor);
scx_tick(rq);
rq_unlock(rq, &rf);
@@ -5618,8 +5664,8 @@ void sched_tick(void)
perf_event_task_tick();
- if (curr->flags & PF_WQ_WORKER)
- wq_worker_tick(curr);
+ if (donor->flags & PF_WQ_WORKER)
+ wq_worker_tick(donor);
#ifdef CONFIG_SMP
if (!scx_switched_all()) {
@@ -5686,6 +5732,12 @@ static void sched_tick_remote(struct work_struct *work)
struct task_struct *curr = rq->curr;
if (cpu_online(cpu)) {
+ /*
+ * Since this is a remote tick for full dynticks mode,
+ * we are always sure that there is no proxy (only a
+ * single task is running).
+ */
+ SCHED_WARN_ON(rq->curr != rq->donor);
update_rq_clock(rq);
if (!is_idle_task(curr)) {
@@ -5920,12 +5972,15 @@ static void prev_balance(struct rq *rq, struct task_struct *prev,
#ifdef CONFIG_SCHED_CLASS_EXT
/*
- * SCX requires a balance() call before every pick_next_task() including
- * when waking up from SCHED_IDLE. If @start_class is below SCX, start
- * from SCX instead.
+ * SCX requires a balance() call before every pick_task() including when
+ * waking up from SCHED_IDLE. If @start_class is below SCX, start from
+ * SCX instead. Also, set a flag to detect missing balance() call.
*/
- if (scx_enabled() && sched_class_above(&ext_sched_class, start_class))
- start_class = &ext_sched_class;
+ if (scx_enabled()) {
+ rq->scx.flags |= SCX_RQ_BAL_PENDING;
+ if (sched_class_above(&ext_sched_class, start_class))
+ start_class = &ext_sched_class;
+ }
#endif
/*
@@ -6306,10 +6361,7 @@ static bool try_steal_cookie(int this, int that)
if (sched_task_is_throttled(p, this))
goto next;
- deactivate_task(src, p, 0);
- set_task_cpu(p, this);
- activate_task(dst, p, 0);
-
+ move_queued_task_locked(src, dst, p);
resched_curr(dst);
success = true;
@@ -6504,6 +6556,45 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
#define SM_RTLOCK_WAIT 2
/*
+ * Helper function for __schedule()
+ *
+ * If a task does not have signals pending, deactivate it
+ * Otherwise marks the task's __state as RUNNING
+ */
+static bool try_to_block_task(struct rq *rq, struct task_struct *p,
+ unsigned long task_state)
+{
+ int flags = DEQUEUE_NOCLOCK;
+
+ if (signal_pending_state(task_state, p)) {
+ WRITE_ONCE(p->__state, TASK_RUNNING);
+ return false;
+ }
+
+ p->sched_contributes_to_load =
+ (task_state & TASK_UNINTERRUPTIBLE) &&
+ !(task_state & TASK_NOLOAD) &&
+ !(task_state & TASK_FROZEN);
+
+ if (unlikely(is_special_task_state(task_state)))
+ flags |= DEQUEUE_SPECIAL;
+
+ /*
+ * __schedule() ttwu()
+ * prev_state = prev->state; if (p->on_rq && ...)
+ * if (prev_state) goto out;
+ * p->on_rq = 0; smp_acquire__after_ctrl_dep();
+ * p->state = TASK_WAKING
+ *
+ * Where __schedule() and ttwu() have matching control dependencies.
+ *
+ * After this, schedule() must not care about p->state any more.
+ */
+ block_task(rq, p, flags);
+ return true;
+}
+
+/*
* __schedule() is the main scheduler function.
*
* The main means of driving the scheduler and thus entering this function are:
@@ -6611,37 +6702,12 @@ static void __sched notrace __schedule(int sched_mode)
goto picked;
}
} else if (!preempt && prev_state) {
- if (signal_pending_state(prev_state, prev)) {
- WRITE_ONCE(prev->__state, TASK_RUNNING);
- } else {
- int flags = DEQUEUE_NOCLOCK;
-
- prev->sched_contributes_to_load =
- (prev_state & TASK_UNINTERRUPTIBLE) &&
- !(prev_state & TASK_NOLOAD) &&
- !(prev_state & TASK_FROZEN);
-
- if (unlikely(is_special_task_state(prev_state)))
- flags |= DEQUEUE_SPECIAL;
-
- /*
- * __schedule() ttwu()
- * prev_state = prev->state; if (p->on_rq && ...)
- * if (prev_state) goto out;
- * p->on_rq = 0; smp_acquire__after_ctrl_dep();
- * p->state = TASK_WAKING
- *
- * Where __schedule() and ttwu() have matching control dependencies.
- *
- * After this, schedule() must not care about p->state any more.
- */
- block_task(rq, prev, flags);
- block = true;
- }
+ block = try_to_block_task(rq, prev, prev_state);
switch_count = &prev->nvcsw;
}
next = pick_next_task(rq, prev, &rf);
+ rq_set_donor(rq, next);
picked:
clear_tsk_need_resched(prev);
clear_preempt_need_resched();
@@ -7025,7 +7091,7 @@ int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flag
}
EXPORT_SYMBOL(default_wake_function);
-const struct sched_class *__setscheduler_class(struct task_struct *p, int prio)
+const struct sched_class *__setscheduler_class(int policy, int prio)
{
if (dl_prio(prio))
return &dl_sched_class;
@@ -7034,7 +7100,7 @@ const struct sched_class *__setscheduler_class(struct task_struct *p, int prio)
return &rt_sched_class;
#ifdef CONFIG_SCHED_CLASS_EXT
- if (task_should_scx(p))
+ if (task_should_scx(policy))
return &ext_sched_class;
#endif
@@ -7142,13 +7208,13 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
queue_flag &= ~DEQUEUE_MOVE;
prev_class = p->sched_class;
- next_class = __setscheduler_class(p, prio);
+ next_class = __setscheduler_class(p->policy, prio);
if (prev_class != next_class && p->se.sched_delayed)
dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, queue_flag);
if (running)
@@ -7348,6 +7414,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
+ * dynamic_preempt_lazy <- false
*
* VOLUNTARY:
* cond_resched <- __cond_resched
@@ -7355,6 +7422,7 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- NOP
* preempt_schedule_notrace <- NOP
* irqentry_exit_cond_resched <- NOP
+ * dynamic_preempt_lazy <- false
*
* FULL:
* cond_resched <- RET0
@@ -7362,6 +7430,15 @@ EXPORT_SYMBOL(__cond_resched_rwlock_write);
* preempt_schedule <- preempt_schedule
* preempt_schedule_notrace <- preempt_schedule_notrace
* irqentry_exit_cond_resched <- irqentry_exit_cond_resched
+ * dynamic_preempt_lazy <- false
+ *
+ * LAZY:
+ * cond_resched <- RET0
+ * might_resched <- RET0
+ * preempt_schedule <- preempt_schedule
+ * preempt_schedule_notrace <- preempt_schedule_notrace
+ * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
+ * dynamic_preempt_lazy <- true
*/
enum {
@@ -7369,30 +7446,41 @@ enum {
preempt_dynamic_none,
preempt_dynamic_voluntary,
preempt_dynamic_full,
+ preempt_dynamic_lazy,
};
int preempt_dynamic_mode = preempt_dynamic_undefined;
int sched_dynamic_mode(const char *str)
{
+#ifndef CONFIG_PREEMPT_RT
if (!strcmp(str, "none"))
return preempt_dynamic_none;
if (!strcmp(str, "voluntary"))
return preempt_dynamic_voluntary;
+#endif
if (!strcmp(str, "full"))
return preempt_dynamic_full;
+#ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY
+ if (!strcmp(str, "lazy"))
+ return preempt_dynamic_lazy;
+#endif
+
return -EINVAL;
}
+#define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key)
+#define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key)
+
#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
-#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
-#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
+#define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f)
+#define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f)
#else
#error "Unsupported PREEMPT_DYNAMIC mechanism"
#endif
@@ -7412,6 +7500,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
switch (mode) {
case preempt_dynamic_none:
@@ -7421,6 +7510,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: none\n");
break;
@@ -7432,6 +7522,7 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_disable(preempt_schedule);
preempt_dynamic_disable(preempt_schedule_notrace);
preempt_dynamic_disable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: voluntary\n");
break;
@@ -7443,9 +7534,22 @@ static void __sched_dynamic_update(int mode)
preempt_dynamic_enable(preempt_schedule);
preempt_dynamic_enable(preempt_schedule_notrace);
preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_disable(preempt_lazy);
if (mode != preempt_dynamic_mode)
pr_info("Dynamic Preempt: full\n");
break;
+
+ case preempt_dynamic_lazy:
+ if (!klp_override)
+ preempt_dynamic_disable(cond_resched);
+ preempt_dynamic_disable(might_resched);
+ preempt_dynamic_enable(preempt_schedule);
+ preempt_dynamic_enable(preempt_schedule_notrace);
+ preempt_dynamic_enable(irqentry_exit_cond_resched);
+ preempt_dynamic_key_enable(preempt_lazy);
+ if (mode != preempt_dynamic_mode)
+ pr_info("Dynamic Preempt: lazy\n");
+ break;
}
preempt_dynamic_mode = mode;
@@ -7508,6 +7612,8 @@ static void __init preempt_dynamic_init(void)
sched_dynamic_update(preempt_dynamic_none);
} else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
sched_dynamic_update(preempt_dynamic_voluntary);
+ } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) {
+ sched_dynamic_update(preempt_dynamic_lazy);
} else {
/* Default static call setting, nothing to do */
WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
@@ -7528,6 +7634,7 @@ static void __init preempt_dynamic_init(void)
PREEMPT_MODEL_ACCESSOR(none);
PREEMPT_MODEL_ACCESSOR(voluntary);
PREEMPT_MODEL_ACCESSOR(full);
+PREEMPT_MODEL_ACCESSOR(lazy);
#else /* !CONFIG_PREEMPT_DYNAMIC: */
@@ -7680,8 +7787,6 @@ void __init init_idle(struct task_struct *idle, int cpu)
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
- __sched_fork(0, idle);
-
raw_spin_lock_irqsave(&idle->pi_lock, flags);
raw_spin_rq_lock(rq);
@@ -7696,10 +7801,8 @@ void __init init_idle(struct task_struct *idle, int cpu)
#ifdef CONFIG_SMP
/*
- * It's possible that init_idle() gets called multiple times on a task,
- * in that case do_set_cpus_allowed() will not do the right thing.
- *
- * And since this is boot we can forgo the serialization.
+ * No validation and serialization required at boot time and for
+ * setting up the idle tasks of not yet online CPUs.
*/
set_cpus_allowed_common(idle, &ac);
#endif
@@ -7718,6 +7821,7 @@ void __init init_idle(struct task_struct *idle, int cpu)
rcu_read_unlock();
rq->idle = idle;
+ rq_set_donor(rq, idle);
rcu_assign_pointer(rq->curr, idle);
idle->on_rq = TASK_ON_RQ_QUEUED;
#ifdef CONFIG_SMP
@@ -7807,7 +7911,7 @@ void sched_setnuma(struct task_struct *p, int nid)
rq = task_rq_lock(p, &rf);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE);
@@ -8543,6 +8647,7 @@ void __init sched_init(void)
* but because we are the idle thread, we just pick up running again
* when this runqueue becomes "idle".
*/
+ __sched_fork(0, current);
init_idle(current, smp_processor_id());
calc_load_update = jiffies + LOAD_FREQ;
@@ -8957,7 +9062,7 @@ void sched_move_task(struct task_struct *tsk)
update_rq_clock(rq);
- running = task_current(rq, tsk);
+ running = task_current_donor(rq, tsk);
queued = task_on_rq_queued(tsk);
if (queued)
@@ -10250,6 +10355,7 @@ int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
*/
if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
return -1;
+ WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET);
return src_cid;
}
@@ -10262,7 +10368,8 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
{
struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
struct mm_struct *mm = t->mm;
- int src_cid, dst_cid, src_cpu;
+ int src_cid, src_cpu;
+ bool dst_cid_is_set;
struct rq *src_rq;
lockdep_assert_rq_held(dst_rq);
@@ -10279,9 +10386,9 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
* allocation closest to 0 in cases where few threads migrate around
* many CPUs.
*
- * If destination cid is already set, we may have to just clear
- * the src cid to ensure compactness in frequent migrations
- * scenarios.
+ * If destination cid or recent cid is already set, we may have
+ * to just clear the src cid to ensure compactness in frequent
+ * migrations scenarios.
*
* It is not useful to clear the src cid when the number of threads is
* greater or equal to the number of allowed CPUs, because user-space
@@ -10289,9 +10396,9 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
* allowed CPUs.
*/
dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
- dst_cid = READ_ONCE(dst_pcpu_cid->cid);
- if (!mm_cid_is_unset(dst_cid) &&
- atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
+ dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) ||
+ !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid));
+ if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed))
return;
src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
src_rq = cpu_rq(src_cpu);
@@ -10302,13 +10409,14 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
src_cid);
if (src_cid == -1)
return;
- if (!mm_cid_is_unset(dst_cid)) {
+ if (dst_cid_is_set) {
__mm_cid_put(mm, src_cid);
return;
}
/* Move src_cid to dst cpu. */
mm_cid_snapshot_time(dst_rq, mm);
WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
+ WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid);
}
static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
@@ -10547,7 +10655,7 @@ void sched_mm_cid_after_execve(struct task_struct *t)
* Matches barrier in sched_mm_cid_remote_clear_old().
*/
smp_mb();
- t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
+ t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm);
}
rseq_set_notify_resume(t);
}
diff --git a/kernel/sched/cpufreq_schedutil.c b/kernel/sched/cpufreq_schedutil.c
index c6ba15388ea7..28c77904ea74 100644
--- a/kernel/sched/cpufreq_schedutil.c
+++ b/kernel/sched/cpufreq_schedutil.c
@@ -783,9 +783,8 @@ static int sugov_init(struct cpufreq_policy *policy)
if (ret)
goto fail;
- sugov_eas_rebuild_sd();
-
out:
+ sugov_eas_rebuild_sd();
mutex_unlock(&global_tunables_lock);
return 0;
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index be1b917dc8ce..d9d5a702f1a6 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -1339,7 +1339,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
#endif
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
- if (dl_task(rq->curr))
+ if (dl_task(rq->donor))
wakeup_preempt_dl(rq, p, 0);
else
resched_curr(rq);
@@ -1736,11 +1736,11 @@ int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 perio
*/
static void update_curr_dl(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
- struct sched_dl_entity *dl_se = &curr->dl;
+ struct task_struct *donor = rq->donor;
+ struct sched_dl_entity *dl_se = &donor->dl;
s64 delta_exec;
- if (!dl_task(curr) || !on_dl_rq(dl_se))
+ if (!dl_task(donor) || !on_dl_rq(dl_se))
return;
/*
@@ -2213,7 +2213,7 @@ static int find_later_rq(struct task_struct *task);
static int
select_task_rq_dl(struct task_struct *p, int cpu, int flags)
{
- struct task_struct *curr;
+ struct task_struct *curr, *donor;
bool select_rq;
struct rq *rq;
@@ -2224,6 +2224,7 @@ select_task_rq_dl(struct task_struct *p, int cpu, int flags)
rcu_read_lock();
curr = READ_ONCE(rq->curr); /* unlocked access */
+ donor = READ_ONCE(rq->donor);
/*
* If we are dealing with a -deadline task, we must
@@ -2234,9 +2235,9 @@ select_task_rq_dl(struct task_struct *p, int cpu, int flags)
* other hand, if it has a shorter deadline, we
* try to make it stay here, it might be important.
*/
- select_rq = unlikely(dl_task(curr)) &&
+ select_rq = unlikely(dl_task(donor)) &&
(curr->nr_cpus_allowed < 2 ||
- !dl_entity_preempt(&p->dl, &curr->dl)) &&
+ !dl_entity_preempt(&p->dl, &donor->dl)) &&
p->nr_cpus_allowed > 1;
/*
@@ -2299,7 +2300,7 @@ static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
* let's hope p can move out.
*/
if (rq->curr->nr_cpus_allowed == 1 ||
- !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
+ !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
return;
/*
@@ -2338,7 +2339,7 @@ static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
int flags)
{
- if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
+ if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
resched_curr(rq);
return;
}
@@ -2348,7 +2349,7 @@ static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
* In the unlikely case current and p have the same deadline
* let us try to decide what's the best thing to do...
*/
- if ((p->dl.deadline == rq->curr->dl.deadline) &&
+ if ((p->dl.deadline == rq->donor->dl.deadline) &&
!test_tsk_need_resched(rq->curr))
check_preempt_equal_dl(rq, p);
#endif /* CONFIG_SMP */
@@ -2380,7 +2381,7 @@ static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
if (!first)
return;
- if (rq->curr->sched_class != &dl_sched_class)
+ if (rq->donor->sched_class != &dl_sched_class)
update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
deadline_queue_push_tasks(rq);
@@ -2487,14 +2488,6 @@ static void task_fork_dl(struct task_struct *p)
/* Only try algorithms three times */
#define DL_MAX_TRIES 3
-static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
-{
- if (!task_on_cpu(rq, p) &&
- cpumask_test_cpu(cpu, &p->cpus_mask))
- return 1;
- return 0;
-}
-
/*
* Return the earliest pushable rq's task, which is suitable to be executed
* on the CPU, NULL otherwise:
@@ -2513,7 +2506,7 @@ next_node:
if (next_node) {
p = __node_2_pdl(next_node);
- if (pick_dl_task(rq, p, cpu))
+ if (task_is_pushable(rq, p, cpu))
return p;
next_node = rb_next(next_node);
@@ -2707,8 +2700,8 @@ retry:
* can move away, it makes sense to just reschedule
* without going further in pushing next_task.
*/
- if (dl_task(rq->curr) &&
- dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
+ if (dl_task(rq->donor) &&
+ dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
rq->curr->nr_cpus_allowed > 1) {
resched_curr(rq);
return 0;
@@ -2751,9 +2744,7 @@ retry:
goto retry;
}
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, later_rq->cpu);
- activate_task(later_rq, next_task, 0);
+ move_queued_task_locked(rq, later_rq, next_task);
ret = 1;
resched_curr(later_rq);
@@ -2833,15 +2824,13 @@ static void pull_dl_task(struct rq *this_rq)
* deadline than the current task of its runqueue.
*/
if (dl_time_before(p->dl.deadline,
- src_rq->curr->dl.deadline))
+ src_rq->donor->dl.deadline))
goto skip;
if (is_migration_disabled(p)) {
push_task = get_push_task(src_rq);
} else {
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
+ move_queued_task_locked(src_rq, this_rq, p);
dmin = p->dl.deadline;
resched = true;
}
@@ -2874,9 +2863,9 @@ static void task_woken_dl(struct rq *rq, struct task_struct *p)
if (!task_on_cpu(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
p->nr_cpus_allowed > 1 &&
- dl_task(rq->curr) &&
+ dl_task(rq->donor) &&
(rq->curr->nr_cpus_allowed < 2 ||
- !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
+ !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
push_dl_tasks(rq);
}
}
@@ -3051,12 +3040,12 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
return;
}
- if (rq->curr != p) {
+ if (rq->donor != p) {
#ifdef CONFIG_SMP
if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
deadline_queue_push_tasks(rq);
#endif
- if (dl_task(rq->curr))
+ if (dl_task(rq->donor))
wakeup_preempt_dl(rq, p, 0);
else
resched_curr(rq);
@@ -3085,7 +3074,7 @@ static void prio_changed_dl(struct rq *rq, struct task_struct *p,
if (!rq->dl.overloaded)
deadline_queue_pull_task(rq);
- if (task_current(rq, p)) {
+ if (task_current_donor(rq, p)) {
/*
* If we now have a earlier deadline task than p,
* then reschedule, provided p is still on this
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index f4035c7a0fa1..a48b2a701ec2 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -245,11 +245,12 @@ static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
static int sched_dynamic_show(struct seq_file *m, void *v)
{
static const char * preempt_modes[] = {
- "none", "voluntary", "full"
+ "none", "voluntary", "full", "lazy",
};
- int i;
+ int j = ARRAY_SIZE(preempt_modes) - !IS_ENABLED(CONFIG_ARCH_HAS_PREEMPT_LAZY);
+ int i = IS_ENABLED(CONFIG_PREEMPT_RT) * 2;
- for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
+ for (; i < j; i++) {
if (preempt_dynamic_mode == i)
seq_puts(m, "(");
seq_puts(m, preempt_modes[i]);
diff --git a/kernel/sched/ext.c b/kernel/sched/ext.c
index 5900b06fd036..ecb88c528544 100644
--- a/kernel/sched/ext.c
+++ b/kernel/sched/ext.c
@@ -862,7 +862,8 @@ static DEFINE_MUTEX(scx_ops_enable_mutex);
DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled);
DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED);
-static atomic_t scx_ops_bypass_depth = ATOMIC_INIT(0);
+static int scx_ops_bypass_depth;
+static DEFINE_RAW_SPINLOCK(__scx_ops_bypass_lock);
static bool scx_ops_init_task_enabled;
static bool scx_switching_all;
DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
@@ -2633,7 +2634,7 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
lockdep_assert_rq_held(rq);
rq->scx.flags |= SCX_RQ_IN_BALANCE;
- rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
+ rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP);
if (static_branch_unlikely(&scx_ops_cpu_preempt) &&
unlikely(rq->scx.cpu_released)) {
@@ -2644,7 +2645,7 @@ static int balance_one(struct rq *rq, struct task_struct *prev)
* emitted in scx_next_task_picked().
*/
if (SCX_HAS_OP(cpu_acquire))
- SCX_CALL_OP(0, cpu_acquire, cpu_of(rq), NULL);
+ SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL);
rq->scx.cpu_released = false;
}
@@ -2947,12 +2948,11 @@ static struct task_struct *pick_task_scx(struct rq *rq)
{
struct task_struct *prev = rq->curr;
struct task_struct *p;
+ bool prev_on_scx = prev->sched_class == &ext_sched_class;
+ bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
+ bool kick_idle = false;
/*
- * If balance_scx() is telling us to keep running @prev, replenish slice
- * if necessary and keep running @prev. Otherwise, pop the first one
- * from the local DSQ.
- *
* WORKAROUND:
*
* %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just
@@ -2961,22 +2961,41 @@ static struct task_struct *pick_task_scx(struct rq *rq)
* which then ends up calling pick_task_scx() without preceding
* balance_scx().
*
- * For now, ignore cases where $prev is not on SCX. This isn't great and
- * can theoretically lead to stalls. However, for switch_all cases, this
- * happens only while a BPF scheduler is being loaded or unloaded, and,
- * for partial cases, fair will likely keep triggering this CPU.
+ * Keep running @prev if possible and avoid stalling from entering idle
+ * without balancing.
*
- * Once fair is fixed, restore WARN_ON_ONCE().
+ * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE()
+ * if pick_task_scx() is called without preceding balance_scx().
+ */
+ if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) {
+ if (prev_on_scx) {
+ keep_prev = true;
+ } else {
+ keep_prev = false;
+ kick_idle = true;
+ }
+ } else if (unlikely(keep_prev && !prev_on_scx)) {
+ /* only allowed during transitions */
+ WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED);
+ keep_prev = false;
+ }
+
+ /*
+ * If balance_scx() is telling us to keep running @prev, replenish slice
+ * if necessary and keep running @prev. Otherwise, pop the first one
+ * from the local DSQ.
*/
- if ((rq->scx.flags & SCX_RQ_BAL_KEEP) &&
- prev->sched_class == &ext_sched_class) {
+ if (keep_prev) {
p = prev;
if (!p->scx.slice)
p->scx.slice = SCX_SLICE_DFL;
} else {
p = first_local_task(rq);
- if (!p)
+ if (!p) {
+ if (kick_idle)
+ scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE);
return NULL;
+ }
if (unlikely(!p->scx.slice)) {
if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) {
@@ -3548,12 +3567,7 @@ static void scx_ops_exit_task(struct task_struct *p)
void init_scx_entity(struct sched_ext_entity *scx)
{
- /*
- * init_idle() calls this function again after fork sequence is
- * complete. Don't touch ->tasks_node as it's already linked.
- */
- memset(scx, 0, offsetof(struct sched_ext_entity, tasks_node));
-
+ memset(scx, 0, sizeof(*scx));
INIT_LIST_HEAD(&scx->dsq_list.node);
RB_CLEAR_NODE(&scx->dsq_priq);
scx->sticky_cpu = -1;
@@ -4256,14 +4270,14 @@ static const struct kset_uevent_ops scx_uevent_ops = {
* Used by sched_fork() and __setscheduler_prio() to pick the matching
* sched_class. dl/rt are already handled.
*/
-bool task_should_scx(struct task_struct *p)
+bool task_should_scx(int policy)
{
if (!scx_enabled() ||
unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING))
return false;
if (READ_ONCE(scx_switching_all))
return true;
- return p->policy == SCHED_EXT;
+ return policy == SCHED_EXT;
}
/**
@@ -4298,18 +4312,20 @@ bool task_should_scx(struct task_struct *p)
*/
static void scx_ops_bypass(bool bypass)
{
- int depth, cpu;
+ int cpu;
+ unsigned long flags;
+ raw_spin_lock_irqsave(&__scx_ops_bypass_lock, flags);
if (bypass) {
- depth = atomic_inc_return(&scx_ops_bypass_depth);
- WARN_ON_ONCE(depth <= 0);
- if (depth != 1)
- return;
+ scx_ops_bypass_depth++;
+ WARN_ON_ONCE(scx_ops_bypass_depth <= 0);
+ if (scx_ops_bypass_depth != 1)
+ goto unlock;
} else {
- depth = atomic_dec_return(&scx_ops_bypass_depth);
- WARN_ON_ONCE(depth < 0);
- if (depth != 0)
- return;
+ scx_ops_bypass_depth--;
+ WARN_ON_ONCE(scx_ops_bypass_depth < 0);
+ if (scx_ops_bypass_depth != 0)
+ goto unlock;
}
/*
@@ -4326,7 +4342,7 @@ static void scx_ops_bypass(bool bypass)
struct rq_flags rf;
struct task_struct *p, *n;
- rq_lock_irqsave(rq, &rf);
+ rq_lock(rq, &rf);
if (bypass) {
WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
@@ -4362,11 +4378,13 @@ static void scx_ops_bypass(bool bypass)
sched_enq_and_set_task(&ctx);
}
- rq_unlock_irqrestore(rq, &rf);
+ rq_unlock(rq, &rf);
/* resched to restore ticks and idle state */
resched_cpu(cpu);
}
+unlock:
+ raw_spin_unlock_irqrestore(&__scx_ops_bypass_lock, flags);
}
static void free_exit_info(struct scx_exit_info *ei)
@@ -4489,11 +4507,16 @@ static void scx_ops_disable_workfn(struct kthread_work *work)
scx_task_iter_start(&sti);
while ((p = scx_task_iter_next_locked(&sti))) {
const struct sched_class *old_class = p->sched_class;
+ const struct sched_class *new_class =
+ __setscheduler_class(p->policy, p->prio);
struct sched_enq_and_set_ctx ctx;
+ if (old_class != new_class && p->se.sched_delayed)
+ dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
- p->sched_class = __setscheduler_class(p, p->prio);
+ p->sched_class = new_class;
check_class_changing(task_rq(p), p, old_class);
sched_enq_and_set_task(&ctx);
@@ -4969,7 +4992,7 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
cpu_possible_mask)) {
- pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation");
+ pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
return -EINVAL;
}
@@ -5199,12 +5222,17 @@ static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link)
scx_task_iter_start(&sti);
while ((p = scx_task_iter_next_locked(&sti))) {
const struct sched_class *old_class = p->sched_class;
+ const struct sched_class *new_class =
+ __setscheduler_class(p->policy, p->prio);
struct sched_enq_and_set_ctx ctx;
+ if (old_class != new_class && p->se.sched_delayed)
+ dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+
sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx);
p->scx.slice = SCX_SLICE_DFL;
- p->sched_class = __setscheduler_class(p, p->prio);
+ p->sched_class = new_class;
check_class_changing(task_rq(p), p, old_class);
sched_enq_and_set_task(&ctx);
diff --git a/kernel/sched/ext.h b/kernel/sched/ext.h
index 246019519231..b1675bb59fc4 100644
--- a/kernel/sched/ext.h
+++ b/kernel/sched/ext.h
@@ -18,7 +18,7 @@ bool scx_can_stop_tick(struct rq *rq);
void scx_rq_activate(struct rq *rq);
void scx_rq_deactivate(struct rq *rq);
int scx_check_setscheduler(struct task_struct *p, int policy);
-bool task_should_scx(struct task_struct *p);
+bool task_should_scx(int policy);
void init_sched_ext_class(void);
static inline u32 scx_cpuperf_target(s32 cpu)
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c157d4860a3b..fbdca89c677f 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -1200,12 +1200,12 @@ static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
*/
s64 update_curr_common(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
+ struct task_struct *donor = rq->donor;
s64 delta_exec;
- delta_exec = update_curr_se(rq, &curr->se);
+ delta_exec = update_curr_se(rq, &donor->se);
if (likely(delta_exec > 0))
- update_curr_task(curr, delta_exec);
+ update_curr_task(donor, delta_exec);
return delta_exec;
}
@@ -1251,14 +1251,14 @@ static void update_curr(struct cfs_rq *cfs_rq)
return;
if (resched || did_preempt_short(cfs_rq, curr)) {
- resched_curr(rq);
+ resched_curr_lazy(rq);
clear_buddies(cfs_rq, curr);
}
}
static void update_curr_fair(struct rq *rq)
{
- update_curr(cfs_rq_of(&rq->curr->se));
+ update_curr(cfs_rq_of(&rq->donor->se));
}
static inline void
@@ -3369,7 +3369,7 @@ retry_pids:
vma = vma_next(&vmi);
}
- do {
+ for (; vma; vma = vma_next(&vmi)) {
if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
@@ -3491,7 +3491,7 @@ retry_pids:
*/
if (vma_pids_forced)
break;
- } for_each_vma(vmi, vma);
+ }
/*
* If no VMAs are remaining and VMAs were skipped due to the PID
@@ -5280,7 +5280,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
*
* EEVDF: placement strategy #1 / #2
*/
- if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
+ if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
struct sched_entity *curr = cfs_rq->curr;
unsigned long load;
@@ -5625,8 +5625,9 @@ pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
struct sched_entity *se = pick_eevdf(cfs_rq);
if (se->sched_delayed) {
dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
- SCHED_WARN_ON(se->sched_delayed);
- SCHED_WARN_ON(se->on_rq);
+ /*
+ * Must not reference @se again, see __block_task().
+ */
return NULL;
}
return se;
@@ -5677,15 +5678,9 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
* validating it and just reschedule.
*/
if (queued) {
- resched_curr(rq_of(cfs_rq));
+ resched_curr_lazy(rq_of(cfs_rq));
return;
}
- /*
- * don't let the period tick interfere with the hrtick preemption
- */
- if (!sched_feat(DOUBLE_TICK) &&
- hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
- return;
#endif
}
@@ -6821,7 +6816,7 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
s64 delta = slice - ran;
if (delta < 0) {
- if (task_current(rq, p))
+ if (task_current_donor(rq, p))
resched_curr(rq);
return;
}
@@ -6836,12 +6831,12 @@ static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
*/
static void hrtick_update(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
+ struct task_struct *donor = rq->donor;
- if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
+ if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
return;
- hrtick_start_fair(rq, curr);
+ hrtick_start_fair(rq, donor);
}
#else /* !CONFIG_SCHED_HRTICK */
static inline void
@@ -7176,7 +7171,11 @@ static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
/* Fix-up what dequeue_task_fair() skipped */
hrtick_update(rq);
- /* Fix-up what block_task() skipped. */
+ /*
+ * Fix-up what block_task() skipped.
+ *
+ * Must be last, @p might not be valid after this.
+ */
__block_task(rq, p);
}
@@ -7193,12 +7192,14 @@ static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
util_est_dequeue(&rq->cfs, p);
- if (dequeue_entities(rq, &p->se, flags) < 0) {
- util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
+ util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
+ if (dequeue_entities(rq, &p->se, flags) < 0)
return false;
- }
- util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
+ /*
+ * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
+ */
+
hrtick_update(rq);
return true;
}
@@ -8756,9 +8757,9 @@ static void set_next_buddy(struct sched_entity *se)
*/
static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
{
- struct task_struct *curr = rq->curr;
- struct sched_entity *se = &curr->se, *pse = &p->se;
- struct cfs_rq *cfs_rq = task_cfs_rq(curr);
+ struct task_struct *donor = rq->donor;
+ struct sched_entity *se = &donor->se, *pse = &p->se;
+ struct cfs_rq *cfs_rq = task_cfs_rq(donor);
int cse_is_idle, pse_is_idle;
if (unlikely(se == pse))
@@ -8787,7 +8788,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
* prevents us from potentially nominating it as a false LAST_BUDDY
* below.
*/
- if (test_tsk_need_resched(curr))
+ if (test_tsk_need_resched(rq->curr))
return;
if (!sched_feat(WAKEUP_PREEMPTION))
@@ -8835,7 +8836,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
return;
preempt:
- resched_curr(rq);
+ resched_curr_lazy(rq);
}
static struct task_struct *pick_task_fair(struct rq *rq)
@@ -13086,7 +13087,7 @@ prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
* our priority decreased, or if we are not currently running on
* this runqueue and our priority is higher than the current's
*/
- if (task_current(rq, p)) {
+ if (task_current_donor(rq, p)) {
if (p->prio > oldprio)
resched_curr(rq);
} else
@@ -13193,7 +13194,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p)
* kick off the schedule if running, otherwise just see
* if we can still preempt the current task.
*/
- if (task_current(rq, p))
+ if (task_current_donor(rq, p))
resched_curr(rq);
else
wakeup_preempt(rq, p, 0);
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 290874079f60..a3d331dd2d8f 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -19,7 +19,7 @@ SCHED_FEAT(PLACE_REL_DEADLINE, true)
*/
SCHED_FEAT(RUN_TO_PARITY, true)
/*
- * Allow wakeup of tasks with a shorter slice to cancel RESPECT_SLICE for
+ * Allow wakeup of tasks with a shorter slice to cancel RUN_TO_PARITY for
* current.
*/
SCHED_FEAT(PREEMPT_SHORT, true)
@@ -56,7 +56,6 @@ SCHED_FEAT(WAKEUP_PREEMPTION, true)
SCHED_FEAT(HRTICK, false)
SCHED_FEAT(HRTICK_DL, false)
-SCHED_FEAT(DOUBLE_TICK, false)
/*
* Decrement CPU capacity based on time not spent running tasks
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index d2f096bb274c..621696269584 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -271,7 +271,6 @@ static void do_idle(void)
tick_nohz_idle_enter();
while (!need_resched()) {
- rmb();
/*
* Interrupts shouldn't be re-enabled from that point on until
@@ -399,8 +398,8 @@ void play_idle_precise(u64 duration_ns, u64 latency_ns)
cpuidle_use_deepest_state(latency_ns);
it.done = 0;
- hrtimer_init_on_stack(&it.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
- it.timer.function = idle_inject_timer_fn;
+ hrtimer_setup_on_stack(&it.timer, idle_inject_timer_fn, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL_HARD);
hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
HRTIMER_MODE_REL_PINNED_HARD);
diff --git a/kernel/sched/pelt.c b/kernel/sched/pelt.c
index a9c65d97b3ca..fc07382361a8 100644
--- a/kernel/sched/pelt.c
+++ b/kernel/sched/pelt.c
@@ -476,7 +476,7 @@ int update_irq_load_avg(struct rq *rq, u64 running)
bool update_other_load_avgs(struct rq *rq)
{
u64 now = rq_clock_pelt(rq);
- const struct sched_class *curr_class = rq->curr->sched_class;
+ const struct sched_class *curr_class = rq->donor->sched_class;
unsigned long hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
lockdep_assert_rq_held(rq);
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 172c588de542..bd66a46b06ac 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -528,7 +528,7 @@ static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
{
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
+ struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
struct rq *rq = rq_of_rt_rq(rt_rq);
struct sched_rt_entity *rt_se;
@@ -542,7 +542,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
else if (!on_rt_rq(rt_se))
enqueue_rt_entity(rt_se, 0);
- if (rt_rq->highest_prio.curr < curr->prio)
+ if (rt_rq->highest_prio.curr < donor->prio)
resched_curr(rq);
}
}
@@ -988,10 +988,10 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se)
*/
static void update_curr_rt(struct rq *rq)
{
- struct task_struct *curr = rq->curr;
+ struct task_struct *donor = rq->donor;
s64 delta_exec;
- if (curr->sched_class != &rt_sched_class)
+ if (donor->sched_class != &rt_sched_class)
return;
delta_exec = update_curr_common(rq);
@@ -999,7 +999,7 @@ static void update_curr_rt(struct rq *rq)
return;
#ifdef CONFIG_RT_GROUP_SCHED
- struct sched_rt_entity *rt_se = &curr->rt;
+ struct sched_rt_entity *rt_se = &donor->rt;
if (!rt_bandwidth_enabled())
return;
@@ -1535,7 +1535,7 @@ static int find_lowest_rq(struct task_struct *task);
static int
select_task_rq_rt(struct task_struct *p, int cpu, int flags)
{
- struct task_struct *curr;
+ struct task_struct *curr, *donor;
struct rq *rq;
bool test;
@@ -1547,6 +1547,7 @@ select_task_rq_rt(struct task_struct *p, int cpu, int flags)
rcu_read_lock();
curr = READ_ONCE(rq->curr); /* unlocked access */
+ donor = READ_ONCE(rq->donor);
/*
* If the current task on @p's runqueue is an RT task, then
@@ -1575,8 +1576,8 @@ select_task_rq_rt(struct task_struct *p, int cpu, int flags)
* systems like big.LITTLE.
*/
test = curr &&
- unlikely(rt_task(curr)) &&
- (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
+ unlikely(rt_task(donor)) &&
+ (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
if (test || !rt_task_fits_capacity(p, cpu)) {
int target = find_lowest_rq(p);
@@ -1606,12 +1607,8 @@ out:
static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
- /*
- * Current can't be migrated, useless to reschedule,
- * let's hope p can move out.
- */
if (rq->curr->nr_cpus_allowed == 1 ||
- !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
+ !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
return;
/*
@@ -1654,7 +1651,9 @@ static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
*/
static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
{
- if (p->prio < rq->curr->prio) {
+ struct task_struct *donor = rq->donor;
+
+ if (p->prio < donor->prio) {
resched_curr(rq);
return;
}
@@ -1672,7 +1671,7 @@ static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
* to move current somewhere else, making room for our non-migratable
* task.
*/
- if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
+ if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
check_preempt_equal_prio(rq, p);
#endif
}
@@ -1697,7 +1696,7 @@ static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool f
* utilization. We only care of the case where we start to schedule a
* rt task
*/
- if (rq->curr->sched_class != &rt_sched_class)
+ if (rq->donor->sched_class != &rt_sched_class)
update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
rt_queue_push_tasks(rq);
@@ -1773,15 +1772,6 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_s
/* Only try algorithms three times */
#define RT_MAX_TRIES 3
-static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
-{
- if (!task_on_cpu(rq, p) &&
- cpumask_test_cpu(cpu, &p->cpus_mask))
- return 1;
-
- return 0;
-}
-
/*
* Return the highest pushable rq's task, which is suitable to be executed
* on the CPU, NULL otherwise
@@ -1795,7 +1785,7 @@ static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
return NULL;
plist_for_each_entry(p, head, pushable_tasks) {
- if (pick_rt_task(rq, p, cpu))
+ if (task_is_pushable(rq, p, cpu))
return p;
}
@@ -1968,6 +1958,7 @@ static struct task_struct *pick_next_pushable_task(struct rq *rq)
BUG_ON(rq->cpu != task_cpu(p));
BUG_ON(task_current(rq, p));
+ BUG_ON(task_current_donor(rq, p));
BUG_ON(p->nr_cpus_allowed <= 1);
BUG_ON(!task_on_rq_queued(p));
@@ -2000,7 +1991,7 @@ retry:
* higher priority than current. If that's the case
* just reschedule current.
*/
- if (unlikely(next_task->prio < rq->curr->prio)) {
+ if (unlikely(next_task->prio < rq->donor->prio)) {
resched_curr(rq);
return 0;
}
@@ -2021,7 +2012,7 @@ retry:
* Note that the stoppers are masqueraded as SCHED_FIFO
* (cf. sched_set_stop_task()), so we can't rely on rt_task().
*/
- if (rq->curr->sched_class != &rt_sched_class)
+ if (rq->donor->sched_class != &rt_sched_class)
return 0;
cpu = find_lowest_rq(rq->curr);
@@ -2088,9 +2079,7 @@ retry:
goto retry;
}
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
+ move_queued_task_locked(rq, lowest_rq, next_task);
resched_curr(lowest_rq);
ret = 1;
@@ -2355,15 +2344,13 @@ static void pull_rt_task(struct rq *this_rq)
* p if it is lower in priority than the
* current task on the run queue
*/
- if (p->prio < src_rq->curr->prio)
+ if (p->prio < src_rq->donor->prio)
goto skip;
if (is_migration_disabled(p)) {
push_task = get_push_task(src_rq);
} else {
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
+ move_queued_task_locked(src_rq, this_rq, p);
resched = true;
}
/*
@@ -2399,9 +2386,9 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p)
bool need_to_push = !task_on_cpu(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
p->nr_cpus_allowed > 1 &&
- (dl_task(rq->curr) || rt_task(rq->curr)) &&
+ (dl_task(rq->donor) || rt_task(rq->donor)) &&
(rq->curr->nr_cpus_allowed < 2 ||
- rq->curr->prio <= p->prio);
+ rq->donor->prio <= p->prio);
if (need_to_push)
push_rt_tasks(rq);
@@ -2485,7 +2472,7 @@ static void switched_to_rt(struct rq *rq, struct task_struct *p)
if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
rt_queue_push_tasks(rq);
#endif /* CONFIG_SMP */
- if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
+ if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
resched_curr(rq);
}
}
@@ -2500,7 +2487,7 @@ prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
if (!task_on_rq_queued(p))
return;
- if (task_current(rq, p)) {
+ if (task_current_donor(rq, p)) {
#ifdef CONFIG_SMP
/*
* If our priority decreases while running, we
@@ -2526,7 +2513,7 @@ prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
* greater than the current running task
* then reschedule.
*/
- if (p->prio < rq->curr->prio)
+ if (p->prio < rq->donor->prio)
resched_curr(rq);
}
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 081519ffab46..76f5f53a645f 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -751,8 +751,9 @@ enum scx_rq_flags {
*/
SCX_RQ_ONLINE = 1 << 0,
SCX_RQ_CAN_STOP_TICK = 1 << 1,
- SCX_RQ_BAL_KEEP = 1 << 2, /* balance decided to keep current */
- SCX_RQ_BYPASSING = 1 << 3,
+ SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */
+ SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */
+ SCX_RQ_BYPASSING = 1 << 4,
SCX_RQ_IN_WAKEUP = 1 << 16,
SCX_RQ_IN_BALANCE = 1 << 17,
@@ -1147,7 +1148,10 @@ struct rq {
*/
unsigned int nr_uninterruptible;
- struct task_struct __rcu *curr;
+ union {
+ struct task_struct __rcu *donor; /* Scheduler context */
+ struct task_struct __rcu *curr; /* Execution context */
+ };
struct sched_dl_entity *dl_server;
struct task_struct *idle;
struct task_struct *stop;
@@ -1344,6 +1348,11 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define raw_rq() raw_cpu_ptr(&runqueues)
+static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
+{
+ /* Do nothing */
+}
+
#ifdef CONFIG_SCHED_CORE
static inline struct cpumask *sched_group_span(struct sched_group *sg);
@@ -2085,34 +2094,6 @@ static inline const struct cpumask *task_user_cpus(struct task_struct *p)
#endif /* CONFIG_SMP */
-#include "stats.h"
-
-#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
-
-extern void __sched_core_account_forceidle(struct rq *rq);
-
-static inline void sched_core_account_forceidle(struct rq *rq)
-{
- if (schedstat_enabled())
- __sched_core_account_forceidle(rq);
-}
-
-extern void __sched_core_tick(struct rq *rq);
-
-static inline void sched_core_tick(struct rq *rq)
-{
- if (sched_core_enabled(rq) && schedstat_enabled())
- __sched_core_tick(rq);
-}
-
-#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
-
-static inline void sched_core_account_forceidle(struct rq *rq) { }
-
-static inline void sched_core_tick(struct rq *rq) { }
-
-#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
-
#ifdef CONFIG_CGROUP_SCHED
/*
@@ -2260,11 +2241,25 @@ static inline u64 global_rt_runtime(void)
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
+/*
+ * Is p the current execution context?
+ */
static inline int task_current(struct rq *rq, struct task_struct *p)
{
return rq->curr == p;
}
+/*
+ * Is p the current scheduling context?
+ *
+ * Note that it might be the current execution context at the same time if
+ * rq->curr == rq->donor == p.
+ */
+static inline int task_current_donor(struct rq *rq, struct task_struct *p)
+{
+ return rq->donor == p;
+}
+
static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
{
#ifdef CONFIG_SMP
@@ -2451,7 +2446,7 @@ struct sched_class {
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
{
- WARN_ON_ONCE(rq->curr != prev);
+ WARN_ON_ONCE(rq->donor != prev);
prev->sched_class->put_prev_task(rq, prev, NULL);
}
@@ -2615,7 +2610,7 @@ static inline cpumask_t *alloc_user_cpus_ptr(int node)
static inline struct task_struct *get_push_task(struct rq *rq)
{
- struct task_struct *p = rq->curr;
+ struct task_struct *p = rq->donor;
lockdep_assert_rq_held(rq);
@@ -2695,6 +2690,7 @@ extern void init_sched_rt_class(void);
extern void init_sched_fair_class(void);
extern void resched_curr(struct rq *rq);
+extern void resched_curr_lazy(struct rq *rq);
extern void resched_cpu(int cpu);
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
@@ -2769,8 +2765,6 @@ static inline void sub_nr_running(struct rq *rq, unsigned count)
static inline void __block_task(struct rq *rq, struct task_struct *p)
{
- WRITE_ONCE(p->on_rq, 0);
- ASSERT_EXCLUSIVE_WRITER(p->on_rq);
if (p->sched_contributes_to_load)
rq->nr_uninterruptible++;
@@ -2778,6 +2772,38 @@ static inline void __block_task(struct rq *rq, struct task_struct *p)
atomic_inc(&rq->nr_iowait);
delayacct_blkio_start();
}
+
+ ASSERT_EXCLUSIVE_WRITER(p->on_rq);
+
+ /*
+ * The moment this write goes through, ttwu() can swoop in and migrate
+ * this task, rendering our rq->__lock ineffective.
+ *
+ * __schedule() try_to_wake_up()
+ * LOCK rq->__lock LOCK p->pi_lock
+ * pick_next_task()
+ * pick_next_task_fair()
+ * pick_next_entity()
+ * dequeue_entities()
+ * __block_task()
+ * RELEASE p->on_rq = 0 if (p->on_rq && ...)
+ * break;
+ *
+ * ACQUIRE (after ctrl-dep)
+ *
+ * cpu = select_task_rq();
+ * set_task_cpu(p, cpu);
+ * ttwu_queue()
+ * ttwu_do_activate()
+ * LOCK rq->__lock
+ * activate_task()
+ * STORE p->on_rq = 1
+ * UNLOCK rq->__lock
+ *
+ * Callers must ensure to not reference @p after this -- we no longer
+ * own it.
+ */
+ smp_store_release(&p->on_rq, 0);
}
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
@@ -3169,6 +3195,34 @@ extern void nohz_run_idle_balance(int cpu);
static inline void nohz_run_idle_balance(int cpu) { }
#endif
+#include "stats.h"
+
+#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
+
+extern void __sched_core_account_forceidle(struct rq *rq);
+
+static inline void sched_core_account_forceidle(struct rq *rq)
+{
+ if (schedstat_enabled())
+ __sched_core_account_forceidle(rq);
+}
+
+extern void __sched_core_tick(struct rq *rq);
+
+static inline void sched_core_tick(struct rq *rq)
+{
+ if (sched_core_enabled(rq) && schedstat_enabled())
+ __sched_core_tick(rq);
+}
+
+#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
+
+static inline void sched_core_account_forceidle(struct rq *rq) { }
+
+static inline void sched_core_tick(struct rq *rq) { }
+
+#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
+
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
struct irqtime {
@@ -3599,24 +3653,41 @@ static inline void mm_cid_put(struct mm_struct *mm)
__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
}
-static inline int __mm_cid_try_get(struct mm_struct *mm)
+static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
{
- struct cpumask *cpumask;
- int cid;
+ struct cpumask *cidmask = mm_cidmask(mm);
+ struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
+ int cid = __this_cpu_read(pcpu_cid->recent_cid);
- cpumask = mm_cidmask(mm);
+ /* Try to re-use recent cid. This improves cache locality. */
+ if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask))
+ return cid;
+ /*
+ * Expand cid allocation if the maximum number of concurrency
+ * IDs allocated (max_nr_cid) is below the number cpus allowed
+ * and number of threads. Expanding cid allocation as much as
+ * possible improves cache locality.
+ */
+ cid = atomic_read(&mm->max_nr_cid);
+ while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
+ if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
+ continue;
+ if (!cpumask_test_and_set_cpu(cid, cidmask))
+ return cid;
+ }
/*
+ * Find the first available concurrency id.
* Retry finding first zero bit if the mask is temporarily
* filled. This only happens during concurrent remote-clear
* which owns a cid without holding a rq lock.
*/
for (;;) {
- cid = cpumask_first_zero(cpumask);
- if (cid < nr_cpu_ids)
+ cid = cpumask_first_zero(cidmask);
+ if (cid < READ_ONCE(mm->nr_cpus_allowed))
break;
cpu_relax();
}
- if (cpumask_test_and_set_cpu(cid, cpumask))
+ if (cpumask_test_and_set_cpu(cid, cidmask))
return -1;
return cid;
@@ -3634,7 +3705,8 @@ static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
WRITE_ONCE(pcpu_cid->time, rq->clock);
}
-static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
+static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
+ struct mm_struct *mm)
{
int cid;
@@ -3644,13 +3716,13 @@ static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
* guarantee forward progress.
*/
if (!READ_ONCE(use_cid_lock)) {
- cid = __mm_cid_try_get(mm);
+ cid = __mm_cid_try_get(t, mm);
if (cid >= 0)
goto end;
raw_spin_lock(&cid_lock);
} else {
raw_spin_lock(&cid_lock);
- cid = __mm_cid_try_get(mm);
+ cid = __mm_cid_try_get(t, mm);
if (cid >= 0)
goto unlock;
}
@@ -3670,7 +3742,7 @@ static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
* all newcoming allocations observe the use_cid_lock flag set.
*/
do {
- cid = __mm_cid_try_get(mm);
+ cid = __mm_cid_try_get(t, mm);
cpu_relax();
} while (cid < 0);
/*
@@ -3687,7 +3759,8 @@ end:
return cid;
}
-static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
+static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
+ struct mm_struct *mm)
{
struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
struct cpumask *cpumask;
@@ -3704,8 +3777,9 @@ static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
}
- cid = __mm_cid_get(rq, mm);
+ cid = __mm_cid_get(rq, t, mm);
__this_cpu_write(pcpu_cid->cid, cid);
+ __this_cpu_write(pcpu_cid->recent_cid, cid);
return cid;
}
@@ -3758,7 +3832,7 @@ static inline void switch_mm_cid(struct rq *rq,
prev->mm_cid = -1;
}
if (next->mm_cid_active)
- next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
+ next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
}
#else /* !CONFIG_SCHED_MM_CID: */
@@ -3771,6 +3845,28 @@ static inline void init_sched_mm_cid(struct task_struct *t) { }
extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
+#ifdef CONFIG_SMP
+static inline
+void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
+{
+ lockdep_assert_rq_held(src_rq);
+ lockdep_assert_rq_held(dst_rq);
+
+ deactivate_task(src_rq, task, 0);
+ set_task_cpu(task, dst_rq->cpu);
+ activate_task(dst_rq, task, 0);
+}
+
+static inline
+bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
+{
+ if (!task_on_cpu(rq, p) &&
+ cpumask_test_cpu(cpu, &p->cpus_mask))
+ return true;
+
+ return false;
+}
+#endif
#ifdef CONFIG_RT_MUTEXES
@@ -3800,7 +3896,7 @@ static inline int rt_effective_prio(struct task_struct *p, int prio)
extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
-extern const struct sched_class *__setscheduler_class(struct task_struct *p, int prio);
+extern const struct sched_class *__setscheduler_class(int policy, int prio);
extern void set_load_weight(struct task_struct *p, bool update_load);
extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
diff --git a/kernel/sched/stats.h b/kernel/sched/stats.h
index 767e098a3bd1..8ee0add5a48a 100644
--- a/kernel/sched/stats.h
+++ b/kernel/sched/stats.h
@@ -127,21 +127,25 @@ static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
* go through migration requeues. In this case, *sleeping* states need
* to be transferred.
*/
-static inline void psi_enqueue(struct task_struct *p, bool migrate)
+static inline void psi_enqueue(struct task_struct *p, int flags)
{
int clear = 0, set = 0;
if (static_branch_likely(&psi_disabled))
return;
+ /* Same runqueue, nothing changed for psi */
+ if (flags & ENQUEUE_RESTORE)
+ return;
+
if (p->se.sched_delayed) {
/* CPU migration of "sleeping" task */
- SCHED_WARN_ON(!migrate);
+ SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
if (p->in_memstall)
set |= TSK_MEMSTALL;
if (p->in_iowait)
set |= TSK_IOWAIT;
- } else if (migrate) {
+ } else if (flags & ENQUEUE_MIGRATED) {
/* CPU migration of runnable task */
set = TSK_RUNNING;
if (p->in_memstall)
@@ -158,17 +162,14 @@ static inline void psi_enqueue(struct task_struct *p, bool migrate)
psi_task_change(p, clear, set);
}
-static inline void psi_dequeue(struct task_struct *p, bool migrate)
+static inline void psi_dequeue(struct task_struct *p, int flags)
{
if (static_branch_likely(&psi_disabled))
return;
- /*
- * When migrating a task to another CPU, clear all psi
- * state. The enqueue callback above will work it out.
- */
- if (migrate)
- psi_task_change(p, p->psi_flags, 0);
+ /* Same runqueue, nothing changed for psi */
+ if (flags & DEQUEUE_SAVE)
+ return;
/*
* A voluntary sleep is a dequeue followed by a task switch. To
@@ -176,6 +177,14 @@ static inline void psi_dequeue(struct task_struct *p, bool migrate)
* TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
* Do nothing here.
*/
+ if (flags & DEQUEUE_SLEEP)
+ return;
+
+ /*
+ * When migrating a task to another CPU, clear all psi
+ * state. The enqueue callback above will work it out.
+ */
+ psi_task_change(p, p->psi_flags, 0);
}
static inline void psi_ttwu_dequeue(struct task_struct *p)
diff --git a/kernel/sched/syscalls.c b/kernel/sched/syscalls.c
index 0470bcc3d204..0d71fcbaf1e3 100644
--- a/kernel/sched/syscalls.c
+++ b/kernel/sched/syscalls.c
@@ -91,7 +91,7 @@ void set_user_nice(struct task_struct *p, long nice)
}
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
if (running)
@@ -707,13 +707,13 @@ change:
}
prev_class = p->sched_class;
- next_class = __setscheduler_class(p, newprio);
+ next_class = __setscheduler_class(policy, newprio);
if (prev_class != next_class && p->se.sched_delayed)
dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK);
queued = task_on_rq_queued(p);
- running = task_current(rq, p);
+ running = task_current_donor(rq, p);
if (queued)
dequeue_task(rq, p, queue_flags);
if (running)
@@ -1081,45 +1081,6 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
}
-/*
- * Copy the kernel size attribute structure (which might be larger
- * than what user-space knows about) to user-space.
- *
- * Note that all cases are valid: user-space buffer can be larger or
- * smaller than the kernel-space buffer. The usual case is that both
- * have the same size.
- */
-static int
-sched_attr_copy_to_user(struct sched_attr __user *uattr,
- struct sched_attr *kattr,
- unsigned int usize)
-{
- unsigned int ksize = sizeof(*kattr);
-
- if (!access_ok(uattr, usize))
- return -EFAULT;
-
- /*
- * sched_getattr() ABI forwards and backwards compatibility:
- *
- * If usize == ksize then we just copy everything to user-space and all is good.
- *
- * If usize < ksize then we only copy as much as user-space has space for,
- * this keeps ABI compatibility as well. We skip the rest.
- *
- * If usize > ksize then user-space is using a newer version of the ABI,
- * which part the kernel doesn't know about. Just ignore it - tooling can
- * detect the kernel's knowledge of attributes from the attr->size value
- * which is set to ksize in this case.
- */
- kattr->size = min(usize, ksize);
-
- if (copy_to_user(uattr, kattr, kattr->size))
- return -EFAULT;
-
- return 0;
-}
-
/**
* sys_sched_getattr - similar to sched_getparam, but with sched_attr
* @pid: the pid in question.
@@ -1164,7 +1125,8 @@ SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
#endif
}
- return sched_attr_copy_to_user(uattr, &kattr, usize);
+ kattr.size = min(usize, sizeof(kattr));
+ return copy_struct_to_user(uattr, usize, &kattr, sizeof(kattr), NULL);
}
#ifdef CONFIG_SMP
diff --git a/kernel/sched/wait_bit.c b/kernel/sched/wait_bit.c
index 134d7112ef71..b410b61cec95 100644
--- a/kernel/sched/wait_bit.c
+++ b/kernel/sched/wait_bit.c
@@ -9,7 +9,7 @@
static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
-wait_queue_head_t *bit_waitqueue(void *word, int bit)
+wait_queue_head_t *bit_waitqueue(unsigned long *word, int bit)
{
const int shift = BITS_PER_LONG == 32 ? 5 : 6;
unsigned long val = (unsigned long)word << shift | bit;
@@ -55,7 +55,7 @@ __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_
}
EXPORT_SYMBOL(__wait_on_bit);
-int __sched out_of_line_wait_on_bit(void *word, int bit,
+int __sched out_of_line_wait_on_bit(unsigned long *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
@@ -66,7 +66,7 @@ int __sched out_of_line_wait_on_bit(void *word, int bit,
EXPORT_SYMBOL(out_of_line_wait_on_bit);
int __sched out_of_line_wait_on_bit_timeout(
- void *word, int bit, wait_bit_action_f *action,
+ unsigned long *word, int bit, wait_bit_action_f *action,
unsigned mode, unsigned long timeout)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
@@ -108,7 +108,7 @@ __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry
}
EXPORT_SYMBOL(__wait_on_bit_lock);
-int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
+int __sched out_of_line_wait_on_bit_lock(unsigned long *word, int bit,
wait_bit_action_f *action, unsigned mode)
{
struct wait_queue_head *wq_head = bit_waitqueue(word, bit);
@@ -118,7 +118,7 @@ int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
}
EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
-void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit)
+void __wake_up_bit(struct wait_queue_head *wq_head, unsigned long *word, int bit)
{
struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
@@ -128,23 +128,31 @@ void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit)
EXPORT_SYMBOL(__wake_up_bit);
/**
- * wake_up_bit - wake up a waiter on a bit
- * @word: the word being waited on, a kernel virtual address
- * @bit: the bit of the word being waited on
+ * wake_up_bit - wake up waiters on a bit
+ * @word: the address containing the bit being waited on
+ * @bit: the bit at that address being waited on
*
- * There is a standard hashed waitqueue table for generic use. This
- * is the part of the hash-table's accessor API that wakes up waiters
- * on a bit. For instance, if one were to have waiters on a bitflag,
- * one would call wake_up_bit() after clearing the bit.
+ * Wake up any process waiting in wait_on_bit() or similar for the
+ * given bit to be cleared.
*
- * In order for this to function properly, as it uses waitqueue_active()
- * internally, some kind of memory barrier must be done prior to calling
- * this. Typically, this will be smp_mb__after_atomic(), but in some
- * cases where bitflags are manipulated non-atomically under a lock, one
- * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
- * because spin_unlock() does not guarantee a memory barrier.
+ * The wake-up is sent to tasks in a waitqueue selected by hash from a
+ * shared pool. Only those tasks on that queue which have requested
+ * wake_up on this specific address and bit will be woken, and only if the
+ * bit is clear.
+ *
+ * In order for this to function properly there must be a full memory
+ * barrier after the bit is cleared and before this function is called.
+ * If the bit was cleared atomically, such as a by clear_bit() then
+ * smb_mb__after_atomic() can be used, othwewise smb_mb() is needed.
+ * If the bit was cleared with a fully-ordered operation, no further
+ * barrier is required.
+ *
+ * Normally the bit should be cleared by an operation with RELEASE
+ * semantics so that any changes to memory made before the bit is
+ * cleared are guaranteed to be visible after the matching wait_on_bit()
+ * completes.
*/
-void wake_up_bit(void *word, int bit)
+void wake_up_bit(unsigned long *word, int bit)
{
__wake_up_bit(bit_waitqueue(word, bit), word, bit);
}
@@ -188,6 +196,36 @@ void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int
}
EXPORT_SYMBOL(init_wait_var_entry);
+/**
+ * wake_up_var - wake up waiters on a variable (kernel address)
+ * @var: the address of the variable being waited on
+ *
+ * Wake up any process waiting in wait_var_event() or similar for the
+ * given variable to change. wait_var_event() can be waiting for an
+ * arbitrary condition to be true and associates that condition with an
+ * address. Calling wake_up_var() suggests that the condition has been
+ * made true, but does not strictly require the condtion to use the
+ * address given.
+ *
+ * The wake-up is sent to tasks in a waitqueue selected by hash from a
+ * shared pool. Only those tasks on that queue which have requested
+ * wake_up on this specific address will be woken.
+ *
+ * In order for this to function properly there must be a full memory
+ * barrier after the variable is updated (or more accurately, after the
+ * condition waited on has been made to be true) and before this function
+ * is called. If the variable was updated atomically, such as a by
+ * atomic_dec() then smb_mb__after_atomic() can be used. If the
+ * variable was updated by a fully ordered operation such as
+ * atomic_dec_and_test() then no extra barrier is required. Otherwise
+ * smb_mb() is needed.
+ *
+ * Normally the variable should be updated (the condition should be made
+ * to be true) by an operation with RELEASE semantics such as
+ * smp_store_release() so that any changes to memory made before the
+ * variable was updated are guaranteed to be visible after the matching
+ * wait_var_event() completes.
+ */
void wake_up_var(void *var)
{
__wake_up_bit(__var_waitqueue(var), var, -1);
@@ -228,20 +266,6 @@ __sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
}
EXPORT_SYMBOL_GPL(bit_wait_timeout);
-__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
-{
- unsigned long now = READ_ONCE(jiffies);
-
- if (time_after_eq(now, word->timeout))
- return -EAGAIN;
- io_schedule_timeout(word->timeout - now);
- if (signal_pending_state(mode, current))
- return -EINTR;
-
- return 0;
-}
-EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
-
void __init wait_bit_init(void)
{
int i;
diff --git a/kernel/signal.c b/kernel/signal.c
index 4344860ffcac..98b65cb35830 100644
--- a/kernel/signal.c
+++ b/kernel/signal.c
@@ -59,6 +59,8 @@
#include <asm/cacheflush.h>
#include <asm/syscall.h> /* for syscall_get_* */
+#include "time/posix-timers.h"
+
/*
* SLAB caches for signal bits.
*/
@@ -396,16 +398,9 @@ void task_join_group_stop(struct task_struct *task)
task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
}
-/*
- * allocate a new signal queue record
- * - this may be called without locks if and only if t == current, otherwise an
- * appropriate lock must be held to stop the target task from exiting
- */
-static struct sigqueue *
-__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
- int override_rlimit, const unsigned int sigqueue_flags)
+static struct ucounts *sig_get_ucounts(struct task_struct *t, int sig,
+ int override_rlimit)
{
- struct sigqueue *q = NULL;
struct ucounts *ucounts;
long sigpending;
@@ -419,31 +414,59 @@ __sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
*/
rcu_read_lock();
ucounts = task_ucounts(t);
- sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
+ sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING,
+ override_rlimit);
rcu_read_unlock();
if (!sigpending)
return NULL;
- if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
- q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
- } else {
+ if (unlikely(!override_rlimit && sigpending > task_rlimit(t, RLIMIT_SIGPENDING))) {
+ dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
print_dropped_signal(sig);
+ return NULL;
}
- if (unlikely(q == NULL)) {
+ return ucounts;
+}
+
+static void __sigqueue_init(struct sigqueue *q, struct ucounts *ucounts,
+ const unsigned int sigqueue_flags)
+{
+ INIT_LIST_HEAD(&q->list);
+ q->flags = sigqueue_flags;
+ q->ucounts = ucounts;
+}
+
+/*
+ * allocate a new signal queue record
+ * - this may be called without locks if and only if t == current, otherwise an
+ * appropriate lock must be held to stop the target task from exiting
+ */
+static struct sigqueue *sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
+ int override_rlimit)
+{
+ struct ucounts *ucounts = sig_get_ucounts(t, sig, override_rlimit);
+ struct sigqueue *q;
+
+ if (!ucounts)
+ return NULL;
+
+ q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
+ if (!q) {
dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
- } else {
- INIT_LIST_HEAD(&q->list);
- q->flags = sigqueue_flags;
- q->ucounts = ucounts;
+ return NULL;
}
+
+ __sigqueue_init(q, ucounts, 0);
return q;
}
static void __sigqueue_free(struct sigqueue *q)
{
- if (q->flags & SIGQUEUE_PREALLOC)
+ if (q->flags & SIGQUEUE_PREALLOC) {
+ posixtimer_sigqueue_putref(q);
return;
+ }
if (q->ucounts) {
dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
q->ucounts = NULL;
@@ -478,42 +501,6 @@ void flush_signals(struct task_struct *t)
}
EXPORT_SYMBOL(flush_signals);
-#ifdef CONFIG_POSIX_TIMERS
-static void __flush_itimer_signals(struct sigpending *pending)
-{
- sigset_t signal, retain;
- struct sigqueue *q, *n;
-
- signal = pending->signal;
- sigemptyset(&retain);
-
- list_for_each_entry_safe(q, n, &pending->list, list) {
- int sig = q->info.si_signo;
-
- if (likely(q->info.si_code != SI_TIMER)) {
- sigaddset(&retain, sig);
- } else {
- sigdelset(&signal, sig);
- list_del_init(&q->list);
- __sigqueue_free(q);
- }
- }
-
- sigorsets(&pending->signal, &signal, &retain);
-}
-
-void flush_itimer_signals(void)
-{
- struct task_struct *tsk = current;
- unsigned long flags;
-
- spin_lock_irqsave(&tsk->sighand->siglock, flags);
- __flush_itimer_signals(&tsk->pending);
- __flush_itimer_signals(&tsk->signal->shared_pending);
- spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
-}
-#endif
-
void ignore_signals(struct task_struct *t)
{
int i;
@@ -563,7 +550,7 @@ bool unhandled_signal(struct task_struct *tsk, int sig)
}
static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
- bool *resched_timer)
+ struct sigqueue **timer_sigq)
{
struct sigqueue *q, *first = NULL;
@@ -586,12 +573,17 @@ still_pending:
list_del_init(&first->list);
copy_siginfo(info, &first->info);
- *resched_timer =
- (first->flags & SIGQUEUE_PREALLOC) &&
- (info->si_code == SI_TIMER) &&
- (info->si_sys_private);
-
- __sigqueue_free(first);
+ /*
+ * posix-timer signals are preallocated and freed when the last
+ * reference count is dropped in posixtimer_deliver_signal() or
+ * immediately on timer deletion when the signal is not pending.
+ * Spare the extra round through __sigqueue_free() which is
+ * ignoring preallocated signals.
+ */
+ if (unlikely((first->flags & SIGQUEUE_PREALLOC) && (info->si_code == SI_TIMER)))
+ *timer_sigq = first;
+ else
+ __sigqueue_free(first);
} else {
/*
* Ok, it wasn't in the queue. This must be
@@ -608,12 +600,12 @@ still_pending:
}
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
- kernel_siginfo_t *info, bool *resched_timer)
+ kernel_siginfo_t *info, struct sigqueue **timer_sigq)
{
int sig = next_signal(pending, mask);
if (sig)
- collect_signal(sig, pending, info, resched_timer);
+ collect_signal(sig, pending, info, timer_sigq);
return sig;
}
@@ -625,42 +617,22 @@ static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
{
struct task_struct *tsk = current;
- bool resched_timer = false;
+ struct sigqueue *timer_sigq;
int signr;
lockdep_assert_held(&tsk->sighand->siglock);
+again:
*type = PIDTYPE_PID;
- signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
+ timer_sigq = NULL;
+ signr = __dequeue_signal(&tsk->pending, mask, info, &timer_sigq);
if (!signr) {
*type = PIDTYPE_TGID;
signr = __dequeue_signal(&tsk->signal->shared_pending,
- mask, info, &resched_timer);
-#ifdef CONFIG_POSIX_TIMERS
- /*
- * itimer signal ?
- *
- * itimers are process shared and we restart periodic
- * itimers in the signal delivery path to prevent DoS
- * attacks in the high resolution timer case. This is
- * compliant with the old way of self-restarting
- * itimers, as the SIGALRM is a legacy signal and only
- * queued once. Changing the restart behaviour to
- * restart the timer in the signal dequeue path is
- * reducing the timer noise on heavy loaded !highres
- * systems too.
- */
- if (unlikely(signr == SIGALRM)) {
- struct hrtimer *tmr = &tsk->signal->real_timer;
-
- if (!hrtimer_is_queued(tmr) &&
- tsk->signal->it_real_incr != 0) {
- hrtimer_forward(tmr, tmr->base->get_time(),
- tsk->signal->it_real_incr);
- hrtimer_restart(tmr);
- }
- }
-#endif
+ mask, info, &timer_sigq);
+
+ if (unlikely(signr == SIGALRM))
+ posixtimer_rearm_itimer(tsk);
}
recalc_sigpending();
@@ -682,22 +654,12 @@ int dequeue_signal(sigset_t *mask, kernel_siginfo_t *info, enum pid_type *type)
*/
current->jobctl |= JOBCTL_STOP_DEQUEUED;
}
-#ifdef CONFIG_POSIX_TIMERS
- if (resched_timer) {
- /*
- * Release the siglock to ensure proper locking order
- * of timer locks outside of siglocks. Note, we leave
- * irqs disabled here, since the posix-timers code is
- * about to disable them again anyway.
- */
- spin_unlock(&tsk->sighand->siglock);
- posixtimer_rearm(info);
- spin_lock(&tsk->sighand->siglock);
- /* Don't expose the si_sys_private value to userspace */
- info->si_sys_private = 0;
+ if (IS_ENABLED(CONFIG_POSIX_TIMERS) && unlikely(timer_sigq)) {
+ if (!posixtimer_deliver_signal(info, timer_sigq))
+ goto again;
}
-#endif
+
return signr;
}
EXPORT_SYMBOL_GPL(dequeue_signal);
@@ -772,17 +734,24 @@ void signal_wake_up_state(struct task_struct *t, unsigned int state)
kick_process(t);
}
-/*
- * Remove signals in mask from the pending set and queue.
- * Returns 1 if any signals were found.
- *
- * All callers must be holding the siglock.
- */
-static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
+static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q);
+
+static void sigqueue_free_ignored(struct task_struct *tsk, struct sigqueue *q)
+{
+ if (likely(!(q->flags & SIGQUEUE_PREALLOC) || q->info.si_code != SI_TIMER))
+ __sigqueue_free(q);
+ else
+ posixtimer_sig_ignore(tsk, q);
+}
+
+/* Remove signals in mask from the pending set and queue. */
+static void flush_sigqueue_mask(struct task_struct *p, sigset_t *mask, struct sigpending *s)
{
struct sigqueue *q, *n;
sigset_t m;
+ lockdep_assert_held(&p->sighand->siglock);
+
sigandsets(&m, mask, &s->signal);
if (sigisemptyset(&m))
return;
@@ -791,7 +760,7 @@ static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
list_for_each_entry_safe(q, n, &s->list, list) {
if (sigismember(mask, q->info.si_signo)) {
list_del_init(&q->list);
- __sigqueue_free(q);
+ sigqueue_free_ignored(p, q);
}
}
}
@@ -916,18 +885,18 @@ static bool prepare_signal(int sig, struct task_struct *p, bool force)
* This is a stop signal. Remove SIGCONT from all queues.
*/
siginitset(&flush, sigmask(SIGCONT));
- flush_sigqueue_mask(&flush, &signal->shared_pending);
+ flush_sigqueue_mask(p, &flush, &signal->shared_pending);
for_each_thread(p, t)
- flush_sigqueue_mask(&flush, &t->pending);
+ flush_sigqueue_mask(p, &flush, &t->pending);
} else if (sig == SIGCONT) {
unsigned int why;
/*
* Remove all stop signals from all queues, wake all threads.
*/
siginitset(&flush, SIG_KERNEL_STOP_MASK);
- flush_sigqueue_mask(&flush, &signal->shared_pending);
+ flush_sigqueue_mask(p, &flush, &signal->shared_pending);
for_each_thread(p, t) {
- flush_sigqueue_mask(&flush, &t->pending);
+ flush_sigqueue_mask(p, &flush, &t->pending);
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
if (likely(!(t->ptrace & PT_SEIZED))) {
t->jobctl &= ~JOBCTL_STOPPED;
@@ -1114,7 +1083,7 @@ static int __send_signal_locked(int sig, struct kernel_siginfo *info,
else
override_rlimit = 0;
- q = __sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit, 0);
+ q = sigqueue_alloc(sig, t, GFP_ATOMIC, override_rlimit);
if (q) {
list_add_tail(&q->list, &pending->list);
@@ -1922,112 +1891,242 @@ int kill_pid(struct pid *pid, int sig, int priv)
}
EXPORT_SYMBOL(kill_pid);
+#ifdef CONFIG_POSIX_TIMERS
/*
- * These functions support sending signals using preallocated sigqueue
- * structures. This is needed "because realtime applications cannot
- * afford to lose notifications of asynchronous events, like timer
- * expirations or I/O completions". In the case of POSIX Timers
- * we allocate the sigqueue structure from the timer_create. If this
- * allocation fails we are able to report the failure to the application
- * with an EAGAIN error.
+ * These functions handle POSIX timer signals. POSIX timers use
+ * preallocated sigqueue structs for sending signals.
*/
-struct sigqueue *sigqueue_alloc(void)
+static void __flush_itimer_signals(struct sigpending *pending)
{
- return __sigqueue_alloc(-1, current, GFP_KERNEL, 0, SIGQUEUE_PREALLOC);
+ sigset_t signal, retain;
+ struct sigqueue *q, *n;
+
+ signal = pending->signal;
+ sigemptyset(&retain);
+
+ list_for_each_entry_safe(q, n, &pending->list, list) {
+ int sig = q->info.si_signo;
+
+ if (likely(q->info.si_code != SI_TIMER)) {
+ sigaddset(&retain, sig);
+ } else {
+ sigdelset(&signal, sig);
+ list_del_init(&q->list);
+ __sigqueue_free(q);
+ }
+ }
+
+ sigorsets(&pending->signal, &signal, &retain);
}
-void sigqueue_free(struct sigqueue *q)
+void flush_itimer_signals(void)
{
- spinlock_t *lock = &current->sighand->siglock;
- unsigned long flags;
+ struct task_struct *tsk = current;
- if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
- return;
- /*
- * We must hold ->siglock while testing q->list
- * to serialize with collect_signal() or with
- * __exit_signal()->flush_sigqueue().
- */
- spin_lock_irqsave(lock, flags);
- q->flags &= ~SIGQUEUE_PREALLOC;
- /*
- * If it is queued it will be freed when dequeued,
- * like the "regular" sigqueue.
- */
- if (!list_empty(&q->list))
- q = NULL;
- spin_unlock_irqrestore(lock, flags);
+ guard(spinlock_irqsave)(&tsk->sighand->siglock);
+ __flush_itimer_signals(&tsk->pending);
+ __flush_itimer_signals(&tsk->signal->shared_pending);
+}
- if (q)
- __sigqueue_free(q);
+bool posixtimer_init_sigqueue(struct sigqueue *q)
+{
+ struct ucounts *ucounts = sig_get_ucounts(current, -1, 0);
+
+ if (!ucounts)
+ return false;
+ clear_siginfo(&q->info);
+ __sigqueue_init(q, ucounts, SIGQUEUE_PREALLOC);
+ return true;
}
-int send_sigqueue(struct sigqueue *q, struct pid *pid, enum pid_type type)
+static void posixtimer_queue_sigqueue(struct sigqueue *q, struct task_struct *t, enum pid_type type)
{
- int sig = q->info.si_signo;
struct sigpending *pending;
+ int sig = q->info.si_signo;
+
+ signalfd_notify(t, sig);
+ pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
+ list_add_tail(&q->list, &pending->list);
+ sigaddset(&pending->signal, sig);
+ complete_signal(sig, t, type);
+}
+
+/*
+ * This function is used by POSIX timers to deliver a timer signal.
+ * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
+ * set), the signal must be delivered to the specific thread (queues
+ * into t->pending).
+ *
+ * Where type is not PIDTYPE_PID, signals must be delivered to the
+ * process. In this case, prefer to deliver to current if it is in
+ * the same thread group as the target process, which avoids
+ * unnecessarily waking up a potentially idle task.
+ */
+static inline struct task_struct *posixtimer_get_target(struct k_itimer *tmr)
+{
+ struct task_struct *t = pid_task(tmr->it_pid, tmr->it_pid_type);
+
+ if (t && tmr->it_pid_type != PIDTYPE_PID && same_thread_group(t, current))
+ t = current;
+ return t;
+}
+
+void posixtimer_send_sigqueue(struct k_itimer *tmr)
+{
+ struct sigqueue *q = &tmr->sigq;
+ int sig = q->info.si_signo;
struct task_struct *t;
unsigned long flags;
- int ret, result;
+ int result;
- if (WARN_ON_ONCE(!(q->flags & SIGQUEUE_PREALLOC)))
- return 0;
- if (WARN_ON_ONCE(q->info.si_code != SI_TIMER))
- return 0;
+ guard(rcu)();
- ret = -1;
- rcu_read_lock();
+ t = posixtimer_get_target(tmr);
+ if (!t)
+ return;
+
+ if (!likely(lock_task_sighand(t, &flags)))
+ return;
/*
- * This function is used by POSIX timers to deliver a timer signal.
- * Where type is PIDTYPE_PID (such as for timers with SIGEV_THREAD_ID
- * set), the signal must be delivered to the specific thread (queues
- * into t->pending).
- *
- * Where type is not PIDTYPE_PID, signals must be delivered to the
- * process. In this case, prefer to deliver to current if it is in
- * the same thread group as the target process, which avoids
- * unnecessarily waking up a potentially idle task.
+ * Update @tmr::sigqueue_seq for posix timer signals with sighand
+ * locked to prevent a race against dequeue_signal().
*/
- t = pid_task(pid, type);
- if (!t)
- goto ret;
- if (type != PIDTYPE_PID && same_thread_group(t, current))
- t = current;
- if (!likely(lock_task_sighand(t, &flags)))
- goto ret;
+ tmr->it_sigqueue_seq = tmr->it_signal_seq;
- ret = 1; /* the signal is ignored */
- result = TRACE_SIGNAL_IGNORED;
- if (!prepare_signal(sig, t, false))
+ /*
+ * Set the signal delivery status under sighand lock, so that the
+ * ignored signal handling can distinguish between a periodic and a
+ * non-periodic timer.
+ */
+ tmr->it_sig_periodic = tmr->it_status == POSIX_TIMER_REQUEUE_PENDING;
+
+ if (!prepare_signal(sig, t, false)) {
+ result = TRACE_SIGNAL_IGNORED;
+
+ if (!list_empty(&q->list)) {
+ /*
+ * If task group is exiting with the signal already pending,
+ * wait for __exit_signal() to do its job. Otherwise if
+ * ignored, it's not supposed to be queued. Try to survive.
+ */
+ WARN_ON_ONCE(!(t->signal->flags & SIGNAL_GROUP_EXIT));
+ goto out;
+ }
+
+ /* Periodic timers with SIG_IGN are queued on the ignored list */
+ if (tmr->it_sig_periodic) {
+ /*
+ * Already queued means the timer was rearmed after
+ * the previous expiry got it on the ignore list.
+ * Nothing to do for that case.
+ */
+ if (hlist_unhashed(&tmr->ignored_list)) {
+ /*
+ * Take a signal reference and queue it on
+ * the ignored list.
+ */
+ posixtimer_sigqueue_getref(q);
+ posixtimer_sig_ignore(t, q);
+ }
+ } else if (!hlist_unhashed(&tmr->ignored_list)) {
+ /*
+ * Covers the case where a timer was periodic and
+ * then the signal was ignored. Later it was rearmed
+ * as oneshot timer. The previous signal is invalid
+ * now, and this oneshot signal has to be dropped.
+ * Remove it from the ignored list and drop the
+ * reference count as the signal is not longer
+ * queued.
+ */
+ hlist_del_init(&tmr->ignored_list);
+ posixtimer_putref(tmr);
+ }
goto out;
+ }
+
+ /* This should never happen and leaks a reference count */
+ if (WARN_ON_ONCE(!hlist_unhashed(&tmr->ignored_list)))
+ hlist_del_init(&tmr->ignored_list);
- ret = 0;
if (unlikely(!list_empty(&q->list))) {
- /*
- * If an SI_TIMER entry is already queue just increment
- * the overrun count.
- */
- q->info.si_overrun++;
+ /* This holds a reference count already */
result = TRACE_SIGNAL_ALREADY_PENDING;
goto out;
}
- q->info.si_overrun = 0;
- signalfd_notify(t, sig);
- pending = (type != PIDTYPE_PID) ? &t->signal->shared_pending : &t->pending;
- list_add_tail(&q->list, &pending->list);
- sigaddset(&pending->signal, sig);
- complete_signal(sig, t, type);
+ posixtimer_sigqueue_getref(q);
+ posixtimer_queue_sigqueue(q, t, tmr->it_pid_type);
result = TRACE_SIGNAL_DELIVERED;
out:
- trace_signal_generate(sig, &q->info, t, type != PIDTYPE_PID, result);
+ trace_signal_generate(sig, &q->info, t, tmr->it_pid_type != PIDTYPE_PID, result);
unlock_task_sighand(t, &flags);
-ret:
- rcu_read_unlock();
- return ret;
}
+static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q)
+{
+ struct k_itimer *tmr = container_of(q, struct k_itimer, sigq);
+
+ /*
+ * If the timer is marked deleted already or the signal originates
+ * from a non-periodic timer, then just drop the reference
+ * count. Otherwise queue it on the ignored list.
+ */
+ if (tmr->it_signal && tmr->it_sig_periodic)
+ hlist_add_head(&tmr->ignored_list, &tsk->signal->ignored_posix_timers);
+ else
+ posixtimer_putref(tmr);
+}
+
+static void posixtimer_sig_unignore(struct task_struct *tsk, int sig)
+{
+ struct hlist_head *head = &tsk->signal->ignored_posix_timers;
+ struct hlist_node *tmp;
+ struct k_itimer *tmr;
+
+ if (likely(hlist_empty(head)))
+ return;
+
+ /*
+ * Rearming a timer with sighand lock held is not possible due to
+ * lock ordering vs. tmr::it_lock. Just stick the sigqueue back and
+ * let the signal delivery path deal with it whether it needs to be
+ * rearmed or not. This cannot be decided here w/o dropping sighand
+ * lock and creating a loop retry horror show.
+ */
+ hlist_for_each_entry_safe(tmr, tmp , head, ignored_list) {
+ struct task_struct *target;
+
+ /*
+ * tmr::sigq.info.si_signo is immutable, so accessing it
+ * without holding tmr::it_lock is safe.
+ */
+ if (tmr->sigq.info.si_signo != sig)
+ continue;
+
+ hlist_del_init(&tmr->ignored_list);
+
+ /* This should never happen and leaks a reference count */
+ if (WARN_ON_ONCE(!list_empty(&tmr->sigq.list)))
+ continue;
+
+ /*
+ * Get the target for the signal. If target is a thread and
+ * has exited by now, drop the reference count.
+ */
+ guard(rcu)();
+ target = posixtimer_get_target(tmr);
+ if (target)
+ posixtimer_queue_sigqueue(&tmr->sigq, target, tmr->it_pid_type);
+ else
+ posixtimer_putref(tmr);
+ }
+}
+#else /* CONFIG_POSIX_TIMERS */
+static inline void posixtimer_sig_ignore(struct task_struct *tsk, struct sigqueue *q) { }
+static inline void posixtimer_sig_unignore(struct task_struct *tsk, int sig) { }
+#endif /* !CONFIG_POSIX_TIMERS */
+
void do_notify_pidfd(struct task_struct *task)
{
struct pid *pid = task_pid(task);
@@ -3908,7 +4007,6 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
siginfo_t __user *, info, unsigned int, flags)
{
int ret;
- struct fd f;
struct pid *pid;
kernel_siginfo_t kinfo;
enum pid_type type;
@@ -3921,20 +4019,17 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
if (hweight32(flags & PIDFD_SEND_SIGNAL_FLAGS) > 1)
return -EINVAL;
- f = fdget(pidfd);
- if (!fd_file(f))
+ CLASS(fd, f)(pidfd);
+ if (fd_empty(f))
return -EBADF;
/* Is this a pidfd? */
pid = pidfd_to_pid(fd_file(f));
- if (IS_ERR(pid)) {
- ret = PTR_ERR(pid);
- goto err;
- }
+ if (IS_ERR(pid))
+ return PTR_ERR(pid);
- ret = -EINVAL;
if (!access_pidfd_pidns(pid))
- goto err;
+ return -EINVAL;
switch (flags) {
case 0:
@@ -3958,28 +4053,23 @@ SYSCALL_DEFINE4(pidfd_send_signal, int, pidfd, int, sig,
if (info) {
ret = copy_siginfo_from_user_any(&kinfo, info);
if (unlikely(ret))
- goto err;
+ return ret;
- ret = -EINVAL;
if (unlikely(sig != kinfo.si_signo))
- goto err;
+ return -EINVAL;
/* Only allow sending arbitrary signals to yourself. */
- ret = -EPERM;
if ((task_pid(current) != pid || type > PIDTYPE_TGID) &&
(kinfo.si_code >= 0 || kinfo.si_code == SI_TKILL))
- goto err;
+ return -EPERM;
} else {
prepare_kill_siginfo(sig, &kinfo, type);
}
if (type == PIDTYPE_PGID)
- ret = kill_pgrp_info(sig, &kinfo, pid);
+ return kill_pgrp_info(sig, &kinfo, pid);
else
- ret = kill_pid_info_type(sig, &kinfo, pid, type);
-err:
- fdput(f);
- return ret;
+ return kill_pid_info_type(sig, &kinfo, pid, type);
}
static int
@@ -4153,8 +4243,8 @@ void kernel_sigaction(int sig, __sighandler_t action)
sigemptyset(&mask);
sigaddset(&mask, sig);
- flush_sigqueue_mask(&mask, &current->signal->shared_pending);
- flush_sigqueue_mask(&mask, &current->pending);
+ flush_sigqueue_mask(current, &mask, &current->signal->shared_pending);
+ flush_sigqueue_mask(current, &mask, &current->pending);
recalc_sigpending();
}
spin_unlock_irq(&current->sighand->siglock);
@@ -4204,6 +4294,8 @@ int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
sigaction_compat_abi(act, oact);
if (act) {
+ bool was_ignored = k->sa.sa_handler == SIG_IGN;
+
sigdelsetmask(&act->sa.sa_mask,
sigmask(SIGKILL) | sigmask(SIGSTOP));
*k = *act;
@@ -4221,9 +4313,11 @@ int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
if (sig_handler_ignored(sig_handler(p, sig), sig)) {
sigemptyset(&mask);
sigaddset(&mask, sig);
- flush_sigqueue_mask(&mask, &p->signal->shared_pending);
+ flush_sigqueue_mask(p, &mask, &p->signal->shared_pending);
for_each_thread(p, t)
- flush_sigqueue_mask(&mask, &t->pending);
+ flush_sigqueue_mask(p, &mask, &t->pending);
+ } else if (was_ignored) {
+ posixtimer_sig_unignore(p, sig);
}
}
diff --git a/kernel/smp.c b/kernel/smp.c
index f25e20617b7e..27dc31a146a3 100644
--- a/kernel/smp.c
+++ b/kernel/smp.c
@@ -246,7 +246,7 @@ static bool csd_lock_wait_toolong(call_single_data_t *csd, u64 ts0, u64 *ts1, in
return true;
}
- ts2 = sched_clock();
+ ts2 = ktime_get_mono_fast_ns();
/* How long since we last checked for a stuck CSD lock.*/
ts_delta = ts2 - *ts1;
if (likely(ts_delta <= csd_lock_timeout_ns * (*nmessages + 1) *
@@ -321,7 +321,7 @@ static void __csd_lock_wait(call_single_data_t *csd)
int bug_id = 0;
u64 ts0, ts1;
- ts1 = ts0 = sched_clock();
+ ts1 = ts0 = ktime_get_mono_fast_ns();
for (;;) {
if (csd_lock_wait_toolong(csd, ts0, &ts1, &bug_id, &nmessages))
break;
diff --git a/kernel/softirq.c b/kernel/softirq.c
index d082e7840f88..8b41bd13cc3d 100644
--- a/kernel/softirq.c
+++ b/kernel/softirq.c
@@ -624,6 +624,24 @@ static inline void tick_irq_exit(void)
#endif
}
+#ifdef CONFIG_IRQ_FORCED_THREADING
+DEFINE_PER_CPU(struct task_struct *, ktimerd);
+DEFINE_PER_CPU(unsigned long, pending_timer_softirq);
+
+static void wake_timersd(void)
+{
+ struct task_struct *tsk = __this_cpu_read(ktimerd);
+
+ if (tsk)
+ wake_up_process(tsk);
+}
+
+#else
+
+static inline void wake_timersd(void) { }
+
+#endif
+
static inline void __irq_exit_rcu(void)
{
#ifndef __ARCH_IRQ_EXIT_IRQS_DISABLED
@@ -636,6 +654,10 @@ static inline void __irq_exit_rcu(void)
if (!in_interrupt() && local_softirq_pending())
invoke_softirq();
+ if (IS_ENABLED(CONFIG_IRQ_FORCED_THREADING) && force_irqthreads() &&
+ local_timers_pending_force_th() && !(in_nmi() | in_hardirq()))
+ wake_timersd();
+
tick_irq_exit();
}
@@ -748,10 +770,8 @@ EXPORT_SYMBOL(__tasklet_hi_schedule);
static bool tasklet_clear_sched(struct tasklet_struct *t)
{
- if (test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) {
- wake_up_var(&t->state);
+ if (test_and_clear_wake_up_bit(TASKLET_STATE_SCHED, &t->state))
return true;
- }
WARN_ONCE(1, "tasklet SCHED state not set: %s %pS\n",
t->use_callback ? "callback" : "func",
@@ -871,8 +891,7 @@ void tasklet_kill(struct tasklet_struct *t)
if (in_interrupt())
pr_notice("Attempt to kill tasklet from interrupt\n");
- while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
- wait_var_event(&t->state, !test_bit(TASKLET_STATE_SCHED, &t->state));
+ wait_on_bit_lock(&t->state, TASKLET_STATE_SCHED, TASK_UNINTERRUPTIBLE);
tasklet_unlock_wait(t);
tasklet_clear_sched(t);
@@ -882,16 +901,13 @@ EXPORT_SYMBOL(tasklet_kill);
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
void tasklet_unlock(struct tasklet_struct *t)
{
- smp_mb__before_atomic();
- clear_bit(TASKLET_STATE_RUN, &t->state);
- smp_mb__after_atomic();
- wake_up_var(&t->state);
+ clear_and_wake_up_bit(TASKLET_STATE_RUN, &t->state);
}
EXPORT_SYMBOL_GPL(tasklet_unlock);
void tasklet_unlock_wait(struct tasklet_struct *t)
{
- wait_var_event(&t->state, !test_bit(TASKLET_STATE_RUN, &t->state));
+ wait_on_bit(&t->state, TASKLET_STATE_RUN, TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL_GPL(tasklet_unlock_wait);
#endif
@@ -971,12 +987,57 @@ static struct smp_hotplug_thread softirq_threads = {
.thread_comm = "ksoftirqd/%u",
};
+#ifdef CONFIG_IRQ_FORCED_THREADING
+static void ktimerd_setup(unsigned int cpu)
+{
+ /* Above SCHED_NORMAL to handle timers before regular tasks. */
+ sched_set_fifo_low(current);
+}
+
+static int ktimerd_should_run(unsigned int cpu)
+{
+ return local_timers_pending_force_th();
+}
+
+void raise_ktimers_thread(unsigned int nr)
+{
+ trace_softirq_raise(nr);
+ __this_cpu_or(pending_timer_softirq, BIT(nr));
+}
+
+static void run_ktimerd(unsigned int cpu)
+{
+ unsigned int timer_si;
+
+ ksoftirqd_run_begin();
+
+ timer_si = local_timers_pending_force_th();
+ __this_cpu_write(pending_timer_softirq, 0);
+ or_softirq_pending(timer_si);
+
+ __do_softirq();
+
+ ksoftirqd_run_end();
+}
+
+static struct smp_hotplug_thread timer_thread = {
+ .store = &ktimerd,
+ .setup = ktimerd_setup,
+ .thread_should_run = ktimerd_should_run,
+ .thread_fn = run_ktimerd,
+ .thread_comm = "ktimers/%u",
+};
+#endif
+
static __init int spawn_ksoftirqd(void)
{
cpuhp_setup_state_nocalls(CPUHP_SOFTIRQ_DEAD, "softirq:dead", NULL,
takeover_tasklets);
BUG_ON(smpboot_register_percpu_thread(&softirq_threads));
-
+#ifdef CONFIG_IRQ_FORCED_THREADING
+ if (force_irqthreads())
+ BUG_ON(smpboot_register_percpu_thread(&timer_thread));
+#endif
return 0;
}
early_initcall(spawn_ksoftirqd);
diff --git a/kernel/sys.c b/kernel/sys.c
index 4da31f28fda8..c4c701c6f0b4 100644
--- a/kernel/sys.c
+++ b/kernel/sys.c
@@ -1911,12 +1911,11 @@ SYSCALL_DEFINE1(umask, int, mask)
static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
{
- struct fd exe;
+ CLASS(fd, exe)(fd);
struct inode *inode;
int err;
- exe = fdget(fd);
- if (!fd_file(exe))
+ if (fd_empty(exe))
return -EBADF;
inode = file_inode(fd_file(exe));
@@ -1926,18 +1925,14 @@ static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
* sure that this one is executable as well, to avoid breaking an
* overall picture.
*/
- err = -EACCES;
if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
- goto exit;
+ return -EACCES;
err = file_permission(fd_file(exe), MAY_EXEC);
if (err)
- goto exit;
+ return err;
- err = replace_mm_exe_file(mm, fd_file(exe));
-exit:
- fdput(exe);
- return err;
+ return replace_mm_exe_file(mm, fd_file(exe));
}
/*
@@ -2324,6 +2319,21 @@ int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
return -EINVAL;
}
+int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
+{
+ return -EINVAL;
+}
+
+int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
+{
+ return -EINVAL;
+}
+
+int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
+{
+ return -EINVAL;
+}
+
#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
#ifdef CONFIG_ANON_VMA_NAME
@@ -2784,6 +2794,21 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
case PR_RISCV_SET_ICACHE_FLUSH_CTX:
error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
break;
+ case PR_GET_SHADOW_STACK_STATUS:
+ if (arg3 || arg4 || arg5)
+ return -EINVAL;
+ error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2);
+ break;
+ case PR_SET_SHADOW_STACK_STATUS:
+ if (arg3 || arg4 || arg5)
+ return -EINVAL;
+ error = arch_set_shadow_stack_status(me, arg2);
+ break;
+ case PR_LOCK_SHADOW_STACK_STATUS:
+ if (arg3 || arg4 || arg5)
+ return -EINVAL;
+ error = arch_lock_shadow_stack_status(me, arg2);
+ break;
default:
error = -EINVAL;
break;
diff --git a/kernel/taskstats.c b/kernel/taskstats.c
index 0700f40c53ac..0cd680ccc7e5 100644
--- a/kernel/taskstats.c
+++ b/kernel/taskstats.c
@@ -411,15 +411,14 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
struct nlattr *na;
size_t size;
u32 fd;
- struct fd f;
na = info->attrs[CGROUPSTATS_CMD_ATTR_FD];
if (!na)
return -EINVAL;
fd = nla_get_u32(info->attrs[CGROUPSTATS_CMD_ATTR_FD]);
- f = fdget(fd);
- if (!fd_file(f))
+ CLASS(fd, f)(fd);
+ if (fd_empty(f))
return 0;
size = nla_total_size(sizeof(struct cgroupstats));
@@ -427,14 +426,13 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
rc = prepare_reply(info, CGROUPSTATS_CMD_NEW, &rep_skb,
size);
if (rc < 0)
- goto err;
+ return rc;
na = nla_reserve(rep_skb, CGROUPSTATS_TYPE_CGROUP_STATS,
sizeof(struct cgroupstats));
if (na == NULL) {
nlmsg_free(rep_skb);
- rc = -EMSGSIZE;
- goto err;
+ return -EMSGSIZE;
}
stats = nla_data(na);
@@ -443,14 +441,10 @@ static int cgroupstats_user_cmd(struct sk_buff *skb, struct genl_info *info)
rc = cgroupstats_build(stats, fd_file(f)->f_path.dentry);
if (rc < 0) {
nlmsg_free(rep_skb);
- goto err;
+ return rc;
}
- rc = send_reply(rep_skb, info);
-
-err:
- fdput(f);
- return rc;
+ return send_reply(rep_skb, info);
}
static int cmd_attr_register_cpumask(struct genl_info *info)
diff --git a/kernel/time/Kconfig b/kernel/time/Kconfig
index 8ebb6d5a106b..b0b97a60aaa6 100644
--- a/kernel/time/Kconfig
+++ b/kernel/time/Kconfig
@@ -17,11 +17,6 @@ config ARCH_CLOCKSOURCE_DATA
config ARCH_CLOCKSOURCE_INIT
bool
-# Clocksources require validation of the clocksource against the last
-# cycle update - x86/TSC misfeature
-config CLOCKSOURCE_VALIDATE_LAST_CYCLE
- bool
-
# Timekeeping vsyscall support
config GENERIC_TIME_VSYSCALL
bool
diff --git a/kernel/time/Makefile b/kernel/time/Makefile
index 4af2a264a160..fe0ae82124fe 100644
--- a/kernel/time/Makefile
+++ b/kernel/time/Makefile
@@ -1,5 +1,5 @@
# SPDX-License-Identifier: GPL-2.0
-obj-y += time.o timer.o hrtimer.o
+obj-y += time.o timer.o hrtimer.o sleep_timeout.o
obj-y += timekeeping.o ntp.o clocksource.o jiffies.o timer_list.o
obj-y += timeconv.o timecounter.o alarmtimer.o
diff --git a/kernel/time/alarmtimer.c b/kernel/time/alarmtimer.c
index 8bf888641694..0ddccdff119a 100644
--- a/kernel/time/alarmtimer.c
+++ b/kernel/time/alarmtimer.c
@@ -197,28 +197,15 @@ static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
{
struct alarm *alarm = container_of(timer, struct alarm, timer);
struct alarm_base *base = &alarm_bases[alarm->type];
- unsigned long flags;
- int ret = HRTIMER_NORESTART;
- int restart = ALARMTIMER_NORESTART;
- spin_lock_irqsave(&base->lock, flags);
- alarmtimer_dequeue(base, alarm);
- spin_unlock_irqrestore(&base->lock, flags);
+ scoped_guard (spinlock_irqsave, &base->lock)
+ alarmtimer_dequeue(base, alarm);
if (alarm->function)
- restart = alarm->function(alarm, base->get_ktime());
-
- spin_lock_irqsave(&base->lock, flags);
- if (restart != ALARMTIMER_NORESTART) {
- hrtimer_set_expires(&alarm->timer, alarm->node.expires);
- alarmtimer_enqueue(base, alarm);
- ret = HRTIMER_RESTART;
- }
- spin_unlock_irqrestore(&base->lock, flags);
+ alarm->function(alarm, base->get_ktime());
trace_alarmtimer_fired(alarm, base->get_ktime());
- return ret;
-
+ return HRTIMER_NORESTART;
}
ktime_t alarm_expires_remaining(const struct alarm *alarm)
@@ -334,10 +321,9 @@ static int alarmtimer_resume(struct device *dev)
static void
__alarm_init(struct alarm *alarm, enum alarmtimer_type type,
- enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+ void (*function)(struct alarm *, ktime_t))
{
timerqueue_init(&alarm->node);
- alarm->timer.function = alarmtimer_fired;
alarm->function = function;
alarm->type = type;
alarm->state = ALARMTIMER_STATE_INACTIVE;
@@ -350,10 +336,10 @@ __alarm_init(struct alarm *alarm, enum alarmtimer_type type,
* @function: callback that is run when the alarm fires
*/
void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
- enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+ void (*function)(struct alarm *, ktime_t))
{
- hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
- HRTIMER_MODE_ABS);
+ hrtimer_setup(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
+ HRTIMER_MODE_ABS);
__alarm_init(alarm, type, function);
}
EXPORT_SYMBOL_GPL(alarm_init);
@@ -480,35 +466,11 @@ u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
}
EXPORT_SYMBOL_GPL(alarm_forward);
-static u64 __alarm_forward_now(struct alarm *alarm, ktime_t interval, bool throttle)
+u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
{
struct alarm_base *base = &alarm_bases[alarm->type];
- ktime_t now = base->get_ktime();
-
- if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS) && throttle) {
- /*
- * Same issue as with posix_timer_fn(). Timers which are
- * periodic but the signal is ignored can starve the system
- * with a very small interval. The real fix which was
- * promised in the context of posix_timer_fn() never
- * materialized, but someone should really work on it.
- *
- * To prevent DOS fake @now to be 1 jiffy out which keeps
- * the overrun accounting correct but creates an
- * inconsistency vs. timer_gettime(2).
- */
- ktime_t kj = NSEC_PER_SEC / HZ;
- if (interval < kj)
- now = ktime_add(now, kj);
- }
-
- return alarm_forward(alarm, now, interval);
-}
-
-u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
-{
- return __alarm_forward_now(alarm, interval, false);
+ return alarm_forward(alarm, base->get_ktime(), interval);
}
EXPORT_SYMBOL_GPL(alarm_forward_now);
@@ -567,30 +529,12 @@ static enum alarmtimer_type clock2alarm(clockid_t clockid)
*
* Return: whether the timer is to be restarted
*/
-static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
- ktime_t now)
+static void alarm_handle_timer(struct alarm *alarm, ktime_t now)
{
- struct k_itimer *ptr = container_of(alarm, struct k_itimer,
- it.alarm.alarmtimer);
- enum alarmtimer_restart result = ALARMTIMER_NORESTART;
- unsigned long flags;
+ struct k_itimer *ptr = container_of(alarm, struct k_itimer, it.alarm.alarmtimer);
- spin_lock_irqsave(&ptr->it_lock, flags);
-
- if (posix_timer_queue_signal(ptr) && ptr->it_interval) {
- /*
- * Handle ignored signals and rearm the timer. This will go
- * away once we handle ignored signals proper. Ensure that
- * small intervals cannot starve the system.
- */
- ptr->it_overrun += __alarm_forward_now(alarm, ptr->it_interval, true);
- ++ptr->it_requeue_pending;
- ptr->it_active = 1;
- result = ALARMTIMER_RESTART;
- }
- spin_unlock_irqrestore(&ptr->it_lock, flags);
-
- return result;
+ guard(spinlock_irqsave)(&ptr->it_lock);
+ posix_timer_queue_signal(ptr);
}
/**
@@ -751,18 +695,14 @@ static int alarm_timer_create(struct k_itimer *new_timer)
* @now: time at the timer expiration
*
* Wakes up the task that set the alarmtimer
- *
- * Return: ALARMTIMER_NORESTART
*/
-static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
- ktime_t now)
+static void alarmtimer_nsleep_wakeup(struct alarm *alarm, ktime_t now)
{
struct task_struct *task = alarm->data;
alarm->data = NULL;
if (task)
wake_up_process(task);
- return ALARMTIMER_NORESTART;
}
/**
@@ -814,10 +754,10 @@ static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp,
static void
alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type,
- enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
+ void (*function)(struct alarm *, ktime_t))
{
- hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid,
- HRTIMER_MODE_ABS);
+ hrtimer_setup_on_stack(&alarm->timer, alarmtimer_fired, alarm_bases[type].base_clockid,
+ HRTIMER_MODE_ABS);
__alarm_init(alarm, type, function);
}
diff --git a/kernel/time/clockevents.c b/kernel/time/clockevents.c
index 78c7bd64d0dd..f3e831f62906 100644
--- a/kernel/time/clockevents.c
+++ b/kernel/time/clockevents.c
@@ -337,13 +337,21 @@ int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
}
/*
- * Called after a notify add to make devices available which were
- * released from the notifier call.
+ * Called after a clockevent has been added which might
+ * have replaced a current regular or broadcast device. A
+ * released normal device might be a suitable replacement
+ * for the current broadcast device. Similarly a released
+ * broadcast device might be a suitable replacement for a
+ * normal device.
*/
static void clockevents_notify_released(void)
{
struct clock_event_device *dev;
+ /*
+ * Keep iterating as long as tick_check_new_device()
+ * replaces a device.
+ */
while (!list_empty(&clockevents_released)) {
dev = list_entry(clockevents_released.next,
struct clock_event_device, list);
@@ -610,39 +618,30 @@ void clockevents_resume(void)
#ifdef CONFIG_HOTPLUG_CPU
-# ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
/**
- * tick_offline_cpu - Take CPU out of the broadcast mechanism
+ * tick_offline_cpu - Shutdown all clock events related
+ * to this CPU and take it out of the
+ * broadcast mechanism.
* @cpu: The outgoing CPU
*
- * Called on the outgoing CPU after it took itself offline.
+ * Called by the dying CPU during teardown.
*/
void tick_offline_cpu(unsigned int cpu)
{
- raw_spin_lock(&clockevents_lock);
- tick_broadcast_offline(cpu);
- raw_spin_unlock(&clockevents_lock);
-}
-# endif
-
-/**
- * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
- * @cpu: The dead CPU
- */
-void tick_cleanup_dead_cpu(int cpu)
-{
struct clock_event_device *dev, *tmp;
- unsigned long flags;
- raw_spin_lock_irqsave(&clockevents_lock, flags);
+ raw_spin_lock(&clockevents_lock);
+ tick_broadcast_offline(cpu);
tick_shutdown(cpu);
+
/*
* Unregister the clock event devices which were
- * released from the users in the notify chain.
+ * released above.
*/
list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
list_del(&dev->list);
+
/*
* Now check whether the CPU has left unused per cpu devices
*/
@@ -654,7 +653,8 @@ void tick_cleanup_dead_cpu(int cpu)
list_del(&dev->list);
}
}
- raw_spin_unlock_irqrestore(&clockevents_lock, flags);
+
+ raw_spin_unlock(&clockevents_lock);
}
#endif
diff --git a/kernel/time/clocksource.c b/kernel/time/clocksource.c
index 23336eecb4f4..aab6472853fa 100644
--- a/kernel/time/clocksource.c
+++ b/kernel/time/clocksource.c
@@ -20,6 +20,8 @@
#include "tick-internal.h"
#include "timekeeping_internal.h"
+static void clocksource_enqueue(struct clocksource *cs);
+
static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
{
u64 delta = clocksource_delta(end, start, cs->mask);
@@ -171,7 +173,6 @@ static inline void clocksource_watchdog_unlock(unsigned long *flags)
}
static int clocksource_watchdog_kthread(void *data);
-static void __clocksource_change_rating(struct clocksource *cs, int rating);
static void clocksource_watchdog_work(struct work_struct *work)
{
@@ -191,6 +192,13 @@ static void clocksource_watchdog_work(struct work_struct *work)
kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
}
+static void clocksource_change_rating(struct clocksource *cs, int rating)
+{
+ list_del(&cs->list);
+ cs->rating = rating;
+ clocksource_enqueue(cs);
+}
+
static void __clocksource_unstable(struct clocksource *cs)
{
cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
@@ -697,7 +705,7 @@ static int __clocksource_watchdog_kthread(void)
list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
list_del_init(&cs->wd_list);
- __clocksource_change_rating(cs, 0);
+ clocksource_change_rating(cs, 0);
select = 1;
}
if (cs->flags & CLOCK_SOURCE_RESELECT) {
@@ -1255,34 +1263,6 @@ int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
}
EXPORT_SYMBOL_GPL(__clocksource_register_scale);
-static void __clocksource_change_rating(struct clocksource *cs, int rating)
-{
- list_del(&cs->list);
- cs->rating = rating;
- clocksource_enqueue(cs);
-}
-
-/**
- * clocksource_change_rating - Change the rating of a registered clocksource
- * @cs: clocksource to be changed
- * @rating: new rating
- */
-void clocksource_change_rating(struct clocksource *cs, int rating)
-{
- unsigned long flags;
-
- mutex_lock(&clocksource_mutex);
- clocksource_watchdog_lock(&flags);
- __clocksource_change_rating(cs, rating);
- clocksource_watchdog_unlock(&flags);
-
- clocksource_select();
- clocksource_select_watchdog(false);
- clocksource_suspend_select(false);
- mutex_unlock(&clocksource_mutex);
-}
-EXPORT_SYMBOL(clocksource_change_rating);
-
/*
* Unbind clocksource @cs. Called with clocksource_mutex held
*/
diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c
index cddcd08ea827..80fe3749d2db 100644
--- a/kernel/time/hrtimer.c
+++ b/kernel/time/hrtimer.c
@@ -417,6 +417,11 @@ static inline void debug_hrtimer_init(struct hrtimer *timer)
debug_object_init(timer, &hrtimer_debug_descr);
}
+static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
+{
+ debug_object_init_on_stack(timer, &hrtimer_debug_descr);
+}
+
static inline void debug_hrtimer_activate(struct hrtimer *timer,
enum hrtimer_mode mode)
{
@@ -428,28 +433,6 @@ static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
debug_object_deactivate(timer, &hrtimer_debug_descr);
}
-static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode);
-
-void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
- enum hrtimer_mode mode)
-{
- debug_object_init_on_stack(timer, &hrtimer_debug_descr);
- __hrtimer_init(timer, clock_id, mode);
-}
-EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
-
-static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
- clockid_t clock_id, enum hrtimer_mode mode);
-
-void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
- clockid_t clock_id, enum hrtimer_mode mode)
-{
- debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
- __hrtimer_init_sleeper(sl, clock_id, mode);
-}
-EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
-
void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
debug_object_free(timer, &hrtimer_debug_descr);
@@ -459,6 +442,7 @@ EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
+static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer,
enum hrtimer_mode mode) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
@@ -472,6 +456,13 @@ debug_init(struct hrtimer *timer, clockid_t clockid,
trace_hrtimer_init(timer, clockid, mode);
}
+static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid,
+ enum hrtimer_mode mode)
+{
+ debug_hrtimer_init_on_stack(timer);
+ trace_hrtimer_init(timer, clockid, mode);
+}
+
static inline void debug_activate(struct hrtimer *timer,
enum hrtimer_mode mode)
{
@@ -1544,6 +1535,11 @@ static inline int hrtimer_clockid_to_base(clockid_t clock_id)
return HRTIMER_BASE_MONOTONIC;
}
+static enum hrtimer_restart hrtimer_dummy_timeout(struct hrtimer *unused)
+{
+ return HRTIMER_NORESTART;
+}
+
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
enum hrtimer_mode mode)
{
@@ -1580,6 +1576,18 @@ static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
timerqueue_init(&timer->node);
}
+static void __hrtimer_setup(struct hrtimer *timer,
+ enum hrtimer_restart (*function)(struct hrtimer *),
+ clockid_t clock_id, enum hrtimer_mode mode)
+{
+ __hrtimer_init(timer, clock_id, mode);
+
+ if (WARN_ON_ONCE(!function))
+ timer->function = hrtimer_dummy_timeout;
+ else
+ timer->function = function;
+}
+
/**
* hrtimer_init - initialize a timer to the given clock
* @timer: the timer to be initialized
@@ -1600,6 +1608,46 @@ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
}
EXPORT_SYMBOL_GPL(hrtimer_init);
+/**
+ * hrtimer_setup - initialize a timer to the given clock
+ * @timer: the timer to be initialized
+ * @function: the callback function
+ * @clock_id: the clock to be used
+ * @mode: The modes which are relevant for initialization:
+ * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
+ * HRTIMER_MODE_REL_SOFT
+ *
+ * The PINNED variants of the above can be handed in,
+ * but the PINNED bit is ignored as pinning happens
+ * when the hrtimer is started
+ */
+void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
+ clockid_t clock_id, enum hrtimer_mode mode)
+{
+ debug_init(timer, clock_id, mode);
+ __hrtimer_setup(timer, function, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_setup);
+
+/**
+ * hrtimer_setup_on_stack - initialize a timer on stack memory
+ * @timer: The timer to be initialized
+ * @function: the callback function
+ * @clock_id: The clock to be used
+ * @mode: The timer mode
+ *
+ * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
+ * memory.
+ */
+void hrtimer_setup_on_stack(struct hrtimer *timer,
+ enum hrtimer_restart (*function)(struct hrtimer *),
+ clockid_t clock_id, enum hrtimer_mode mode)
+{
+ debug_init_on_stack(timer, clock_id, mode);
+ __hrtimer_setup(timer, function, clock_id, mode);
+}
+EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
+
/*
* A timer is active, when it is enqueued into the rbtree or the
* callback function is running or it's in the state of being migrated
@@ -1811,7 +1859,7 @@ retry:
if (!ktime_before(now, cpu_base->softirq_expires_next)) {
cpu_base->softirq_expires_next = KTIME_MAX;
cpu_base->softirq_activated = 1;
- raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+ raise_timer_softirq(HRTIMER_SOFTIRQ);
}
__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
@@ -1906,7 +1954,7 @@ void hrtimer_run_queues(void)
if (!ktime_before(now, cpu_base->softirq_expires_next)) {
cpu_base->softirq_expires_next = KTIME_MAX;
cpu_base->softirq_activated = 1;
- raise_softirq_irqoff(HRTIMER_SOFTIRQ);
+ raise_timer_softirq(HRTIMER_SOFTIRQ);
}
__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
@@ -1944,7 +1992,7 @@ void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
* Make the enqueue delivery mode check work on RT. If the sleeper
* was initialized for hard interrupt delivery, force the mode bit.
* This is a special case for hrtimer_sleepers because
- * hrtimer_init_sleeper() determines the delivery mode on RT so the
+ * __hrtimer_init_sleeper() determines the delivery mode on RT so the
* fiddling with this decision is avoided at the call sites.
*/
if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
@@ -1987,19 +2035,18 @@ static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
}
/**
- * hrtimer_init_sleeper - initialize sleeper to the given clock
+ * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
* @sl: sleeper to be initialized
* @clock_id: the clock to be used
* @mode: timer mode abs/rel
*/
-void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
- enum hrtimer_mode mode)
+void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
+ clockid_t clock_id, enum hrtimer_mode mode)
{
- debug_init(&sl->timer, clock_id, mode);
+ debug_init_on_stack(&sl->timer, clock_id, mode);
__hrtimer_init_sleeper(sl, clock_id, mode);
-
}
-EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
+EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
{
@@ -2060,8 +2107,7 @@ static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
struct hrtimer_sleeper t;
int ret;
- hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
- HRTIMER_MODE_ABS);
+ hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
destroy_hrtimer_on_stack(&t.timer);
@@ -2075,7 +2121,7 @@ long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
struct hrtimer_sleeper t;
int ret = 0;
- hrtimer_init_sleeper_on_stack(&t, clockid, mode);
+ hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
ret = do_nanosleep(&t, mode);
if (ret != -ERESTART_RESTARTBLOCK)
@@ -2242,123 +2288,3 @@ void __init hrtimers_init(void)
hrtimers_prepare_cpu(smp_processor_id());
open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
}
-
-/**
- * schedule_hrtimeout_range_clock - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode
- * @clock_id: timer clock to be used
- */
-int __sched
-schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
- const enum hrtimer_mode mode, clockid_t clock_id)
-{
- struct hrtimer_sleeper t;
-
- /*
- * Optimize when a zero timeout value is given. It does not
- * matter whether this is an absolute or a relative time.
- */
- if (expires && *expires == 0) {
- __set_current_state(TASK_RUNNING);
- return 0;
- }
-
- /*
- * A NULL parameter means "infinite"
- */
- if (!expires) {
- schedule();
- return -EINTR;
- }
-
- hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
- hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
- hrtimer_sleeper_start_expires(&t, mode);
-
- if (likely(t.task))
- schedule();
-
- hrtimer_cancel(&t.timer);
- destroy_hrtimer_on_stack(&t.timer);
-
- __set_current_state(TASK_RUNNING);
-
- return !t.task ? 0 : -EINTR;
-}
-EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
-
-/**
- * schedule_hrtimeout_range - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @delta: slack in expires timeout (ktime_t)
- * @mode: timer mode
- *
- * Make the current task sleep until the given expiry time has
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * The @delta argument gives the kernel the freedom to schedule the
- * actual wakeup to a time that is both power and performance friendly
- * for regular (non RT/DL) tasks.
- * The kernel give the normal best effort behavior for "@expires+@delta",
- * but may decide to fire the timer earlier, but no earlier than @expires.
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Returns 0 when the timer has expired. If the task was woken before the
- * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
- * by an explicit wakeup, it returns -EINTR.
- */
-int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
- const enum hrtimer_mode mode)
-{
- return schedule_hrtimeout_range_clock(expires, delta, mode,
- CLOCK_MONOTONIC);
-}
-EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
-
-/**
- * schedule_hrtimeout - sleep until timeout
- * @expires: timeout value (ktime_t)
- * @mode: timer mode
- *
- * Make the current task sleep until the given expiry time has
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Returns 0 when the timer has expired. If the task was woken before the
- * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
- * by an explicit wakeup, it returns -EINTR.
- */
-int __sched schedule_hrtimeout(ktime_t *expires,
- const enum hrtimer_mode mode)
-{
- return schedule_hrtimeout_range(expires, 0, mode);
-}
-EXPORT_SYMBOL_GPL(schedule_hrtimeout);
diff --git a/kernel/time/itimer.c b/kernel/time/itimer.c
index 00629e658ca1..876d389b2e21 100644
--- a/kernel/time/itimer.c
+++ b/kernel/time/itimer.c
@@ -151,7 +151,27 @@ COMPAT_SYSCALL_DEFINE2(getitimer, int, which,
#endif
/*
- * The timer is automagically restarted, when interval != 0
+ * Invoked from dequeue_signal() when SIG_ALRM is delivered.
+ *
+ * Restart the ITIMER_REAL timer if it is armed as periodic timer. Doing
+ * this in the signal delivery path instead of self rearming prevents a DoS
+ * with small increments in the high reolution timer case and reduces timer
+ * noise in general.
+ */
+void posixtimer_rearm_itimer(struct task_struct *tsk)
+{
+ struct hrtimer *tmr = &tsk->signal->real_timer;
+
+ if (!hrtimer_is_queued(tmr) && tsk->signal->it_real_incr != 0) {
+ hrtimer_forward(tmr, tmr->base->get_time(),
+ tsk->signal->it_real_incr);
+ hrtimer_restart(tmr);
+ }
+}
+
+/*
+ * Interval timers are restarted in the signal delivery path. See
+ * posixtimer_rearm_itimer().
*/
enum hrtimer_restart it_real_fn(struct hrtimer *timer)
{
diff --git a/kernel/time/ntp.c b/kernel/time/ntp.c
index 802b336f4b8c..b550ebe0f03b 100644
--- a/kernel/time/ntp.c
+++ b/kernel/time/ntp.c
@@ -22,22 +22,79 @@
#include "ntp_internal.h"
#include "timekeeping_internal.h"
-
-/*
- * NTP timekeeping variables:
+/**
+ * struct ntp_data - Structure holding all NTP related state
+ * @tick_usec: USER_HZ period in microseconds
+ * @tick_length: Adjusted tick length
+ * @tick_length_base: Base value for @tick_length
+ * @time_state: State of the clock synchronization
+ * @time_status: Clock status bits
+ * @time_offset: Time adjustment in nanoseconds
+ * @time_constant: PLL time constant
+ * @time_maxerror: Maximum error in microseconds holding the NTP sync distance
+ * (NTP dispersion + delay / 2)
+ * @time_esterror: Estimated error in microseconds holding NTP dispersion
+ * @time_freq: Frequency offset scaled nsecs/secs
+ * @time_reftime: Time at last adjustment in seconds
+ * @time_adjust: Adjustment value
+ * @ntp_tick_adj: Constant boot-param configurable NTP tick adjustment (upscaled)
+ * @ntp_next_leap_sec: Second value of the next pending leapsecond, or TIME64_MAX if no leap
*
- * Note: All of the NTP state is protected by the timekeeping locks.
+ * @pps_valid: PPS signal watchdog counter
+ * @pps_tf: PPS phase median filter
+ * @pps_jitter: PPS current jitter in nanoseconds
+ * @pps_fbase: PPS beginning of the last freq interval
+ * @pps_shift: PPS current interval duration in seconds (shift value)
+ * @pps_intcnt: PPS interval counter
+ * @pps_freq: PPS frequency offset in scaled ns/s
+ * @pps_stabil: PPS current stability in scaled ns/s
+ * @pps_calcnt: PPS monitor: calibration intervals
+ * @pps_jitcnt: PPS monitor: jitter limit exceeded
+ * @pps_stbcnt: PPS monitor: stability limit exceeded
+ * @pps_errcnt: PPS monitor: calibration errors
+ *
+ * Protected by the timekeeping locks.
*/
+struct ntp_data {
+ unsigned long tick_usec;
+ u64 tick_length;
+ u64 tick_length_base;
+ int time_state;
+ int time_status;
+ s64 time_offset;
+ long time_constant;
+ long time_maxerror;
+ long time_esterror;
+ s64 time_freq;
+ time64_t time_reftime;
+ long time_adjust;
+ s64 ntp_tick_adj;
+ time64_t ntp_next_leap_sec;
+#ifdef CONFIG_NTP_PPS
+ int pps_valid;
+ long pps_tf[3];
+ long pps_jitter;
+ struct timespec64 pps_fbase;
+ int pps_shift;
+ int pps_intcnt;
+ s64 pps_freq;
+ long pps_stabil;
+ long pps_calcnt;
+ long pps_jitcnt;
+ long pps_stbcnt;
+ long pps_errcnt;
+#endif
+};
-
-/* USER_HZ period (usecs): */
-unsigned long tick_usec = USER_TICK_USEC;
-
-/* SHIFTED_HZ period (nsecs): */
-unsigned long tick_nsec;
-
-static u64 tick_length;
-static u64 tick_length_base;
+static struct ntp_data tk_ntp_data = {
+ .tick_usec = USER_TICK_USEC,
+ .time_state = TIME_OK,
+ .time_status = STA_UNSYNC,
+ .time_constant = 2,
+ .time_maxerror = NTP_PHASE_LIMIT,
+ .time_esterror = NTP_PHASE_LIMIT,
+ .ntp_next_leap_sec = TIME64_MAX,
+};
#define SECS_PER_DAY 86400
#define MAX_TICKADJ 500LL /* usecs */
@@ -45,46 +102,6 @@ static u64 tick_length_base;
(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
#define MAX_TAI_OFFSET 100000
-/*
- * phase-lock loop variables
- */
-
-/*
- * clock synchronization status
- *
- * (TIME_ERROR prevents overwriting the CMOS clock)
- */
-static int time_state = TIME_OK;
-
-/* clock status bits: */
-static int time_status = STA_UNSYNC;
-
-/* time adjustment (nsecs): */
-static s64 time_offset;
-
-/* pll time constant: */
-static long time_constant = 2;
-
-/* maximum error (usecs): */
-static long time_maxerror = NTP_PHASE_LIMIT;
-
-/* estimated error (usecs): */
-static long time_esterror = NTP_PHASE_LIMIT;
-
-/* frequency offset (scaled nsecs/secs): */
-static s64 time_freq;
-
-/* time at last adjustment (secs): */
-static time64_t time_reftime;
-
-static long time_adjust;
-
-/* constant (boot-param configurable) NTP tick adjustment (upscaled) */
-static s64 ntp_tick_adj;
-
-/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
-static time64_t ntp_next_leap_sec = TIME64_MAX;
-
#ifdef CONFIG_NTP_PPS
/*
@@ -101,128 +118,115 @@ static time64_t ntp_next_leap_sec = TIME64_MAX;
intervals to decrease it */
#define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
-static int pps_valid; /* signal watchdog counter */
-static long pps_tf[3]; /* phase median filter */
-static long pps_jitter; /* current jitter (ns) */
-static struct timespec64 pps_fbase; /* beginning of the last freq interval */
-static int pps_shift; /* current interval duration (s) (shift) */
-static int pps_intcnt; /* interval counter */
-static s64 pps_freq; /* frequency offset (scaled ns/s) */
-static long pps_stabil; /* current stability (scaled ns/s) */
-
/*
- * PPS signal quality monitors
- */
-static long pps_calcnt; /* calibration intervals */
-static long pps_jitcnt; /* jitter limit exceeded */
-static long pps_stbcnt; /* stability limit exceeded */
-static long pps_errcnt; /* calibration errors */
-
-
-/* PPS kernel consumer compensates the whole phase error immediately.
+ * PPS kernel consumer compensates the whole phase error immediately.
* Otherwise, reduce the offset by a fixed factor times the time constant.
*/
-static inline s64 ntp_offset_chunk(s64 offset)
+static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
{
- if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
+ if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL)
return offset;
else
- return shift_right(offset, SHIFT_PLL + time_constant);
+ return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
}
-static inline void pps_reset_freq_interval(void)
+static inline void pps_reset_freq_interval(struct ntp_data *ntpdata)
{
- /* the PPS calibration interval may end
- surprisingly early */
- pps_shift = PPS_INTMIN;
- pps_intcnt = 0;
+ /* The PPS calibration interval may end surprisingly early */
+ ntpdata->pps_shift = PPS_INTMIN;
+ ntpdata->pps_intcnt = 0;
}
/**
* pps_clear - Clears the PPS state variables
+ * @ntpdata: Pointer to ntp data
*/
-static inline void pps_clear(void)
+static inline void pps_clear(struct ntp_data *ntpdata)
{
- pps_reset_freq_interval();
- pps_tf[0] = 0;
- pps_tf[1] = 0;
- pps_tf[2] = 0;
- pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
- pps_freq = 0;
+ pps_reset_freq_interval(ntpdata);
+ ntpdata->pps_tf[0] = 0;
+ ntpdata->pps_tf[1] = 0;
+ ntpdata->pps_tf[2] = 0;
+ ntpdata->pps_fbase.tv_sec = ntpdata->pps_fbase.tv_nsec = 0;
+ ntpdata->pps_freq = 0;
}
-/* Decrease pps_valid to indicate that another second has passed since
- * the last PPS signal. When it reaches 0, indicate that PPS signal is
- * missing.
+/*
+ * Decrease pps_valid to indicate that another second has passed since the
+ * last PPS signal. When it reaches 0, indicate that PPS signal is missing.
*/
-static inline void pps_dec_valid(void)
+static inline void pps_dec_valid(struct ntp_data *ntpdata)
{
- if (pps_valid > 0)
- pps_valid--;
- else {
- time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
- STA_PPSWANDER | STA_PPSERROR);
- pps_clear();
+ if (ntpdata->pps_valid > 0) {
+ ntpdata->pps_valid--;
+ } else {
+ ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
+ STA_PPSWANDER | STA_PPSERROR);
+ pps_clear(ntpdata);
}
}
-static inline void pps_set_freq(s64 freq)
+static inline void pps_set_freq(struct ntp_data *ntpdata)
{
- pps_freq = freq;
+ ntpdata->pps_freq = ntpdata->time_freq;
}
-static inline int is_error_status(int status)
+static inline bool is_error_status(int status)
{
return (status & (STA_UNSYNC|STA_CLOCKERR))
- /* PPS signal lost when either PPS time or
- * PPS frequency synchronization requested
+ /*
+ * PPS signal lost when either PPS time or PPS frequency
+ * synchronization requested
*/
|| ((status & (STA_PPSFREQ|STA_PPSTIME))
&& !(status & STA_PPSSIGNAL))
- /* PPS jitter exceeded when
- * PPS time synchronization requested */
+ /*
+ * PPS jitter exceeded when PPS time synchronization
+ * requested
+ */
|| ((status & (STA_PPSTIME|STA_PPSJITTER))
== (STA_PPSTIME|STA_PPSJITTER))
- /* PPS wander exceeded or calibration error when
- * PPS frequency synchronization requested
+ /*
+ * PPS wander exceeded or calibration error when PPS
+ * frequency synchronization requested
*/
|| ((status & STA_PPSFREQ)
&& (status & (STA_PPSWANDER|STA_PPSERROR)));
}
-static inline void pps_fill_timex(struct __kernel_timex *txc)
+static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
- txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
+ txc->ppsfreq = shift_right((ntpdata->pps_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
- txc->jitter = pps_jitter;
- if (!(time_status & STA_NANO))
- txc->jitter = pps_jitter / NSEC_PER_USEC;
- txc->shift = pps_shift;
- txc->stabil = pps_stabil;
- txc->jitcnt = pps_jitcnt;
- txc->calcnt = pps_calcnt;
- txc->errcnt = pps_errcnt;
- txc->stbcnt = pps_stbcnt;
+ txc->jitter = ntpdata->pps_jitter;
+ if (!(ntpdata->time_status & STA_NANO))
+ txc->jitter = ntpdata->pps_jitter / NSEC_PER_USEC;
+ txc->shift = ntpdata->pps_shift;
+ txc->stabil = ntpdata->pps_stabil;
+ txc->jitcnt = ntpdata->pps_jitcnt;
+ txc->calcnt = ntpdata->pps_calcnt;
+ txc->errcnt = ntpdata->pps_errcnt;
+ txc->stbcnt = ntpdata->pps_stbcnt;
}
#else /* !CONFIG_NTP_PPS */
-static inline s64 ntp_offset_chunk(s64 offset)
+static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset)
{
- return shift_right(offset, SHIFT_PLL + time_constant);
+ return shift_right(offset, SHIFT_PLL + ntpdata->time_constant);
}
-static inline void pps_reset_freq_interval(void) {}
-static inline void pps_clear(void) {}
-static inline void pps_dec_valid(void) {}
-static inline void pps_set_freq(s64 freq) {}
+static inline void pps_reset_freq_interval(struct ntp_data *ntpdata) {}
+static inline void pps_clear(struct ntp_data *ntpdata) {}
+static inline void pps_dec_valid(struct ntp_data *ntpdata) {}
+static inline void pps_set_freq(struct ntp_data *ntpdata) {}
-static inline int is_error_status(int status)
+static inline bool is_error_status(int status)
{
return status & (STA_UNSYNC|STA_CLOCKERR);
}
-static inline void pps_fill_timex(struct __kernel_timex *txc)
+static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc)
{
/* PPS is not implemented, so these are zero */
txc->ppsfreq = 0;
@@ -237,138 +241,123 @@ static inline void pps_fill_timex(struct __kernel_timex *txc)
#endif /* CONFIG_NTP_PPS */
-
-/**
- * ntp_synced - Returns 1 if the NTP status is not UNSYNC
- *
- */
-static inline int ntp_synced(void)
-{
- return !(time_status & STA_UNSYNC);
-}
-
-
/*
- * NTP methods:
+ * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and
+ * time_freq:
*/
-
-/*
- * Update (tick_length, tick_length_base, tick_nsec), based
- * on (tick_usec, ntp_tick_adj, time_freq):
- */
-static void ntp_update_frequency(void)
+static void ntp_update_frequency(struct ntp_data *ntpdata)
{
- u64 second_length;
- u64 new_base;
+ u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec;
- second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
- << NTP_SCALE_SHIFT;
+ second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT;
- second_length += ntp_tick_adj;
- second_length += time_freq;
+ second_length += ntpdata->ntp_tick_adj;
+ second_length += ntpdata->time_freq;
- tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
/*
- * Don't wait for the next second_overflow, apply
- * the change to the tick length immediately:
+ * Don't wait for the next second_overflow, apply the change to the
+ * tick length immediately:
*/
- tick_length += new_base - tick_length_base;
- tick_length_base = new_base;
+ ntpdata->tick_length += new_base - ntpdata->tick_length_base;
+ ntpdata->tick_length_base = new_base;
}
-static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
+static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs)
{
- time_status &= ~STA_MODE;
+ ntpdata->time_status &= ~STA_MODE;
if (secs < MINSEC)
return 0;
- if (!(time_status & STA_FLL) && (secs <= MAXSEC))
+ if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC))
return 0;
- time_status |= STA_MODE;
+ ntpdata->time_status |= STA_MODE;
return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
}
-static void ntp_update_offset(long offset)
+static void ntp_update_offset(struct ntp_data *ntpdata, long offset)
{
- s64 freq_adj;
- s64 offset64;
- long secs;
+ s64 freq_adj, offset64;
+ long secs, real_secs;
- if (!(time_status & STA_PLL))
+ if (!(ntpdata->time_status & STA_PLL))
return;
- if (!(time_status & STA_NANO)) {
+ if (!(ntpdata->time_status & STA_NANO)) {
/* Make sure the multiplication below won't overflow */
offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
offset *= NSEC_PER_USEC;
}
- /*
- * Scale the phase adjustment and
- * clamp to the operating range.
- */
+ /* Scale the phase adjustment and clamp to the operating range. */
offset = clamp(offset, -MAXPHASE, MAXPHASE);
/*
* Select how the frequency is to be controlled
* and in which mode (PLL or FLL).
*/
- secs = (long)(__ktime_get_real_seconds() - time_reftime);
- if (unlikely(time_status & STA_FREQHOLD))
+ real_secs = __ktime_get_real_seconds();
+ secs = (long)(real_secs - ntpdata->time_reftime);
+ if (unlikely(ntpdata->time_status & STA_FREQHOLD))
secs = 0;
- time_reftime = __ktime_get_real_seconds();
+ ntpdata->time_reftime = real_secs;
offset64 = offset;
- freq_adj = ntp_update_offset_fll(offset64, secs);
+ freq_adj = ntp_update_offset_fll(ntpdata, offset64, secs);
/*
* Clamp update interval to reduce PLL gain with low
* sampling rate (e.g. intermittent network connection)
* to avoid instability.
*/
- if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
- secs = 1 << (SHIFT_PLL + 1 + time_constant);
+ if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant)))
+ secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant);
freq_adj += (offset64 * secs) <<
- (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
+ (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant));
- freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
+ freq_adj = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED);
- time_freq = max(freq_adj, -MAXFREQ_SCALED);
+ ntpdata->time_freq = max(freq_adj, -MAXFREQ_SCALED);
- time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
+ ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
}
-/**
- * ntp_clear - Clears the NTP state variables
- */
-void ntp_clear(void)
+static void __ntp_clear(struct ntp_data *ntpdata)
{
- time_adjust = 0; /* stop active adjtime() */
- time_status |= STA_UNSYNC;
- time_maxerror = NTP_PHASE_LIMIT;
- time_esterror = NTP_PHASE_LIMIT;
+ /* Stop active adjtime() */
+ ntpdata->time_adjust = 0;
+ ntpdata->time_status |= STA_UNSYNC;
+ ntpdata->time_maxerror = NTP_PHASE_LIMIT;
+ ntpdata->time_esterror = NTP_PHASE_LIMIT;
- ntp_update_frequency();
+ ntp_update_frequency(ntpdata);
- tick_length = tick_length_base;
- time_offset = 0;
+ ntpdata->tick_length = ntpdata->tick_length_base;
+ ntpdata->time_offset = 0;
- ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
/* Clear PPS state variables */
- pps_clear();
+ pps_clear(ntpdata);
+}
+
+/**
+ * ntp_clear - Clears the NTP state variables
+ */
+void ntp_clear(void)
+{
+ __ntp_clear(&tk_ntp_data);
}
u64 ntp_tick_length(void)
{
- return tick_length;
+ return tk_ntp_data.tick_length;
}
/**
@@ -379,16 +368,17 @@ u64 ntp_tick_length(void)
*/
ktime_t ntp_get_next_leap(void)
{
+ struct ntp_data *ntpdata = &tk_ntp_data;
ktime_t ret;
- if ((time_state == TIME_INS) && (time_status & STA_INS))
- return ktime_set(ntp_next_leap_sec, 0);
+ if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS))
+ return ktime_set(ntpdata->ntp_next_leap_sec, 0);
ret = KTIME_MAX;
return ret;
}
/*
- * this routine handles the overflow of the microsecond field
+ * This routine handles the overflow of the microsecond field
*
* The tricky bits of code to handle the accurate clock support
* were provided by Dave Mills ([email protected]) of NTP fame.
@@ -399,6 +389,7 @@ ktime_t ntp_get_next_leap(void)
*/
int second_overflow(time64_t secs)
{
+ struct ntp_data *ntpdata = &tk_ntp_data;
s64 delta;
int leap = 0;
s32 rem;
@@ -408,87 +399,84 @@ int second_overflow(time64_t secs)
* day, the system clock is set back one second; if in leap-delete
* state, the system clock is set ahead one second.
*/
- switch (time_state) {
+ switch (ntpdata->time_state) {
case TIME_OK:
- if (time_status & STA_INS) {
- time_state = TIME_INS;
+ if (ntpdata->time_status & STA_INS) {
+ ntpdata->time_state = TIME_INS;
div_s64_rem(secs, SECS_PER_DAY, &rem);
- ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
- } else if (time_status & STA_DEL) {
- time_state = TIME_DEL;
+ ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
+ } else if (ntpdata->time_status & STA_DEL) {
+ ntpdata->time_state = TIME_DEL;
div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
- ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
+ ntpdata->ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
}
break;
case TIME_INS:
- if (!(time_status & STA_INS)) {
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_OK;
- } else if (secs == ntp_next_leap_sec) {
+ if (!(ntpdata->time_status & STA_INS)) {
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_OK;
+ } else if (secs == ntpdata->ntp_next_leap_sec) {
leap = -1;
- time_state = TIME_OOP;
- printk(KERN_NOTICE
- "Clock: inserting leap second 23:59:60 UTC\n");
+ ntpdata->time_state = TIME_OOP;
+ pr_notice("Clock: inserting leap second 23:59:60 UTC\n");
}
break;
case TIME_DEL:
- if (!(time_status & STA_DEL)) {
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_OK;
- } else if (secs == ntp_next_leap_sec) {
+ if (!(ntpdata->time_status & STA_DEL)) {
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_OK;
+ } else if (secs == ntpdata->ntp_next_leap_sec) {
leap = 1;
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_WAIT;
- printk(KERN_NOTICE
- "Clock: deleting leap second 23:59:59 UTC\n");
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_WAIT;
+ pr_notice("Clock: deleting leap second 23:59:59 UTC\n");
}
break;
case TIME_OOP:
- ntp_next_leap_sec = TIME64_MAX;
- time_state = TIME_WAIT;
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ ntpdata->time_state = TIME_WAIT;
break;
case TIME_WAIT:
- if (!(time_status & (STA_INS | STA_DEL)))
- time_state = TIME_OK;
+ if (!(ntpdata->time_status & (STA_INS | STA_DEL)))
+ ntpdata->time_state = TIME_OK;
break;
}
-
/* Bump the maxerror field */
- time_maxerror += MAXFREQ / NSEC_PER_USEC;
- if (time_maxerror > NTP_PHASE_LIMIT) {
- time_maxerror = NTP_PHASE_LIMIT;
- time_status |= STA_UNSYNC;
+ ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC;
+ if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) {
+ ntpdata->time_maxerror = NTP_PHASE_LIMIT;
+ ntpdata->time_status |= STA_UNSYNC;
}
/* Compute the phase adjustment for the next second */
- tick_length = tick_length_base;
+ ntpdata->tick_length = ntpdata->tick_length_base;
- delta = ntp_offset_chunk(time_offset);
- time_offset -= delta;
- tick_length += delta;
+ delta = ntp_offset_chunk(ntpdata, ntpdata->time_offset);
+ ntpdata->time_offset -= delta;
+ ntpdata->tick_length += delta;
/* Check PPS signal */
- pps_dec_valid();
+ pps_dec_valid(ntpdata);
- if (!time_adjust)
+ if (!ntpdata->time_adjust)
goto out;
- if (time_adjust > MAX_TICKADJ) {
- time_adjust -= MAX_TICKADJ;
- tick_length += MAX_TICKADJ_SCALED;
+ if (ntpdata->time_adjust > MAX_TICKADJ) {
+ ntpdata->time_adjust -= MAX_TICKADJ;
+ ntpdata->tick_length += MAX_TICKADJ_SCALED;
goto out;
}
- if (time_adjust < -MAX_TICKADJ) {
- time_adjust += MAX_TICKADJ;
- tick_length -= MAX_TICKADJ_SCALED;
+ if (ntpdata->time_adjust < -MAX_TICKADJ) {
+ ntpdata->time_adjust += MAX_TICKADJ;
+ ntpdata->tick_length -= MAX_TICKADJ_SCALED;
goto out;
}
- tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
- << NTP_SCALE_SHIFT;
- time_adjust = 0;
+ ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
+ << NTP_SCALE_SHIFT;
+ ntpdata->time_adjust = 0;
out:
return leap;
@@ -611,6 +599,15 @@ static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_ns
}
#endif
+/**
+ * ntp_synced - Tells whether the NTP status is not UNSYNC
+ * Returns: true if not UNSYNC, false otherwise
+ */
+static inline bool ntp_synced(void)
+{
+ return !(tk_ntp_data.time_status & STA_UNSYNC);
+}
+
/*
* If we have an externally synchronized Linux clock, then update RTC clock
* accordingly every ~11 minutes. Generally RTCs can only store second
@@ -691,162 +688,156 @@ static inline void __init ntp_init_cmos_sync(void) { }
/*
* Propagate a new txc->status value into the NTP state:
*/
-static inline void process_adj_status(const struct __kernel_timex *txc)
+static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc)
{
- if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
- time_state = TIME_OK;
- time_status = STA_UNSYNC;
- ntp_next_leap_sec = TIME64_MAX;
- /* restart PPS frequency calibration */
- pps_reset_freq_interval();
+ if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) {
+ ntpdata->time_state = TIME_OK;
+ ntpdata->time_status = STA_UNSYNC;
+ ntpdata->ntp_next_leap_sec = TIME64_MAX;
+ /* Restart PPS frequency calibration */
+ pps_reset_freq_interval(ntpdata);
}
/*
* If we turn on PLL adjustments then reset the
* reference time to current time.
*/
- if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
- time_reftime = __ktime_get_real_seconds();
+ if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL))
+ ntpdata->time_reftime = __ktime_get_real_seconds();
/* only set allowed bits */
- time_status &= STA_RONLY;
- time_status |= txc->status & ~STA_RONLY;
+ ntpdata->time_status &= STA_RONLY;
+ ntpdata->time_status |= txc->status & ~STA_RONLY;
}
-
-static inline void process_adjtimex_modes(const struct __kernel_timex *txc,
+static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc,
s32 *time_tai)
{
if (txc->modes & ADJ_STATUS)
- process_adj_status(txc);
+ process_adj_status(ntpdata, txc);
if (txc->modes & ADJ_NANO)
- time_status |= STA_NANO;
+ ntpdata->time_status |= STA_NANO;
if (txc->modes & ADJ_MICRO)
- time_status &= ~STA_NANO;
+ ntpdata->time_status &= ~STA_NANO;
if (txc->modes & ADJ_FREQUENCY) {
- time_freq = txc->freq * PPM_SCALE;
- time_freq = min(time_freq, MAXFREQ_SCALED);
- time_freq = max(time_freq, -MAXFREQ_SCALED);
- /* update pps_freq */
- pps_set_freq(time_freq);
+ ntpdata->time_freq = txc->freq * PPM_SCALE;
+ ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED);
+ ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED);
+ /* Update pps_freq */
+ pps_set_freq(ntpdata);
}
if (txc->modes & ADJ_MAXERROR)
- time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
+ ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT);
if (txc->modes & ADJ_ESTERROR)
- time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
+ ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT);
if (txc->modes & ADJ_TIMECONST) {
- time_constant = clamp(txc->constant, 0, MAXTC);
- if (!(time_status & STA_NANO))
- time_constant += 4;
- time_constant = clamp(time_constant, 0, MAXTC);
+ ntpdata->time_constant = clamp(txc->constant, 0, MAXTC);
+ if (!(ntpdata->time_status & STA_NANO))
+ ntpdata->time_constant += 4;
+ ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC);
}
- if (txc->modes & ADJ_TAI &&
- txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
+ if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
*time_tai = txc->constant;
if (txc->modes & ADJ_OFFSET)
- ntp_update_offset(txc->offset);
+ ntp_update_offset(ntpdata, txc->offset);
if (txc->modes & ADJ_TICK)
- tick_usec = txc->tick;
+ ntpdata->tick_usec = txc->tick;
if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
- ntp_update_frequency();
+ ntp_update_frequency(ntpdata);
}
-
/*
- * adjtimex mainly allows reading (and writing, if superuser) of
+ * adjtimex() mainly allows reading (and writing, if superuser) of
* kernel time-keeping variables. used by xntpd.
*/
int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
s32 *time_tai, struct audit_ntp_data *ad)
{
+ struct ntp_data *ntpdata = &tk_ntp_data;
int result;
if (txc->modes & ADJ_ADJTIME) {
- long save_adjust = time_adjust;
+ long save_adjust = ntpdata->time_adjust;
if (!(txc->modes & ADJ_OFFSET_READONLY)) {
/* adjtime() is independent from ntp_adjtime() */
- time_adjust = txc->offset;
- ntp_update_frequency();
+ ntpdata->time_adjust = txc->offset;
+ ntp_update_frequency(ntpdata);
audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust);
- audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, time_adjust);
+ audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, ntpdata->time_adjust);
}
txc->offset = save_adjust;
} else {
/* If there are input parameters, then process them: */
if (txc->modes) {
- audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, time_offset);
- audit_ntp_set_old(ad, AUDIT_NTP_FREQ, time_freq);
- audit_ntp_set_old(ad, AUDIT_NTP_STATUS, time_status);
+ audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
+ audit_ntp_set_old(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
+ audit_ntp_set_old(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai);
- audit_ntp_set_old(ad, AUDIT_NTP_TICK, tick_usec);
+ audit_ntp_set_old(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
- process_adjtimex_modes(txc, time_tai);
+ process_adjtimex_modes(ntpdata, txc, time_tai);
- audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, time_offset);
- audit_ntp_set_new(ad, AUDIT_NTP_FREQ, time_freq);
- audit_ntp_set_new(ad, AUDIT_NTP_STATUS, time_status);
+ audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset);
+ audit_ntp_set_new(ad, AUDIT_NTP_FREQ, ntpdata->time_freq);
+ audit_ntp_set_new(ad, AUDIT_NTP_STATUS, ntpdata->time_status);
audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai);
- audit_ntp_set_new(ad, AUDIT_NTP_TICK, tick_usec);
+ audit_ntp_set_new(ad, AUDIT_NTP_TICK, ntpdata->tick_usec);
}
- txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
- NTP_SCALE_SHIFT);
- if (!(time_status & STA_NANO))
+ txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT);
+ if (!(ntpdata->time_status & STA_NANO))
txc->offset = (u32)txc->offset / NSEC_PER_USEC;
}
- result = time_state; /* mostly `TIME_OK' */
- /* check for errors */
- if (is_error_status(time_status))
+ result = ntpdata->time_state;
+ if (is_error_status(ntpdata->time_status))
result = TIME_ERROR;
- txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
+ txc->freq = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) *
PPM_SCALE_INV, NTP_SCALE_SHIFT);
- txc->maxerror = time_maxerror;
- txc->esterror = time_esterror;
- txc->status = time_status;
- txc->constant = time_constant;
+ txc->maxerror = ntpdata->time_maxerror;
+ txc->esterror = ntpdata->time_esterror;
+ txc->status = ntpdata->time_status;
+ txc->constant = ntpdata->time_constant;
txc->precision = 1;
txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
- txc->tick = tick_usec;
+ txc->tick = ntpdata->tick_usec;
txc->tai = *time_tai;
- /* fill PPS status fields */
- pps_fill_timex(txc);
+ /* Fill PPS status fields */
+ pps_fill_timex(ntpdata, txc);
txc->time.tv_sec = ts->tv_sec;
txc->time.tv_usec = ts->tv_nsec;
- if (!(time_status & STA_NANO))
+ if (!(ntpdata->time_status & STA_NANO))
txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
/* Handle leapsec adjustments */
- if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
- if ((time_state == TIME_INS) && (time_status & STA_INS)) {
+ if (unlikely(ts->tv_sec >= ntpdata->ntp_next_leap_sec)) {
+ if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) {
result = TIME_OOP;
txc->tai++;
txc->time.tv_sec--;
}
- if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
+ if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) {
result = TIME_WAIT;
txc->tai--;
txc->time.tv_sec++;
}
- if ((time_state == TIME_OOP) &&
- (ts->tv_sec == ntp_next_leap_sec)) {
+ if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntpdata->ntp_next_leap_sec))
result = TIME_WAIT;
- }
}
return result;
@@ -854,17 +845,21 @@ int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
#ifdef CONFIG_NTP_PPS
-/* actually struct pps_normtime is good old struct timespec, but it is
+/*
+ * struct pps_normtime is basically a struct timespec, but it is
* semantically different (and it is the reason why it was invented):
* pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
- * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
+ * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC)
+ */
struct pps_normtime {
s64 sec; /* seconds */
long nsec; /* nanoseconds */
};
-/* normalize the timestamp so that nsec is in the
- ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
+/*
+ * Normalize the timestamp so that nsec is in the
+ * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval
+ */
static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
{
struct pps_normtime norm = {
@@ -880,54 +875,57 @@ static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
return norm;
}
-/* get current phase correction and jitter */
-static inline long pps_phase_filter_get(long *jitter)
+/* Get current phase correction and jitter */
+static inline long pps_phase_filter_get(struct ntp_data *ntpdata, long *jitter)
{
- *jitter = pps_tf[0] - pps_tf[1];
+ *jitter = ntpdata->pps_tf[0] - ntpdata->pps_tf[1];
if (*jitter < 0)
*jitter = -*jitter;
/* TODO: test various filters */
- return pps_tf[0];
+ return ntpdata->pps_tf[0];
}
-/* add the sample to the phase filter */
-static inline void pps_phase_filter_add(long err)
+/* Add the sample to the phase filter */
+static inline void pps_phase_filter_add(struct ntp_data *ntpdata, long err)
{
- pps_tf[2] = pps_tf[1];
- pps_tf[1] = pps_tf[0];
- pps_tf[0] = err;
+ ntpdata->pps_tf[2] = ntpdata->pps_tf[1];
+ ntpdata->pps_tf[1] = ntpdata->pps_tf[0];
+ ntpdata->pps_tf[0] = err;
}
-/* decrease frequency calibration interval length.
- * It is halved after four consecutive unstable intervals.
+/*
+ * Decrease frequency calibration interval length. It is halved after four
+ * consecutive unstable intervals.
*/
-static inline void pps_dec_freq_interval(void)
+static inline void pps_dec_freq_interval(struct ntp_data *ntpdata)
{
- if (--pps_intcnt <= -PPS_INTCOUNT) {
- pps_intcnt = -PPS_INTCOUNT;
- if (pps_shift > PPS_INTMIN) {
- pps_shift--;
- pps_intcnt = 0;
+ if (--ntpdata->pps_intcnt <= -PPS_INTCOUNT) {
+ ntpdata->pps_intcnt = -PPS_INTCOUNT;
+ if (ntpdata->pps_shift > PPS_INTMIN) {
+ ntpdata->pps_shift--;
+ ntpdata->pps_intcnt = 0;
}
}
}
-/* increase frequency calibration interval length.
- * It is doubled after four consecutive stable intervals.
+/*
+ * Increase frequency calibration interval length. It is doubled after
+ * four consecutive stable intervals.
*/
-static inline void pps_inc_freq_interval(void)
+static inline void pps_inc_freq_interval(struct ntp_data *ntpdata)
{
- if (++pps_intcnt >= PPS_INTCOUNT) {
- pps_intcnt = PPS_INTCOUNT;
- if (pps_shift < PPS_INTMAX) {
- pps_shift++;
- pps_intcnt = 0;
+ if (++ntpdata->pps_intcnt >= PPS_INTCOUNT) {
+ ntpdata->pps_intcnt = PPS_INTCOUNT;
+ if (ntpdata->pps_shift < PPS_INTMAX) {
+ ntpdata->pps_shift++;
+ ntpdata->pps_intcnt = 0;
}
}
}
-/* update clock frequency based on MONOTONIC_RAW clock PPS signal
+/*
+ * Update clock frequency based on MONOTONIC_RAW clock PPS signal
* timestamps
*
* At the end of the calibration interval the difference between the
@@ -936,90 +934,88 @@ static inline void pps_inc_freq_interval(void)
* too long, the data are discarded.
* Returns the difference between old and new frequency values.
*/
-static long hardpps_update_freq(struct pps_normtime freq_norm)
+static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm)
{
long delta, delta_mod;
s64 ftemp;
- /* check if the frequency interval was too long */
- if (freq_norm.sec > (2 << pps_shift)) {
- time_status |= STA_PPSERROR;
- pps_errcnt++;
- pps_dec_freq_interval();
- printk_deferred(KERN_ERR
- "hardpps: PPSERROR: interval too long - %lld s\n",
- freq_norm.sec);
+ /* Check if the frequency interval was too long */
+ if (freq_norm.sec > (2 << ntpdata->pps_shift)) {
+ ntpdata->time_status |= STA_PPSERROR;
+ ntpdata->pps_errcnt++;
+ pps_dec_freq_interval(ntpdata);
+ printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n",
+ freq_norm.sec);
return 0;
}
- /* here the raw frequency offset and wander (stability) is
- * calculated. If the wander is less than the wander threshold
- * the interval is increased; otherwise it is decreased.
+ /*
+ * Here the raw frequency offset and wander (stability) is
+ * calculated. If the wander is less than the wander threshold the
+ * interval is increased; otherwise it is decreased.
*/
ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
freq_norm.sec);
- delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
- pps_freq = ftemp;
+ delta = shift_right(ftemp - ntpdata->pps_freq, NTP_SCALE_SHIFT);
+ ntpdata->pps_freq = ftemp;
if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
- printk_deferred(KERN_WARNING
- "hardpps: PPSWANDER: change=%ld\n", delta);
- time_status |= STA_PPSWANDER;
- pps_stbcnt++;
- pps_dec_freq_interval();
- } else { /* good sample */
- pps_inc_freq_interval();
+ printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta);
+ ntpdata->time_status |= STA_PPSWANDER;
+ ntpdata->pps_stbcnt++;
+ pps_dec_freq_interval(ntpdata);
+ } else {
+ /* Good sample */
+ pps_inc_freq_interval(ntpdata);
}
- /* the stability metric is calculated as the average of recent
- * frequency changes, but is used only for performance
- * monitoring
+ /*
+ * The stability metric is calculated as the average of recent
+ * frequency changes, but is used only for performance monitoring
*/
delta_mod = delta;
if (delta_mod < 0)
delta_mod = -delta_mod;
- pps_stabil += (div_s64(((s64)delta_mod) <<
- (NTP_SCALE_SHIFT - SHIFT_USEC),
- NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
-
- /* if enabled, the system clock frequency is updated */
- if ((time_status & STA_PPSFREQ) != 0 &&
- (time_status & STA_FREQHOLD) == 0) {
- time_freq = pps_freq;
- ntp_update_frequency();
+ ntpdata->pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC),
+ NSEC_PER_USEC) - ntpdata->pps_stabil) >> PPS_INTMIN;
+
+ /* If enabled, the system clock frequency is updated */
+ if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) {
+ ntpdata->time_freq = ntpdata->pps_freq;
+ ntp_update_frequency(ntpdata);
}
return delta;
}
-/* correct REALTIME clock phase error against PPS signal */
-static void hardpps_update_phase(long error)
+/* Correct REALTIME clock phase error against PPS signal */
+static void hardpps_update_phase(struct ntp_data *ntpdata, long error)
{
long correction = -error;
long jitter;
- /* add the sample to the median filter */
- pps_phase_filter_add(correction);
- correction = pps_phase_filter_get(&jitter);
+ /* Add the sample to the median filter */
+ pps_phase_filter_add(ntpdata, correction);
+ correction = pps_phase_filter_get(ntpdata, &jitter);
- /* Nominal jitter is due to PPS signal noise. If it exceeds the
+ /*
+ * Nominal jitter is due to PPS signal noise. If it exceeds the
* threshold, the sample is discarded; otherwise, if so enabled,
* the time offset is updated.
*/
- if (jitter > (pps_jitter << PPS_POPCORN)) {
- printk_deferred(KERN_WARNING
- "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
- jitter, (pps_jitter << PPS_POPCORN));
- time_status |= STA_PPSJITTER;
- pps_jitcnt++;
- } else if (time_status & STA_PPSTIME) {
- /* correct the time using the phase offset */
- time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
- NTP_INTERVAL_FREQ);
- /* cancel running adjtime() */
- time_adjust = 0;
+ if (jitter > (ntpdata->pps_jitter << PPS_POPCORN)) {
+ printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
+ jitter, (ntpdata->pps_jitter << PPS_POPCORN));
+ ntpdata->time_status |= STA_PPSJITTER;
+ ntpdata->pps_jitcnt++;
+ } else if (ntpdata->time_status & STA_PPSTIME) {
+ /* Correct the time using the phase offset */
+ ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
+ NTP_INTERVAL_FREQ);
+ /* Cancel running adjtime() */
+ ntpdata->time_adjust = 0;
}
- /* update jitter */
- pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
+ /* Update jitter */
+ ntpdata->pps_jitter += (jitter - ntpdata->pps_jitter) >> PPS_INTMIN;
}
/*
@@ -1037,60 +1033,62 @@ static void hardpps_update_phase(long error)
void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
struct pps_normtime pts_norm, freq_norm;
+ struct ntp_data *ntpdata = &tk_ntp_data;
pts_norm = pps_normalize_ts(*phase_ts);
- /* clear the error bits, they will be set again if needed */
- time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
+ /* Clear the error bits, they will be set again if needed */
+ ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
/* indicate signal presence */
- time_status |= STA_PPSSIGNAL;
- pps_valid = PPS_VALID;
+ ntpdata->time_status |= STA_PPSSIGNAL;
+ ntpdata->pps_valid = PPS_VALID;
- /* when called for the first time,
- * just start the frequency interval */
- if (unlikely(pps_fbase.tv_sec == 0)) {
- pps_fbase = *raw_ts;
+ /*
+ * When called for the first time, just start the frequency
+ * interval
+ */
+ if (unlikely(ntpdata->pps_fbase.tv_sec == 0)) {
+ ntpdata->pps_fbase = *raw_ts;
return;
}
- /* ok, now we have a base for frequency calculation */
- freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
-
- /* check that the signal is in the range
- * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
- if ((freq_norm.sec == 0) ||
- (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
- (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
- time_status |= STA_PPSJITTER;
- /* restart the frequency calibration interval */
- pps_fbase = *raw_ts;
+ /* Ok, now we have a base for frequency calculation */
+ freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, ntpdata->pps_fbase));
+
+ /*
+ * Check that the signal is in the range
+ * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it
+ */
+ if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
+ (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
+ ntpdata->time_status |= STA_PPSJITTER;
+ /* Restart the frequency calibration interval */
+ ntpdata->pps_fbase = *raw_ts;
printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
return;
}
- /* signal is ok */
-
- /* check if the current frequency interval is finished */
- if (freq_norm.sec >= (1 << pps_shift)) {
- pps_calcnt++;
- /* restart the frequency calibration interval */
- pps_fbase = *raw_ts;
- hardpps_update_freq(freq_norm);
+ /* Signal is ok. Check if the current frequency interval is finished */
+ if (freq_norm.sec >= (1 << ntpdata->pps_shift)) {
+ ntpdata->pps_calcnt++;
+ /* Restart the frequency calibration interval */
+ ntpdata->pps_fbase = *raw_ts;
+ hardpps_update_freq(ntpdata, freq_norm);
}
- hardpps_update_phase(pts_norm.nsec);
+ hardpps_update_phase(ntpdata, pts_norm.nsec);
}
#endif /* CONFIG_NTP_PPS */
static int __init ntp_tick_adj_setup(char *str)
{
- int rc = kstrtos64(str, 0, &ntp_tick_adj);
+ int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj);
if (rc)
return rc;
- ntp_tick_adj <<= NTP_SCALE_SHIFT;
+ tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT;
return 1;
}
diff --git a/kernel/time/posix-clock.c b/kernel/time/posix-clock.c
index 316a4e8c97d3..1af0bb2cc45c 100644
--- a/kernel/time/posix-clock.c
+++ b/kernel/time/posix-clock.c
@@ -309,6 +309,9 @@ static int pc_clock_settime(clockid_t id, const struct timespec64 *ts)
struct posix_clock_desc cd;
int err;
+ if (!timespec64_valid_strict(ts))
+ return -EINVAL;
+
err = get_clock_desc(id, &cd);
if (err)
return err;
@@ -318,9 +321,6 @@ static int pc_clock_settime(clockid_t id, const struct timespec64 *ts)
goto out;
}
- if (!timespec64_valid_strict(ts))
- return -EINVAL;
-
if (cd.clk->ops.clock_settime)
err = cd.clk->ops.clock_settime(cd.clk, ts);
else
diff --git a/kernel/time/posix-cpu-timers.c b/kernel/time/posix-cpu-timers.c
index 6bcee4704059..50e8d04ab661 100644
--- a/kernel/time/posix-cpu-timers.c
+++ b/kernel/time/posix-cpu-timers.c
@@ -453,7 +453,6 @@ static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
struct cpu_timer *ctmr = &timer->it.cpu;
struct posix_cputimer_base *base;
- timer->it_active = 0;
if (!cpu_timer_dequeue(ctmr))
return;
@@ -494,19 +493,28 @@ static int posix_cpu_timer_del(struct k_itimer *timer)
*/
WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
} else {
- if (timer->it.cpu.firing)
+ if (timer->it.cpu.firing) {
+ /*
+ * Prevent signal delivery. The timer cannot be dequeued
+ * because it is on the firing list which is not protected
+ * by sighand->lock. The delivery path is waiting for
+ * the timer lock. So go back, unlock and retry.
+ */
+ timer->it.cpu.firing = false;
ret = TIMER_RETRY;
- else
+ } else {
disarm_timer(timer, p);
-
+ }
unlock_task_sighand(p, &flags);
}
out:
rcu_read_unlock();
- if (!ret)
- put_pid(ctmr->pid);
+ if (!ret) {
+ put_pid(ctmr->pid);
+ timer->it_status = POSIX_TIMER_DISARMED;
+ }
return ret;
}
@@ -560,7 +568,7 @@ static void arm_timer(struct k_itimer *timer, struct task_struct *p)
struct cpu_timer *ctmr = &timer->it.cpu;
u64 newexp = cpu_timer_getexpires(ctmr);
- timer->it_active = 1;
+ timer->it_status = POSIX_TIMER_ARMED;
if (!cpu_timer_enqueue(&base->tqhead, ctmr))
return;
@@ -586,29 +594,20 @@ static void cpu_timer_fire(struct k_itimer *timer)
{
struct cpu_timer *ctmr = &timer->it.cpu;
- timer->it_active = 0;
- if (unlikely(timer->sigq == NULL)) {
+ timer->it_status = POSIX_TIMER_DISARMED;
+
+ if (unlikely(ctmr->nanosleep)) {
/*
* This a special case for clock_nanosleep,
* not a normal timer from sys_timer_create.
*/
wake_up_process(timer->it_process);
cpu_timer_setexpires(ctmr, 0);
- } else if (!timer->it_interval) {
- /*
- * One-shot timer. Clear it as soon as it's fired.
- */
+ } else {
posix_timer_queue_signal(timer);
- cpu_timer_setexpires(ctmr, 0);
- } else if (posix_timer_queue_signal(timer)) {
- /*
- * The signal did not get queued because the signal
- * was ignored, so we won't get any callback to
- * reload the timer. But we need to keep it
- * ticking in case the signal is deliverable next time.
- */
- posix_cpu_timer_rearm(timer);
- ++timer->it_requeue_pending;
+ /* Disable oneshot timers */
+ if (!timer->it_interval)
+ cpu_timer_setexpires(ctmr, 0);
}
}
@@ -667,11 +666,17 @@ static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
old_expires = cpu_timer_getexpires(ctmr);
if (unlikely(timer->it.cpu.firing)) {
- timer->it.cpu.firing = -1;
+ /*
+ * Prevent signal delivery. The timer cannot be dequeued
+ * because it is on the firing list which is not protected
+ * by sighand->lock. The delivery path is waiting for
+ * the timer lock. So go back, unlock and retry.
+ */
+ timer->it.cpu.firing = false;
ret = TIMER_RETRY;
} else {
cpu_timer_dequeue(ctmr);
- timer->it_active = 0;
+ timer->it_status = POSIX_TIMER_DISARMED;
}
/*
@@ -745,7 +750,7 @@ static void __posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *i
* - Timers which expired, but the signal has not yet been
* delivered
*/
- if (iv && ((timer->it_requeue_pending & REQUEUE_PENDING) || sigev_none))
+ if (iv && timer->it_status != POSIX_TIMER_ARMED)
expires = bump_cpu_timer(timer, now);
else
expires = cpu_timer_getexpires(&timer->it.cpu);
@@ -808,7 +813,7 @@ static u64 collect_timerqueue(struct timerqueue_head *head,
if (++i == MAX_COLLECTED || now < expires)
return expires;
- ctmr->firing = 1;
+ ctmr->firing = true;
/* See posix_cpu_timer_wait_running() */
rcu_assign_pointer(ctmr->handling, current);
cpu_timer_dequeue(ctmr);
@@ -1363,7 +1368,7 @@ static void handle_posix_cpu_timers(struct task_struct *tsk)
* timer call will interfere.
*/
list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
- int cpu_firing;
+ bool cpu_firing;
/*
* spin_lock() is sufficient here even independent of the
@@ -1375,13 +1380,13 @@ static void handle_posix_cpu_timers(struct task_struct *tsk)
spin_lock(&timer->it_lock);
list_del_init(&timer->it.cpu.elist);
cpu_firing = timer->it.cpu.firing;
- timer->it.cpu.firing = 0;
+ timer->it.cpu.firing = false;
/*
- * The firing flag is -1 if we collided with a reset
- * of the timer, which already reported this
- * almost-firing as an overrun. So don't generate an event.
+ * If the firing flag is cleared then this raced with a
+ * timer rearm/delete operation. So don't generate an
+ * event.
*/
- if (likely(cpu_firing >= 0))
+ if (likely(cpu_firing))
cpu_timer_fire(timer);
/* See posix_cpu_timer_wait_running() */
rcu_assign_pointer(timer->it.cpu.handling, NULL);
@@ -1478,6 +1483,7 @@ static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
timer.it_overrun = -1;
error = posix_cpu_timer_create(&timer);
timer.it_process = current;
+ timer.it.cpu.nanosleep = true;
if (!error) {
static struct itimerspec64 zero_it;
diff --git a/kernel/time/posix-timers.c b/kernel/time/posix-timers.c
index 4576aaed13b2..881a9ce96af7 100644
--- a/kernel/time/posix-timers.c
+++ b/kernel/time/posix-timers.c
@@ -233,11 +233,12 @@ __initcall(init_posix_timers);
* The siginfo si_overrun field and the return value of timer_getoverrun(2)
* are of type int. Clamp the overrun value to INT_MAX
*/
-static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
+static inline int timer_overrun_to_int(struct k_itimer *timr)
{
- s64 sum = timr->it_overrun_last + (s64)baseval;
+ if (timr->it_overrun_last > (s64)INT_MAX)
+ return INT_MAX;
- return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
+ return (int)timr->it_overrun_last;
}
static void common_hrtimer_rearm(struct k_itimer *timr)
@@ -249,62 +250,62 @@ static void common_hrtimer_rearm(struct k_itimer *timr)
hrtimer_restart(timer);
}
+static bool __posixtimer_deliver_signal(struct kernel_siginfo *info, struct k_itimer *timr)
+{
+ guard(spinlock)(&timr->it_lock);
+
+ /*
+ * Check if the timer is still alive or whether it got modified
+ * since the signal was queued. In either case, don't rearm and
+ * drop the signal.
+ */
+ if (timr->it_signal_seq != timr->it_sigqueue_seq || WARN_ON_ONCE(!timr->it_signal))
+ return false;
+
+ if (!timr->it_interval || WARN_ON_ONCE(timr->it_status != POSIX_TIMER_REQUEUE_PENDING))
+ return true;
+
+ timr->kclock->timer_rearm(timr);
+ timr->it_status = POSIX_TIMER_ARMED;
+ timr->it_overrun_last = timr->it_overrun;
+ timr->it_overrun = -1LL;
+ ++timr->it_signal_seq;
+ info->si_overrun = timer_overrun_to_int(timr);
+ return true;
+}
+
/*
- * This function is called from the signal delivery code if
- * info->si_sys_private is not zero, which indicates that the timer has to
- * be rearmed. Restart the timer and update info::si_overrun.
+ * This function is called from the signal delivery code. It decides
+ * whether the signal should be dropped and rearms interval timers. The
+ * timer can be unconditionally accessed as there is a reference held on
+ * it.
*/
-void posixtimer_rearm(struct kernel_siginfo *info)
+bool posixtimer_deliver_signal(struct kernel_siginfo *info, struct sigqueue *timer_sigq)
{
- struct k_itimer *timr;
- unsigned long flags;
-
- timr = lock_timer(info->si_tid, &flags);
- if (!timr)
- return;
+ struct k_itimer *timr = container_of(timer_sigq, struct k_itimer, sigq);
+ bool ret;
- if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
- timr->kclock->timer_rearm(timr);
+ /*
+ * Release siglock to ensure proper locking order versus
+ * timr::it_lock. Keep interrupts disabled.
+ */
+ spin_unlock(&current->sighand->siglock);
- timr->it_active = 1;
- timr->it_overrun_last = timr->it_overrun;
- timr->it_overrun = -1LL;
- ++timr->it_requeue_pending;
+ ret = __posixtimer_deliver_signal(info, timr);
- info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
- }
+ /* Drop the reference which was acquired when the signal was queued */
+ posixtimer_putref(timr);
- unlock_timer(timr, flags);
+ spin_lock(&current->sighand->siglock);
+ return ret;
}
-int posix_timer_queue_signal(struct k_itimer *timr)
+void posix_timer_queue_signal(struct k_itimer *timr)
{
- int ret, si_private = 0;
- enum pid_type type;
-
lockdep_assert_held(&timr->it_lock);
- timr->it_active = 0;
- if (timr->it_interval)
- si_private = ++timr->it_requeue_pending;
-
- /*
- * FIXME: if ->sigq is queued we can race with
- * dequeue_signal()->posixtimer_rearm().
- *
- * If dequeue_signal() sees the "right" value of
- * si_sys_private it calls posixtimer_rearm().
- * We re-queue ->sigq and drop ->it_lock().
- * posixtimer_rearm() locks the timer
- * and re-schedules it while ->sigq is pending.
- * Not really bad, but not that we want.
- */
- timr->sigq->info.si_sys_private = si_private;
-
- type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
- ret = send_sigqueue(timr->sigq, timr->it_pid, type);
- /* If we failed to send the signal the timer stops. */
- return ret > 0;
+ timr->it_status = timr->it_interval ? POSIX_TIMER_REQUEUE_PENDING : POSIX_TIMER_DISARMED;
+ posixtimer_send_sigqueue(timr);
}
/*
@@ -317,62 +318,10 @@ int posix_timer_queue_signal(struct k_itimer *timr)
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
{
struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
- enum hrtimer_restart ret = HRTIMER_NORESTART;
- unsigned long flags;
-
- spin_lock_irqsave(&timr->it_lock, flags);
-
- if (posix_timer_queue_signal(timr)) {
- /*
- * The signal was not queued due to SIG_IGN. As a
- * consequence the timer is not going to be rearmed from
- * the signal delivery path. But as a real signal handler
- * can be installed later the timer must be rearmed here.
- */
- if (timr->it_interval != 0) {
- ktime_t now = hrtimer_cb_get_time(timer);
-
- /*
- * FIXME: What we really want, is to stop this
- * timer completely and restart it in case the
- * SIG_IGN is removed. This is a non trivial
- * change to the signal handling code.
- *
- * For now let timers with an interval less than a
- * jiffy expire every jiffy and recheck for a
- * valid signal handler.
- *
- * This avoids interrupt starvation in case of a
- * very small interval, which would expire the
- * timer immediately again.
- *
- * Moving now ahead of time by one jiffy tricks
- * hrtimer_forward() to expire the timer later,
- * while it still maintains the overrun accuracy
- * for the price of a slight inconsistency in the
- * timer_gettime() case. This is at least better
- * than a timer storm.
- *
- * Only required when high resolution timers are
- * enabled as the periodic tick based timers are
- * automatically aligned to the next tick.
- */
- if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
- ktime_t kj = TICK_NSEC;
-
- if (timr->it_interval < kj)
- now = ktime_add(now, kj);
- }
-
- timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
- ret = HRTIMER_RESTART;
- ++timr->it_requeue_pending;
- timr->it_active = 1;
- }
- }
- unlock_timer(timr, flags);
- return ret;
+ guard(spinlock_irqsave)(&timr->it_lock);
+ posix_timer_queue_signal(timr);
+ return HRTIMER_NORESTART;
}
static struct pid *good_sigevent(sigevent_t * event)
@@ -399,32 +348,27 @@ static struct pid *good_sigevent(sigevent_t * event)
}
}
-static struct k_itimer * alloc_posix_timer(void)
+static struct k_itimer *alloc_posix_timer(void)
{
struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
if (!tmr)
return tmr;
- if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
+
+ if (unlikely(!posixtimer_init_sigqueue(&tmr->sigq))) {
kmem_cache_free(posix_timers_cache, tmr);
return NULL;
}
- clear_siginfo(&tmr->sigq->info);
+ rcuref_init(&tmr->rcuref, 1);
return tmr;
}
-static void k_itimer_rcu_free(struct rcu_head *head)
-{
- struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
-
- kmem_cache_free(posix_timers_cache, tmr);
-}
-
-static void posix_timer_free(struct k_itimer *tmr)
+void posixtimer_free_timer(struct k_itimer *tmr)
{
put_pid(tmr->it_pid);
- sigqueue_free(tmr->sigq);
- call_rcu(&tmr->rcu, k_itimer_rcu_free);
+ if (tmr->sigq.ucounts)
+ dec_rlimit_put_ucounts(tmr->sigq.ucounts, UCOUNT_RLIMIT_SIGPENDING);
+ kfree_rcu(tmr, rcu);
}
static void posix_timer_unhash_and_free(struct k_itimer *tmr)
@@ -432,7 +376,7 @@ static void posix_timer_unhash_and_free(struct k_itimer *tmr)
spin_lock(&hash_lock);
hlist_del_rcu(&tmr->t_hash);
spin_unlock(&hash_lock);
- posix_timer_free(tmr);
+ posixtimer_putref(tmr);
}
static int common_timer_create(struct k_itimer *new_timer)
@@ -467,7 +411,7 @@ static int do_timer_create(clockid_t which_clock, struct sigevent *event,
*/
new_timer_id = posix_timer_add(new_timer);
if (new_timer_id < 0) {
- posix_timer_free(new_timer);
+ posixtimer_free_timer(new_timer);
return new_timer_id;
}
@@ -485,18 +429,23 @@ static int do_timer_create(clockid_t which_clock, struct sigevent *event,
goto out;
}
new_timer->it_sigev_notify = event->sigev_notify;
- new_timer->sigq->info.si_signo = event->sigev_signo;
- new_timer->sigq->info.si_value = event->sigev_value;
+ new_timer->sigq.info.si_signo = event->sigev_signo;
+ new_timer->sigq.info.si_value = event->sigev_value;
} else {
new_timer->it_sigev_notify = SIGEV_SIGNAL;
- new_timer->sigq->info.si_signo = SIGALRM;
- memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
- new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
+ new_timer->sigq.info.si_signo = SIGALRM;
+ memset(&new_timer->sigq.info.si_value, 0, sizeof(sigval_t));
+ new_timer->sigq.info.si_value.sival_int = new_timer->it_id;
new_timer->it_pid = get_pid(task_tgid(current));
}
- new_timer->sigq->info.si_tid = new_timer->it_id;
- new_timer->sigq->info.si_code = SI_TIMER;
+ if (new_timer->it_sigev_notify & SIGEV_THREAD_ID)
+ new_timer->it_pid_type = PIDTYPE_PID;
+ else
+ new_timer->it_pid_type = PIDTYPE_TGID;
+
+ new_timer->sigq.info.si_tid = new_timer->it_id;
+ new_timer->sigq.info.si_code = SI_TIMER;
if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
error = -EFAULT;
@@ -580,7 +529,14 @@ static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
* 1) Set timr::it_signal to NULL with timr::it_lock held
* 2) Release timr::it_lock
* 3) Remove from the hash under hash_lock
- * 4) Call RCU for removal after the grace period
+ * 4) Put the reference count.
+ *
+ * The reference count might not drop to zero if timr::sigq is
+ * queued. In that case the signal delivery or flush will put the
+ * last reference count.
+ *
+ * When the reference count reaches zero, the timer is scheduled
+ * for RCU removal after the grace period.
*
* Holding rcu_read_lock() accross the lookup ensures that
* the timer cannot be freed.
@@ -647,10 +603,10 @@ void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
/* interval timer ? */
if (iv) {
cur_setting->it_interval = ktime_to_timespec64(iv);
- } else if (!timr->it_active) {
+ } else if (timr->it_status == POSIX_TIMER_DISARMED) {
/*
* SIGEV_NONE oneshot timers are never queued and therefore
- * timr->it_active is always false. The check below
+ * timr->it_status is always DISARMED. The check below
* vs. remaining time will handle this case.
*
* For all other timers there is nothing to update here, so
@@ -667,7 +623,7 @@ void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
* is a SIGEV_NONE timer move the expiry time forward by intervals,
* so expiry is > now.
*/
- if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
+ if (iv && timr->it_status != POSIX_TIMER_ARMED)
timr->it_overrun += kc->timer_forward(timr, now);
remaining = kc->timer_remaining(timr, now);
@@ -775,7 +731,7 @@ SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
if (!timr)
return -EINVAL;
- overrun = timer_overrun_to_int(timr, 0);
+ overrun = timer_overrun_to_int(timr);
unlock_timer(timr, flags);
return overrun;
@@ -867,8 +823,6 @@ void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_set
else
timer->it_interval = 0;
- /* Prevent reloading in case there is a signal pending */
- timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING;
/* Reset overrun accounting */
timer->it_overrun_last = 0;
timer->it_overrun = -1LL;
@@ -886,8 +840,6 @@ int common_timer_set(struct k_itimer *timr, int flags,
if (old_setting)
common_timer_get(timr, old_setting);
- /* Prevent rearming by clearing the interval */
- timr->it_interval = 0;
/*
* Careful here. On SMP systems the timer expiry function could be
* active and spinning on timr->it_lock.
@@ -895,7 +847,7 @@ int common_timer_set(struct k_itimer *timr, int flags,
if (kc->timer_try_to_cancel(timr) < 0)
return TIMER_RETRY;
- timr->it_active = 0;
+ timr->it_status = POSIX_TIMER_DISARMED;
posix_timer_set_common(timr, new_setting);
/* Keep timer disarmed when it_value is zero */
@@ -908,7 +860,8 @@ int common_timer_set(struct k_itimer *timr, int flags,
sigev_none = timr->it_sigev_notify == SIGEV_NONE;
kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
- timr->it_active = !sigev_none;
+ if (!sigev_none)
+ timr->it_status = POSIX_TIMER_ARMED;
return 0;
}
@@ -936,6 +889,9 @@ retry:
if (old_spec64)
old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
+ /* Prevent signal delivery and rearming. */
+ timr->it_signal_seq++;
+
kc = timr->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_set))
error = -EINVAL;
@@ -1004,17 +960,31 @@ int common_timer_del(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
- timer->it_interval = 0;
if (kc->timer_try_to_cancel(timer) < 0)
return TIMER_RETRY;
- timer->it_active = 0;
+ timer->it_status = POSIX_TIMER_DISARMED;
return 0;
}
+/*
+ * If the deleted timer is on the ignored list, remove it and
+ * drop the associated reference.
+ */
+static inline void posix_timer_cleanup_ignored(struct k_itimer *tmr)
+{
+ if (!hlist_unhashed(&tmr->ignored_list)) {
+ hlist_del_init(&tmr->ignored_list);
+ posixtimer_putref(tmr);
+ }
+}
+
static inline int timer_delete_hook(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
+ /* Prevent signal delivery and rearming. */
+ timer->it_signal_seq++;
+
if (WARN_ON_ONCE(!kc || !kc->timer_del))
return -EINVAL;
return kc->timer_del(timer);
@@ -1040,12 +1010,18 @@ retry_delete:
spin_lock(&current->sighand->siglock);
hlist_del(&timer->list);
- spin_unlock(&current->sighand->siglock);
+ posix_timer_cleanup_ignored(timer);
/*
* A concurrent lookup could check timer::it_signal lockless. It
* will reevaluate with timer::it_lock held and observe the NULL.
+ *
+ * It must be written with siglock held so that the signal code
+ * observes timer->it_signal == NULL in do_sigaction(SIG_IGN),
+ * which prevents it from moving a pending signal of a deleted
+ * timer to the ignore list.
*/
WRITE_ONCE(timer->it_signal, NULL);
+ spin_unlock(&current->sighand->siglock);
unlock_timer(timer, flags);
posix_timer_unhash_and_free(timer);
@@ -1091,6 +1067,8 @@ retry_delete:
}
hlist_del(&timer->list);
+ posix_timer_cleanup_ignored(timer);
+
/*
* Setting timer::it_signal to NULL is technically not required
* here as nothing can access the timer anymore legitimately via
@@ -1123,6 +1101,19 @@ void exit_itimers(struct task_struct *tsk)
/* The timers are not longer accessible via tsk::signal */
while (!hlist_empty(&timers))
itimer_delete(hlist_entry(timers.first, struct k_itimer, list));
+
+ /*
+ * There should be no timers on the ignored list. itimer_delete() has
+ * mopped them up.
+ */
+ if (!WARN_ON_ONCE(!hlist_empty(&tsk->signal->ignored_posix_timers)))
+ return;
+
+ hlist_move_list(&tsk->signal->ignored_posix_timers, &timers);
+ while (!hlist_empty(&timers)) {
+ posix_timer_cleanup_ignored(hlist_entry(timers.first, struct k_itimer,
+ ignored_list));
+ }
}
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
diff --git a/kernel/time/posix-timers.h b/kernel/time/posix-timers.h
index 4784ea65f685..61906f0688c1 100644
--- a/kernel/time/posix-timers.h
+++ b/kernel/time/posix-timers.h
@@ -1,6 +1,12 @@
/* SPDX-License-Identifier: GPL-2.0 */
#define TIMER_RETRY 1
+enum posix_timer_state {
+ POSIX_TIMER_DISARMED,
+ POSIX_TIMER_ARMED,
+ POSIX_TIMER_REQUEUE_PENDING,
+};
+
struct k_clock {
int (*clock_getres)(const clockid_t which_clock,
struct timespec64 *tp);
@@ -36,7 +42,7 @@ extern const struct k_clock clock_process;
extern const struct k_clock clock_thread;
extern const struct k_clock alarm_clock;
-int posix_timer_queue_signal(struct k_itimer *timr);
+void posix_timer_queue_signal(struct k_itimer *timr);
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting);
int common_timer_set(struct k_itimer *timr, int flags,
diff --git a/kernel/time/sched_clock.c b/kernel/time/sched_clock.c
index 68d6c1190ac7..fcca4e72f1ef 100644
--- a/kernel/time/sched_clock.c
+++ b/kernel/time/sched_clock.c
@@ -71,16 +71,16 @@ static __always_inline u64 cyc_to_ns(u64 cyc, u32 mult, u32 shift)
notrace struct clock_read_data *sched_clock_read_begin(unsigned int *seq)
{
- *seq = raw_read_seqcount_latch(&cd.seq);
+ *seq = read_seqcount_latch(&cd.seq);
return cd.read_data + (*seq & 1);
}
notrace int sched_clock_read_retry(unsigned int seq)
{
- return raw_read_seqcount_latch_retry(&cd.seq, seq);
+ return read_seqcount_latch_retry(&cd.seq, seq);
}
-unsigned long long noinstr sched_clock_noinstr(void)
+static __always_inline unsigned long long __sched_clock(void)
{
struct clock_read_data *rd;
unsigned int seq;
@@ -98,11 +98,23 @@ unsigned long long noinstr sched_clock_noinstr(void)
return res;
}
+unsigned long long noinstr sched_clock_noinstr(void)
+{
+ return __sched_clock();
+}
+
unsigned long long notrace sched_clock(void)
{
unsigned long long ns;
preempt_disable_notrace();
- ns = sched_clock_noinstr();
+ /*
+ * All of __sched_clock() is a seqcount_latch reader critical section,
+ * but relies on the raw helpers which are uninstrumented. For KCSAN,
+ * mark all accesses in __sched_clock() as atomic.
+ */
+ kcsan_nestable_atomic_begin();
+ ns = __sched_clock();
+ kcsan_nestable_atomic_end();
preempt_enable_notrace();
return ns;
}
@@ -119,17 +131,19 @@ unsigned long long notrace sched_clock(void)
*/
static void update_clock_read_data(struct clock_read_data *rd)
{
- /* update the backup (odd) copy with the new data */
- cd.read_data[1] = *rd;
-
/* steer readers towards the odd copy */
- raw_write_seqcount_latch(&cd.seq);
+ write_seqcount_latch_begin(&cd.seq);
/* now its safe for us to update the normal (even) copy */
cd.read_data[0] = *rd;
/* switch readers back to the even copy */
- raw_write_seqcount_latch(&cd.seq);
+ write_seqcount_latch(&cd.seq);
+
+ /* update the backup (odd) copy with the new data */
+ cd.read_data[1] = *rd;
+
+ write_seqcount_latch_end(&cd.seq);
}
/*
@@ -267,7 +281,7 @@ void __init generic_sched_clock_init(void)
*/
static u64 notrace suspended_sched_clock_read(void)
{
- unsigned int seq = raw_read_seqcount_latch(&cd.seq);
+ unsigned int seq = read_seqcount_latch(&cd.seq);
return cd.read_data[seq & 1].epoch_cyc;
}
diff --git a/kernel/time/sleep_timeout.c b/kernel/time/sleep_timeout.c
new file mode 100644
index 000000000000..dfe939f6e4ec
--- /dev/null
+++ b/kernel/time/sleep_timeout.c
@@ -0,0 +1,377 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Kernel internal schedule timeout and sleeping functions
+ */
+
+#include <linux/delay.h>
+#include <linux/jiffies.h>
+#include <linux/timer.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/debug.h>
+
+#include "tick-internal.h"
+
+/*
+ * Since schedule_timeout()'s timer is defined on the stack, it must store
+ * the target task on the stack as well.
+ */
+struct process_timer {
+ struct timer_list timer;
+ struct task_struct *task;
+};
+
+static void process_timeout(struct timer_list *t)
+{
+ struct process_timer *timeout = from_timer(timeout, t, timer);
+
+ wake_up_process(timeout->task);
+}
+
+/**
+ * schedule_timeout - sleep until timeout
+ * @timeout: timeout value in jiffies
+ *
+ * Make the current task sleep until @timeout jiffies have elapsed.
+ * The function behavior depends on the current task state
+ * (see also set_current_state() description):
+ *
+ * %TASK_RUNNING - the scheduler is called, but the task does not sleep
+ * at all. That happens because sched_submit_work() does nothing for
+ * tasks in %TASK_RUNNING state.
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
+ * pass before the routine returns unless the current task is explicitly
+ * woken up, (e.g. by wake_up_process()).
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task or the current task is explicitly woken
+ * up.
+ *
+ * The current task state is guaranteed to be %TASK_RUNNING when this
+ * routine returns.
+ *
+ * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
+ * the CPU away without a bound on the timeout. In this case the return
+ * value will be %MAX_SCHEDULE_TIMEOUT.
+ *
+ * Returns: 0 when the timer has expired otherwise the remaining time in
+ * jiffies will be returned. In all cases the return value is guaranteed
+ * to be non-negative.
+ */
+signed long __sched schedule_timeout(signed long timeout)
+{
+ struct process_timer timer;
+ unsigned long expire;
+
+ switch (timeout) {
+ case MAX_SCHEDULE_TIMEOUT:
+ /*
+ * These two special cases are useful to be comfortable
+ * in the caller. Nothing more. We could take
+ * MAX_SCHEDULE_TIMEOUT from one of the negative value
+ * but I' d like to return a valid offset (>=0) to allow
+ * the caller to do everything it want with the retval.
+ */
+ schedule();
+ goto out;
+ default:
+ /*
+ * Another bit of PARANOID. Note that the retval will be
+ * 0 since no piece of kernel is supposed to do a check
+ * for a negative retval of schedule_timeout() (since it
+ * should never happens anyway). You just have the printk()
+ * that will tell you if something is gone wrong and where.
+ */
+ if (timeout < 0) {
+ pr_err("%s: wrong timeout value %lx\n", __func__, timeout);
+ dump_stack();
+ __set_current_state(TASK_RUNNING);
+ goto out;
+ }
+ }
+
+ expire = timeout + jiffies;
+
+ timer.task = current;
+ timer_setup_on_stack(&timer.timer, process_timeout, 0);
+ timer.timer.expires = expire;
+ add_timer(&timer.timer);
+ schedule();
+ del_timer_sync(&timer.timer);
+
+ /* Remove the timer from the object tracker */
+ destroy_timer_on_stack(&timer.timer);
+
+ timeout = expire - jiffies;
+
+ out:
+ return timeout < 0 ? 0 : timeout;
+}
+EXPORT_SYMBOL(schedule_timeout);
+
+/*
+ * __set_current_state() can be used in schedule_timeout_*() functions, because
+ * schedule_timeout() calls schedule() unconditionally.
+ */
+
+/**
+ * schedule_timeout_interruptible - sleep until timeout (interruptible)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_INTERRUPTIBLE before starting the timeout.
+ */
+signed long __sched schedule_timeout_interruptible(signed long timeout)
+{
+ __set_current_state(TASK_INTERRUPTIBLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_interruptible);
+
+/**
+ * schedule_timeout_killable - sleep until timeout (killable)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_KILLABLE before starting the timeout.
+ */
+signed long __sched schedule_timeout_killable(signed long timeout)
+{
+ __set_current_state(TASK_KILLABLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_killable);
+
+/**
+ * schedule_timeout_uninterruptible - sleep until timeout (uninterruptible)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_UNINTERRUPTIBLE before starting the timeout.
+ */
+signed long __sched schedule_timeout_uninterruptible(signed long timeout)
+{
+ __set_current_state(TASK_UNINTERRUPTIBLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_uninterruptible);
+
+/**
+ * schedule_timeout_idle - sleep until timeout (idle)
+ * @timeout: timeout value in jiffies
+ *
+ * See schedule_timeout() for details.
+ *
+ * Task state is set to TASK_IDLE before starting the timeout. It is similar to
+ * schedule_timeout_uninterruptible(), except this task will not contribute to
+ * load average.
+ */
+signed long __sched schedule_timeout_idle(signed long timeout)
+{
+ __set_current_state(TASK_IDLE);
+ return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_idle);
+
+/**
+ * schedule_hrtimeout_range_clock - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @delta: slack in expires timeout (ktime_t)
+ * @mode: timer mode
+ * @clock_id: timer clock to be used
+ *
+ * Details are explained in schedule_hrtimeout_range() function description as
+ * this function is commonly used.
+ */
+int __sched schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
+ const enum hrtimer_mode mode, clockid_t clock_id)
+{
+ struct hrtimer_sleeper t;
+
+ /*
+ * Optimize when a zero timeout value is given. It does not
+ * matter whether this is an absolute or a relative time.
+ */
+ if (expires && *expires == 0) {
+ __set_current_state(TASK_RUNNING);
+ return 0;
+ }
+
+ /*
+ * A NULL parameter means "infinite"
+ */
+ if (!expires) {
+ schedule();
+ return -EINTR;
+ }
+
+ hrtimer_setup_sleeper_on_stack(&t, clock_id, mode);
+ hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
+ hrtimer_sleeper_start_expires(&t, mode);
+
+ if (likely(t.task))
+ schedule();
+
+ hrtimer_cancel(&t.timer);
+ destroy_hrtimer_on_stack(&t.timer);
+
+ __set_current_state(TASK_RUNNING);
+
+ return !t.task ? 0 : -EINTR;
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock);
+
+/**
+ * schedule_hrtimeout_range - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @delta: slack in expires timeout (ktime_t)
+ * @mode: timer mode
+ *
+ * Make the current task sleep until the given expiry time has
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * The @delta argument gives the kernel the freedom to schedule the
+ * actual wakeup to a time that is both power and performance friendly
+ * for regular (non RT/DL) tasks.
+ * The kernel give the normal best effort behavior for "@expires+@delta",
+ * but may decide to fire the timer earlier, but no earlier than @expires.
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
+ * pass before the routine returns unless the current task is explicitly
+ * woken up, (e.g. by wake_up_process()).
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task or the current task is explicitly woken
+ * up.
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Returns: 0 when the timer has expired. If the task was woken before the
+ * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
+ * by an explicit wakeup, it returns -EINTR.
+ */
+int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
+ const enum hrtimer_mode mode)
+{
+ return schedule_hrtimeout_range_clock(expires, delta, mode,
+ CLOCK_MONOTONIC);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
+
+/**
+ * schedule_hrtimeout - sleep until timeout
+ * @expires: timeout value (ktime_t)
+ * @mode: timer mode
+ *
+ * See schedule_hrtimeout_range() for details. @delta argument of
+ * schedule_hrtimeout_range() is set to 0 and has therefore no impact.
+ */
+int __sched schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode)
+{
+ return schedule_hrtimeout_range(expires, 0, mode);
+}
+EXPORT_SYMBOL_GPL(schedule_hrtimeout);
+
+/**
+ * msleep - sleep safely even with waitqueue interruptions
+ * @msecs: Requested sleep duration in milliseconds
+ *
+ * msleep() uses jiffy based timeouts for the sleep duration. Because of the
+ * design of the timer wheel, the maximum additional percentage delay (slack) is
+ * 12.5%. This is only valid for timers which will end up in level 1 or a higher
+ * level of the timer wheel. For explanation of those 12.5% please check the
+ * detailed description about the basics of the timer wheel.
+ *
+ * The slack of timers which will end up in level 0 depends on sleep duration
+ * (msecs) and HZ configuration and can be calculated in the following way (with
+ * the timer wheel design restriction that the slack is not less than 12.5%):
+ *
+ * ``slack = MSECS_PER_TICK / msecs``
+ *
+ * When the allowed slack of the callsite is known, the calculation could be
+ * turned around to find the minimal allowed sleep duration to meet the
+ * constraints. For example:
+ *
+ * * ``HZ=1000`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 1 / (1/4) = 4``:
+ * all sleep durations greater or equal 4ms will meet the constraints.
+ * * ``HZ=1000`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 1 / (1/8) = 8``:
+ * all sleep durations greater or equal 8ms will meet the constraints.
+ * * ``HZ=250`` with ``slack=25%``: ``MSECS_PER_TICK / slack = 4 / (1/4) = 16``:
+ * all sleep durations greater or equal 16ms will meet the constraints.
+ * * ``HZ=250`` with ``slack=12.5%``: ``MSECS_PER_TICK / slack = 4 / (1/8) = 32``:
+ * all sleep durations greater or equal 32ms will meet the constraints.
+ *
+ * See also the signal aware variant msleep_interruptible().
+ */
+void msleep(unsigned int msecs)
+{
+ unsigned long timeout = msecs_to_jiffies(msecs);
+
+ while (timeout)
+ timeout = schedule_timeout_uninterruptible(timeout);
+}
+EXPORT_SYMBOL(msleep);
+
+/**
+ * msleep_interruptible - sleep waiting for signals
+ * @msecs: Requested sleep duration in milliseconds
+ *
+ * See msleep() for some basic information.
+ *
+ * The difference between msleep() and msleep_interruptible() is that the sleep
+ * could be interrupted by a signal delivery and then returns early.
+ *
+ * Returns: The remaining time of the sleep duration transformed to msecs (see
+ * schedule_timeout() for details).
+ */
+unsigned long msleep_interruptible(unsigned int msecs)
+{
+ unsigned long timeout = msecs_to_jiffies(msecs);
+
+ while (timeout && !signal_pending(current))
+ timeout = schedule_timeout_interruptible(timeout);
+ return jiffies_to_msecs(timeout);
+}
+EXPORT_SYMBOL(msleep_interruptible);
+
+/**
+ * usleep_range_state - Sleep for an approximate time in a given state
+ * @min: Minimum time in usecs to sleep
+ * @max: Maximum time in usecs to sleep
+ * @state: State of the current task that will be while sleeping
+ *
+ * usleep_range_state() sleeps at least for the minimum specified time but not
+ * longer than the maximum specified amount of time. The range might reduce
+ * power usage by allowing hrtimers to coalesce an already scheduled interrupt
+ * with this hrtimer. In the worst case, an interrupt is scheduled for the upper
+ * bound.
+ *
+ * The sleeping task is set to the specified state before starting the sleep.
+ *
+ * In non-atomic context where the exact wakeup time is flexible, use
+ * usleep_range() or its variants instead of udelay(). The sleep improves
+ * responsiveness by avoiding the CPU-hogging busy-wait of udelay().
+ */
+void __sched usleep_range_state(unsigned long min, unsigned long max, unsigned int state)
+{
+ ktime_t exp = ktime_add_us(ktime_get(), min);
+ u64 delta = (u64)(max - min) * NSEC_PER_USEC;
+
+ if (WARN_ON_ONCE(max < min))
+ delta = 0;
+
+ for (;;) {
+ __set_current_state(state);
+ /* Do not return before the requested sleep time has elapsed */
+ if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
+ break;
+ }
+}
+EXPORT_SYMBOL(usleep_range_state);
diff --git a/kernel/time/tick-internal.h b/kernel/time/tick-internal.h
index 5f2105e637bd..faac36de35b9 100644
--- a/kernel/time/tick-internal.h
+++ b/kernel/time/tick-internal.h
@@ -25,6 +25,7 @@ extern int tick_do_timer_cpu __read_mostly;
extern void tick_setup_periodic(struct clock_event_device *dev, int broadcast);
extern void tick_handle_periodic(struct clock_event_device *dev);
extern void tick_check_new_device(struct clock_event_device *dev);
+extern void tick_offline_cpu(unsigned int cpu);
extern void tick_shutdown(unsigned int cpu);
extern void tick_suspend(void);
extern void tick_resume(void);
@@ -142,10 +143,8 @@ static inline bool tick_broadcast_oneshot_available(void) { return tick_oneshot_
#endif /* !(BROADCAST && ONESHOT) */
#if defined(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) && defined(CONFIG_HOTPLUG_CPU)
-extern void tick_offline_cpu(unsigned int cpu);
extern void tick_broadcast_offline(unsigned int cpu);
#else
-static inline void tick_offline_cpu(unsigned int cpu) { }
static inline void tick_broadcast_offline(unsigned int cpu) { }
#endif
diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c
index f203f000da1a..fa058510af9c 100644
--- a/kernel/time/tick-sched.c
+++ b/kernel/time/tick-sched.c
@@ -311,14 +311,6 @@ static enum hrtimer_restart tick_nohz_handler(struct hrtimer *timer)
return HRTIMER_RESTART;
}
-static void tick_sched_timer_cancel(struct tick_sched *ts)
-{
- if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
- hrtimer_cancel(&ts->sched_timer);
- else if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
- tick_program_event(KTIME_MAX, 1);
-}
-
#ifdef CONFIG_NO_HZ_FULL
cpumask_var_t tick_nohz_full_mask;
EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
@@ -865,7 +857,7 @@ static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
static inline bool local_timer_softirq_pending(void)
{
- return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
+ return local_timers_pending() & BIT(TIMER_SOFTIRQ);
}
/*
@@ -1061,7 +1053,10 @@ static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
* the tick timer.
*/
if (unlikely(expires == KTIME_MAX)) {
- tick_sched_timer_cancel(ts);
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
+ hrtimer_cancel(&ts->sched_timer);
+ else
+ tick_program_event(KTIME_MAX, 1);
return;
}
@@ -1610,21 +1605,13 @@ void tick_setup_sched_timer(bool hrtimer)
*/
void tick_sched_timer_dying(int cpu)
{
- struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
- struct clock_event_device *dev = td->evtdev;
ktime_t idle_sleeptime, iowait_sleeptime;
unsigned long idle_calls, idle_sleeps;
/* This must happen before hrtimers are migrated! */
- tick_sched_timer_cancel(ts);
-
- /*
- * If the clockevents doesn't support CLOCK_EVT_STATE_ONESHOT_STOPPED,
- * make sure not to call low-res tick handler.
- */
- if (tick_sched_flag_test(ts, TS_FLAG_NOHZ))
- dev->event_handler = clockevents_handle_noop;
+ if (tick_sched_flag_test(ts, TS_FLAG_HIGHRES))
+ hrtimer_cancel(&ts->sched_timer);
idle_sleeptime = ts->idle_sleeptime;
iowait_sleeptime = ts->iowait_sleeptime;
diff --git a/kernel/time/time.c b/kernel/time/time.c
index 642647f5046b..1b69caa87480 100644
--- a/kernel/time/time.c
+++ b/kernel/time/time.c
@@ -556,9 +556,9 @@ EXPORT_SYMBOL(ns_to_timespec64);
* - all other values are converted to jiffies by either multiplying
* the input value by a factor or dividing it with a factor and
* handling any 32-bit overflows.
- * for the details see __msecs_to_jiffies()
+ * for the details see _msecs_to_jiffies()
*
- * __msecs_to_jiffies() checks for the passed in value being a constant
+ * msecs_to_jiffies() checks for the passed in value being a constant
* via __builtin_constant_p() allowing gcc to eliminate most of the
* code, __msecs_to_jiffies() is called if the value passed does not
* allow constant folding and the actual conversion must be done at
@@ -866,7 +866,7 @@ struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
*
* Handles compat or 32-bit modes.
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_timespec64(struct timespec64 *ts,
const struct __kernel_timespec __user *uts)
@@ -897,7 +897,7 @@ EXPORT_SYMBOL_GPL(get_timespec64);
* @ts: input &struct timespec64
* @uts: user's &struct __kernel_timespec
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_timespec64(const struct timespec64 *ts,
struct __kernel_timespec __user *uts)
@@ -944,7 +944,7 @@ static int __put_old_timespec32(const struct timespec64 *ts64,
*
* Handles X86_X32_ABI compatibility conversion.
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
{
@@ -963,7 +963,7 @@ EXPORT_SYMBOL_GPL(get_old_timespec32);
*
* Handles X86_X32_ABI compatibility conversion.
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
{
@@ -979,7 +979,7 @@ EXPORT_SYMBOL_GPL(put_old_timespec32);
* @it: destination &struct itimerspec64
* @uit: user's &struct __kernel_itimerspec
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_itimerspec64(struct itimerspec64 *it,
const struct __kernel_itimerspec __user *uit)
@@ -1002,7 +1002,7 @@ EXPORT_SYMBOL_GPL(get_itimerspec64);
* @it: input &struct itimerspec64
* @uit: user's &struct __kernel_itimerspec
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_itimerspec64(const struct itimerspec64 *it,
struct __kernel_itimerspec __user *uit)
@@ -1024,7 +1024,7 @@ EXPORT_SYMBOL_GPL(put_itimerspec64);
* @its: destination &struct itimerspec64
* @uits: user's &struct old_itimerspec32
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int get_old_itimerspec32(struct itimerspec64 *its,
const struct old_itimerspec32 __user *uits)
@@ -1043,7 +1043,7 @@ EXPORT_SYMBOL_GPL(get_old_itimerspec32);
* @its: input &struct itimerspec64
* @uits: user's &struct old_itimerspec32
*
- * Return: %0 on success or negative errno on error
+ * Return: 0 on success or negative errno on error
*/
int put_old_itimerspec32(const struct itimerspec64 *its,
struct old_itimerspec32 __user *uits)
diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
index 7e6f409bf311..0ca85ff4fbb4 100644
--- a/kernel/time/timekeeping.c
+++ b/kernel/time/timekeeping.c
@@ -30,8 +30,9 @@
#include "timekeeping_internal.h"
#define TK_CLEAR_NTP (1 << 0)
-#define TK_MIRROR (1 << 1)
-#define TK_CLOCK_WAS_SET (1 << 2)
+#define TK_CLOCK_WAS_SET (1 << 1)
+
+#define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
enum timekeeping_adv_mode {
/* Update timekeeper when a tick has passed */
@@ -41,20 +42,18 @@ enum timekeeping_adv_mode {
TK_ADV_FREQ
};
-DEFINE_RAW_SPINLOCK(timekeeper_lock);
-
/*
* The most important data for readout fits into a single 64 byte
* cache line.
*/
-static struct {
+struct tk_data {
seqcount_raw_spinlock_t seq;
struct timekeeper timekeeper;
-} tk_core ____cacheline_aligned = {
- .seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
-};
+ struct timekeeper shadow_timekeeper;
+ raw_spinlock_t lock;
+} ____cacheline_aligned;
-static struct timekeeper shadow_timekeeper;
+static struct tk_data tk_core;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
@@ -114,6 +113,36 @@ static struct tk_fast tk_fast_raw ____cacheline_aligned = {
.base[1] = FAST_TK_INIT,
};
+unsigned long timekeeper_lock_irqsave(void)
+{
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&tk_core.lock, flags);
+ return flags;
+}
+
+void timekeeper_unlock_irqrestore(unsigned long flags)
+{
+ raw_spin_unlock_irqrestore(&tk_core.lock, flags);
+}
+
+/*
+ * Multigrain timestamps require tracking the latest fine-grained timestamp
+ * that has been issued, and never returning a coarse-grained timestamp that is
+ * earlier than that value.
+ *
+ * mg_floor represents the latest fine-grained time that has been handed out as
+ * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
+ * converted to a realtime clock value on an as-needed basis.
+ *
+ * Maintaining mg_floor ensures the multigrain interfaces never issue a
+ * timestamp earlier than one that has been previously issued.
+ *
+ * The exception to this rule is when there is a backward realtime clock jump. If
+ * such an event occurs, a timestamp can appear to be earlier than a previous one.
+ */
+static __cacheline_aligned_in_smp atomic64_t mg_floor;
+
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
@@ -161,13 +190,15 @@ static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
tk->wall_to_monotonic = wtm;
set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
- tk->offs_real = timespec64_to_ktime(tmp);
- tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
+ /* Paired with READ_ONCE() in ktime_mono_to_any() */
+ WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp));
+ WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0)));
}
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
- tk->offs_boot = ktime_add(tk->offs_boot, delta);
+ /* Paired with READ_ONCE() in ktime_mono_to_any() */
+ WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta));
/*
* Timespec representation for VDSO update to avoid 64bit division
* on every update.
@@ -184,7 +215,7 @@ static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
* the tkr's clocksource may change between the read reference, and the
* clock reference passed to the read function. This can cause crashes if
* the wrong clocksource is passed to the wrong read function.
- * This isn't necessary to use when holding the timekeeper_lock or doing
+ * This isn't necessary to use when holding the tk_core.lock or doing
* a read of the fast-timekeeper tkrs (which is protected by its own locking
* and update logic).
*/
@@ -195,97 +226,6 @@ static inline u64 tk_clock_read(const struct tk_read_base *tkr)
return clock->read(clock);
}
-#ifdef CONFIG_DEBUG_TIMEKEEPING
-#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
-
-static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
-{
-
- u64 max_cycles = tk->tkr_mono.clock->max_cycles;
- const char *name = tk->tkr_mono.clock->name;
-
- if (offset > max_cycles) {
- printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
- offset, name, max_cycles);
- printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
- } else {
- if (offset > (max_cycles >> 1)) {
- printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
- offset, name, max_cycles >> 1);
- printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
- }
- }
-
- if (tk->underflow_seen) {
- if (jiffies - tk->last_warning > WARNING_FREQ) {
- printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
- printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
- printk_deferred(" Your kernel is probably still fine.\n");
- tk->last_warning = jiffies;
- }
- tk->underflow_seen = 0;
- }
-
- if (tk->overflow_seen) {
- if (jiffies - tk->last_warning > WARNING_FREQ) {
- printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
- printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
- printk_deferred(" Your kernel is probably still fine.\n");
- tk->last_warning = jiffies;
- }
- tk->overflow_seen = 0;
- }
-}
-
-static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles);
-
-static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
-{
- struct timekeeper *tk = &tk_core.timekeeper;
- u64 now, last, mask, max, delta;
- unsigned int seq;
-
- /*
- * Since we're called holding a seqcount, the data may shift
- * under us while we're doing the calculation. This can cause
- * false positives, since we'd note a problem but throw the
- * results away. So nest another seqcount here to atomically
- * grab the points we are checking with.
- */
- do {
- seq = read_seqcount_begin(&tk_core.seq);
- now = tk_clock_read(tkr);
- last = tkr->cycle_last;
- mask = tkr->mask;
- max = tkr->clock->max_cycles;
- } while (read_seqcount_retry(&tk_core.seq, seq));
-
- delta = clocksource_delta(now, last, mask);
-
- /*
- * Try to catch underflows by checking if we are seeing small
- * mask-relative negative values.
- */
- if (unlikely((~delta & mask) < (mask >> 3)))
- tk->underflow_seen = 1;
-
- /* Check for multiplication overflows */
- if (unlikely(delta > max))
- tk->overflow_seen = 1;
-
- /* timekeeping_cycles_to_ns() handles both under and overflow */
- return timekeeping_cycles_to_ns(tkr, now);
-}
-#else
-static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
-{
-}
-static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr)
-{
- BUG();
-}
-#endif
-
/**
* tk_setup_internals - Set up internals to use clocksource clock.
*
@@ -390,19 +330,11 @@ static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 c
return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift;
}
-static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr)
+static __always_inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
{
return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr));
}
-static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
-{
- if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING))
- return timekeeping_debug_get_ns(tkr);
-
- return __timekeeping_get_ns(tkr);
-}
-
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tkr: Timekeeping readout base from which we take the update
@@ -411,7 +343,7 @@ static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
* We want to use this from any context including NMI and tracing /
* instrumenting the timekeeping code itself.
*
- * Employ the latch technique; see @raw_write_seqcount_latch.
+ * Employ the latch technique; see @write_seqcount_latch.
*
* So if a NMI hits the update of base[0] then it will use base[1]
* which is still consistent. In the worst case this can result is a
@@ -424,16 +356,18 @@ static void update_fast_timekeeper(const struct tk_read_base *tkr,
struct tk_read_base *base = tkf->base;
/* Force readers off to base[1] */
- raw_write_seqcount_latch(&tkf->seq);
+ write_seqcount_latch_begin(&tkf->seq);
/* Update base[0] */
memcpy(base, tkr, sizeof(*base));
/* Force readers back to base[0] */
- raw_write_seqcount_latch(&tkf->seq);
+ write_seqcount_latch(&tkf->seq);
/* Update base[1] */
memcpy(base + 1, base, sizeof(*base));
+
+ write_seqcount_latch_end(&tkf->seq);
}
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
@@ -443,11 +377,11 @@ static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
u64 now;
do {
- seq = raw_read_seqcount_latch(&tkf->seq);
+ seq = read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(tkr->base);
- now += __timekeeping_get_ns(tkr);
- } while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
+ now += timekeeping_get_ns(tkr);
+ } while (read_seqcount_latch_retry(&tkf->seq, seq));
return now;
}
@@ -517,7 +451,7 @@ EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
* timekeeping_inject_sleeptime64()
* __timekeeping_inject_sleeptime(tk, delta);
* timestamp();
- * timekeeping_update(tk, TK_CLEAR_NTP...);
+ * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
*
* (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
* partially updated. Since the tk->offs_boot update is a rare event, this
@@ -562,7 +496,7 @@ static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
tkr = tkf->base + (seq & 0x01);
basem = ktime_to_ns(tkr->base);
baser = ktime_to_ns(tkr->base_real);
- delta = __timekeeping_get_ns(tkr);
+ delta = timekeeping_get_ns(tkr);
} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
if (mono)
@@ -676,13 +610,11 @@ static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
int ret;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
update_pvclock_gtod(tk, true);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
@@ -695,14 +627,8 @@ EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
*/
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
- unsigned long flags;
- int ret;
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
-
- return ret;
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
+ return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
@@ -718,6 +644,18 @@ static inline void tk_update_leap_state(struct timekeeper *tk)
}
/*
+ * Leap state update for both shadow and the real timekeeper
+ * Separate to spare a full memcpy() of the timekeeper.
+ */
+static void tk_update_leap_state_all(struct tk_data *tkd)
+{
+ write_seqcount_begin(&tkd->seq);
+ tk_update_leap_state(&tkd->shadow_timekeeper);
+ tkd->timekeeper.next_leap_ktime = tkd->shadow_timekeeper.next_leap_ktime;
+ write_seqcount_end(&tkd->seq);
+}
+
+/*
* Update the ktime_t based scalar nsec members of the timekeeper
*/
static inline void tk_update_ktime_data(struct timekeeper *tk)
@@ -750,9 +688,30 @@ static inline void tk_update_ktime_data(struct timekeeper *tk)
tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
}
-/* must hold timekeeper_lock */
-static void timekeeping_update(struct timekeeper *tk, unsigned int action)
+/*
+ * Restore the shadow timekeeper from the real timekeeper.
+ */
+static void timekeeping_restore_shadow(struct tk_data *tkd)
{
+ lockdep_assert_held(&tkd->lock);
+ memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper));
+}
+
+static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action)
+{
+ struct timekeeper *tk = &tk_core.shadow_timekeeper;
+
+ lockdep_assert_held(&tkd->lock);
+
+ /*
+ * Block out readers before running the updates below because that
+ * updates VDSO and other time related infrastructure. Not blocking
+ * the readers might let a reader see time going backwards when
+ * reading from the VDSO after the VDSO update and then reading in
+ * the kernel from the timekeeper before that got updated.
+ */
+ write_seqcount_begin(&tkd->seq);
+
if (action & TK_CLEAR_NTP) {
tk->ntp_error = 0;
ntp_clear();
@@ -770,14 +729,17 @@ static void timekeeping_update(struct timekeeper *tk, unsigned int action)
if (action & TK_CLOCK_WAS_SET)
tk->clock_was_set_seq++;
+
/*
- * The mirroring of the data to the shadow-timekeeper needs
- * to happen last here to ensure we don't over-write the
- * timekeeper structure on the next update with stale data
+ * Update the real timekeeper.
+ *
+ * We could avoid this memcpy() by switching pointers, but that has
+ * the downside that the reader side does not longer benefit from
+ * the cacheline optimized data layout of the timekeeper and requires
+ * another indirection.
*/
- if (action & TK_MIRROR)
- memcpy(&shadow_timekeeper, &tk_core.timekeeper,
- sizeof(tk_core.timekeeper));
+ memcpy(&tkd->timekeeper, tk, sizeof(*tk));
+ write_seqcount_end(&tkd->seq);
}
/**
@@ -930,6 +892,14 @@ ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
unsigned int seq;
ktime_t tconv;
+ if (IS_ENABLED(CONFIG_64BIT)) {
+ /*
+ * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
+ * tk_update_sleep_time().
+ */
+ return ktime_add(tmono, READ_ONCE(*offset));
+ }
+
do {
seq = read_seqcount_begin(&tk_core.seq);
tconv = ktime_add(tmono, *offset);
@@ -1060,6 +1030,7 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
unsigned int seq;
ktime_t base_raw;
ktime_t base_real;
+ ktime_t base_boot;
u64 nsec_raw;
u64 nsec_real;
u64 now;
@@ -1074,6 +1045,8 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
base_real = ktime_add(tk->tkr_mono.base,
tk_core.timekeeper.offs_real);
+ base_boot = ktime_add(tk->tkr_mono.base,
+ tk_core.timekeeper.offs_boot);
base_raw = tk->tkr_raw.base;
nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
@@ -1081,6 +1054,7 @@ void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
systime_snapshot->cycles = now;
systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
+ systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real);
systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
@@ -1440,45 +1414,35 @@ EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base);
*/
int do_settimeofday64(const struct timespec64 *ts)
{
- struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 ts_delta, xt;
- unsigned long flags;
- int ret = 0;
if (!timespec64_valid_settod(ts))
return -EINVAL;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
- timekeeping_forward_now(tk);
+ timekeeping_forward_now(tks);
- xt = tk_xtime(tk);
- ts_delta = timespec64_sub(*ts, xt);
+ xt = tk_xtime(tks);
+ ts_delta = timespec64_sub(*ts, xt);
- if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
- ret = -EINVAL;
- goto out;
- }
-
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
-
- tk_set_xtime(tk, ts);
-out:
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+ if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) {
+ timekeeping_restore_shadow(&tk_core);
+ return -EINVAL;
+ }
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta));
+ tk_set_xtime(tks, ts);
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL);
- if (!ret) {
- audit_tk_injoffset(ts_delta);
- add_device_randomness(ts, sizeof(*ts));
- }
-
- return ret;
+ audit_tk_injoffset(ts_delta);
+ add_device_randomness(ts, sizeof(*ts));
+ return 0;
}
EXPORT_SYMBOL(do_settimeofday64);
@@ -1490,40 +1454,31 @@ EXPORT_SYMBOL(do_settimeofday64);
*/
static int timekeeping_inject_offset(const struct timespec64 *ts)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- struct timespec64 tmp;
- int ret = 0;
-
if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
return -EINVAL;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
- timekeeping_forward_now(tk);
-
- /* Make sure the proposed value is valid */
- tmp = timespec64_add(tk_xtime(tk), *ts);
- if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
- !timespec64_valid_settod(&tmp)) {
- ret = -EINVAL;
- goto error;
- }
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ struct timespec64 tmp;
- tk_xtime_add(tk, ts);
- tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
+ timekeeping_forward_now(tks);
-error: /* even if we error out, we forwarded the time, so call update */
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+ /* Make sure the proposed value is valid */
+ tmp = timespec64_add(tk_xtime(tks), *ts);
+ if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 ||
+ !timespec64_valid_settod(&tmp)) {
+ timekeeping_restore_shadow(&tk_core);
+ return -EINVAL;
+ }
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ tk_xtime_add(tks, ts);
+ tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts));
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL);
-
- return ret;
+ return 0;
}
/*
@@ -1576,43 +1531,34 @@ static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
*/
static int change_clocksource(void *data)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *new, *old = NULL;
- unsigned long flags;
- bool change = false;
-
- new = (struct clocksource *) data;
+ struct clocksource *new = data, *old = NULL;
/*
- * If the cs is in module, get a module reference. Succeeds
- * for built-in code (owner == NULL) as well.
+ * If the clocksource is in a module, get a module reference.
+ * Succeeds for built-in code (owner == NULL) as well. Abort if the
+ * reference can't be acquired.
*/
- if (try_module_get(new->owner)) {
- if (!new->enable || new->enable(new) == 0)
- change = true;
- else
- module_put(new->owner);
- }
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
- timekeeping_forward_now(tk);
+ if (!try_module_get(new->owner))
+ return 0;
- if (change) {
- old = tk->tkr_mono.clock;
- tk_setup_internals(tk, new);
+ /* Abort if the device can't be enabled */
+ if (new->enable && new->enable(new) != 0) {
+ module_put(new->owner);
+ return 0;
}
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_forward_now(tks);
+ old = tks->tkr_mono.clock;
+ tk_setup_internals(tks, new);
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
if (old) {
if (old->disable)
old->disable(old);
-
module_put(old->owner);
}
@@ -1737,6 +1683,12 @@ read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
*boot_offset = ns_to_timespec64(local_clock());
}
+static __init void tkd_basic_setup(struct tk_data *tkd)
+{
+ raw_spin_lock_init(&tkd->lock);
+ seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock);
+}
+
/*
* Flag reflecting whether timekeeping_resume() has injected sleeptime.
*
@@ -1761,9 +1713,10 @@ static bool persistent_clock_exists;
void __init timekeeping_init(void)
{
struct timespec64 wall_time, boot_offset, wall_to_mono;
- struct timekeeper *tk = &tk_core.timekeeper;
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
struct clocksource *clock;
- unsigned long flags;
+
+ tkd_basic_setup(&tk_core);
read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
if (timespec64_valid_settod(&wall_time) &&
@@ -1783,24 +1736,21 @@ void __init timekeeping_init(void)
*/
wall_to_mono = timespec64_sub(boot_offset, wall_time);
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
+
ntp_init();
clock = clocksource_default_clock();
if (clock->enable)
clock->enable(clock);
- tk_setup_internals(tk, clock);
+ tk_setup_internals(tks, clock);
- tk_set_xtime(tk, &wall_time);
- tk->raw_sec = 0;
+ tk_set_xtime(tks, &wall_time);
+ tks->raw_sec = 0;
- tk_set_wall_to_mono(tk, wall_to_mono);
+ tk_set_wall_to_mono(tks, wall_to_mono);
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
}
/* time in seconds when suspend began for persistent clock */
@@ -1878,22 +1828,14 @@ bool timekeeping_rtc_skipsuspend(void)
*/
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
- suspend_timing_needed = false;
+ scoped_guard(raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
- timekeeping_forward_now(tk);
-
- __timekeeping_inject_sleeptime(tk, delta);
-
- timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ suspend_timing_needed = false;
+ timekeeping_forward_now(tks);
+ __timekeeping_inject_sleeptime(tks, delta);
+ timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL);
+ }
/* Signal hrtimers about time change */
clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
@@ -1905,20 +1847,19 @@ void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
*/
void timekeeping_resume(void)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- struct clocksource *clock = tk->tkr_mono.clock;
- unsigned long flags;
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ struct clocksource *clock = tks->tkr_mono.clock;
struct timespec64 ts_new, ts_delta;
- u64 cycle_now, nsec;
bool inject_sleeptime = false;
+ u64 cycle_now, nsec;
+ unsigned long flags;
read_persistent_clock64(&ts_new);
clockevents_resume();
clocksource_resume();
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ raw_spin_lock_irqsave(&tk_core.lock, flags);
/*
* After system resumes, we need to calculate the suspended time and
@@ -1932,7 +1873,7 @@ void timekeeping_resume(void)
* The less preferred source will only be tried if there is no better
* usable source. The rtc part is handled separately in rtc core code.
*/
- cycle_now = tk_clock_read(&tk->tkr_mono);
+ cycle_now = tk_clock_read(&tks->tkr_mono);
nsec = clocksource_stop_suspend_timing(clock, cycle_now);
if (nsec > 0) {
ts_delta = ns_to_timespec64(nsec);
@@ -1944,18 +1885,17 @@ void timekeeping_resume(void)
if (inject_sleeptime) {
suspend_timing_needed = false;
- __timekeeping_inject_sleeptime(tk, &ts_delta);
+ __timekeeping_inject_sleeptime(tks, &ts_delta);
}
/* Re-base the last cycle value */
- tk->tkr_mono.cycle_last = cycle_now;
- tk->tkr_raw.cycle_last = cycle_now;
+ tks->tkr_mono.cycle_last = cycle_now;
+ tks->tkr_raw.cycle_last = cycle_now;
- tk->ntp_error = 0;
+ tks->ntp_error = 0;
timekeeping_suspended = 0;
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
+ raw_spin_unlock_irqrestore(&tk_core.lock, flags);
touch_softlockup_watchdog();
@@ -1967,11 +1907,11 @@ void timekeeping_resume(void)
int timekeeping_suspend(void)
{
- struct timekeeper *tk = &tk_core.timekeeper;
- unsigned long flags;
- struct timespec64 delta, delta_delta;
- static struct timespec64 old_delta;
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ struct timespec64 delta, delta_delta;
+ static struct timespec64 old_delta;
struct clocksource *curr_clock;
+ unsigned long flags;
u64 cycle_now;
read_persistent_clock64(&timekeeping_suspend_time);
@@ -1986,9 +1926,8 @@ int timekeeping_suspend(void)
suspend_timing_needed = true;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
- timekeeping_forward_now(tk);
+ raw_spin_lock_irqsave(&tk_core.lock, flags);
+ timekeeping_forward_now(tks);
timekeeping_suspended = 1;
/*
@@ -1996,8 +1935,8 @@ int timekeeping_suspend(void)
* just read from the current clocksource. Save this to potentially
* use in suspend timing.
*/
- curr_clock = tk->tkr_mono.clock;
- cycle_now = tk->tkr_mono.cycle_last;
+ curr_clock = tks->tkr_mono.clock;
+ cycle_now = tks->tkr_mono.cycle_last;
clocksource_start_suspend_timing(curr_clock, cycle_now);
if (persistent_clock_exists) {
@@ -2007,7 +1946,7 @@ int timekeeping_suspend(void)
* try to compensate so the difference in system time
* and persistent_clock time stays close to constant.
*/
- delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
+ delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time);
delta_delta = timespec64_sub(delta, old_delta);
if (abs(delta_delta.tv_sec) >= 2) {
/*
@@ -2022,10 +1961,9 @@ int timekeeping_suspend(void)
}
}
- timekeeping_update(tk, TK_MIRROR);
- halt_fast_timekeeper(tk);
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, 0);
+ halt_fast_timekeeper(tks);
+ raw_spin_unlock_irqrestore(&tk_core.lock, flags);
tick_suspend();
clocksource_suspend();
@@ -2130,16 +2068,17 @@ static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
*/
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
+ u64 ntp_tl = ntp_tick_length();
u32 mult;
/*
* Determine the multiplier from the current NTP tick length.
* Avoid expensive division when the tick length doesn't change.
*/
- if (likely(tk->ntp_tick == ntp_tick_length())) {
+ if (likely(tk->ntp_tick == ntp_tl)) {
mult = tk->tkr_mono.mult - tk->ntp_err_mult;
} else {
- tk->ntp_tick = ntp_tick_length();
+ tk->ntp_tick = ntp_tl;
mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
tk->xtime_remainder, tk->cycle_interval);
}
@@ -2278,28 +2217,24 @@ static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
*/
static bool timekeeping_advance(enum timekeeping_adv_mode mode)
{
+ struct timekeeper *tk = &tk_core.shadow_timekeeper;
struct timekeeper *real_tk = &tk_core.timekeeper;
- struct timekeeper *tk = &shadow_timekeeper;
- u64 offset;
- int shift = 0, maxshift;
unsigned int clock_set = 0;
- unsigned long flags;
+ int shift = 0, maxshift;
+ u64 offset;
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
/* Make sure we're fully resumed: */
if (unlikely(timekeeping_suspended))
- goto out;
+ return false;
offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
/* Check if there's really nothing to do */
if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
- goto out;
-
- /* Do some additional sanity checking */
- timekeeping_check_update(tk, offset);
+ return false;
/*
* With NO_HZ we may have to accumulate many cycle_intervals
@@ -2315,8 +2250,7 @@ static bool timekeeping_advance(enum timekeeping_adv_mode mode)
maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
shift = min(shift, maxshift);
while (offset >= tk->cycle_interval) {
- offset = logarithmic_accumulation(tk, offset, shift,
- &clock_set);
+ offset = logarithmic_accumulation(tk, offset, shift, &clock_set);
if (offset < tk->cycle_interval<<shift)
shift--;
}
@@ -2330,23 +2264,7 @@ static bool timekeeping_advance(enum timekeeping_adv_mode mode)
*/
clock_set |= accumulate_nsecs_to_secs(tk);
- write_seqcount_begin(&tk_core.seq);
- /*
- * Update the real timekeeper.
- *
- * We could avoid this memcpy by switching pointers, but that
- * requires changes to all other timekeeper usage sites as
- * well, i.e. move the timekeeper pointer getter into the
- * spinlocked/seqcount protected sections. And we trade this
- * memcpy under the tk_core.seq against one before we start
- * updating.
- */
- timekeeping_update(tk, clock_set);
- memcpy(real_tk, tk, sizeof(*tk));
- /* The memcpy must come last. Do not put anything here! */
- write_seqcount_end(&tk_core.seq);
-out:
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeping_update_from_shadow(&tk_core, clock_set);
return !!clock_set;
}
@@ -2394,6 +2312,94 @@ void ktime_get_coarse_real_ts64(struct timespec64 *ts)
}
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
+/**
+ * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
+ * @ts: timespec64 to be filled
+ *
+ * Fetch the global mg_floor value, convert it to realtime and compare it
+ * to the current coarse-grained time. Fill @ts with whichever is
+ * latest. Note that this is a filesystem-specific interface and should be
+ * avoided outside of that context.
+ */
+void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts)
+{
+ struct timekeeper *tk = &tk_core.timekeeper;
+ u64 floor = atomic64_read(&mg_floor);
+ ktime_t f_real, offset, coarse;
+ unsigned int seq;
+
+ do {
+ seq = read_seqcount_begin(&tk_core.seq);
+ *ts = tk_xtime(tk);
+ offset = tk_core.timekeeper.offs_real;
+ } while (read_seqcount_retry(&tk_core.seq, seq));
+
+ coarse = timespec64_to_ktime(*ts);
+ f_real = ktime_add(floor, offset);
+ if (ktime_after(f_real, coarse))
+ *ts = ktime_to_timespec64(f_real);
+}
+
+/**
+ * ktime_get_real_ts64_mg - attempt to update floor value and return result
+ * @ts: pointer to the timespec to be set
+ *
+ * Get a monotonic fine-grained time value and attempt to swap it into
+ * mg_floor. If that succeeds then accept the new floor value. If it fails
+ * then another task raced in during the interim time and updated the
+ * floor. Since any update to the floor must be later than the previous
+ * floor, either outcome is acceptable.
+ *
+ * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
+ * and determining that the resulting coarse-grained timestamp did not effect
+ * a change in ctime. Any more recent floor value would effect a change to
+ * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
+ *
+ * @ts will be filled with the latest floor value, regardless of the outcome of
+ * the cmpxchg. Note that this is a filesystem specific interface and should be
+ * avoided outside of that context.
+ */
+void ktime_get_real_ts64_mg(struct timespec64 *ts)
+{
+ struct timekeeper *tk = &tk_core.timekeeper;
+ ktime_t old = atomic64_read(&mg_floor);
+ ktime_t offset, mono;
+ unsigned int seq;
+ u64 nsecs;
+
+ do {
+ seq = read_seqcount_begin(&tk_core.seq);
+
+ ts->tv_sec = tk->xtime_sec;
+ mono = tk->tkr_mono.base;
+ nsecs = timekeeping_get_ns(&tk->tkr_mono);
+ offset = tk_core.timekeeper.offs_real;
+ } while (read_seqcount_retry(&tk_core.seq, seq));
+
+ mono = ktime_add_ns(mono, nsecs);
+
+ /*
+ * Attempt to update the floor with the new time value. As any
+ * update must be later then the existing floor, and would effect
+ * a change to ctime from the perspective of the current task,
+ * accept the resulting floor value regardless of the outcome of
+ * the swap.
+ */
+ if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) {
+ ts->tv_nsec = 0;
+ timespec64_add_ns(ts, nsecs);
+ timekeeping_inc_mg_floor_swaps();
+ } else {
+ /*
+ * Another task changed mg_floor since "old" was fetched.
+ * "old" has been updated with the latest value of "mg_floor".
+ * That value is newer than the previous floor value, which
+ * is enough to effect a change to ctime. Accept it.
+ */
+ *ts = ktime_to_timespec64(ktime_add(old, offset));
+ }
+}
+
void ktime_get_coarse_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
@@ -2551,13 +2557,10 @@ EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
*/
int do_adjtimex(struct __kernel_timex *txc)
{
- struct timekeeper *tk = &tk_core.timekeeper;
struct audit_ntp_data ad;
bool offset_set = false;
bool clock_set = false;
struct timespec64 ts;
- unsigned long flags;
- s32 orig_tai, tai;
int ret;
/* Validate the data before disabling interrupts */
@@ -2568,6 +2571,7 @@ int do_adjtimex(struct __kernel_timex *txc)
if (txc->modes & ADJ_SETOFFSET) {
struct timespec64 delta;
+
delta.tv_sec = txc->time.tv_sec;
delta.tv_nsec = txc->time.tv_usec;
if (!(txc->modes & ADJ_NANO))
@@ -2585,21 +2589,21 @@ int do_adjtimex(struct __kernel_timex *txc)
ktime_get_real_ts64(&ts);
add_device_randomness(&ts, sizeof(ts));
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
+ scoped_guard (raw_spinlock_irqsave, &tk_core.lock) {
+ struct timekeeper *tks = &tk_core.shadow_timekeeper;
+ s32 orig_tai, tai;
- orig_tai = tai = tk->tai_offset;
- ret = __do_adjtimex(txc, &ts, &tai, &ad);
+ orig_tai = tai = tks->tai_offset;
+ ret = __do_adjtimex(txc, &ts, &tai, &ad);
- if (tai != orig_tai) {
- __timekeeping_set_tai_offset(tk, tai);
- timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
- clock_set = true;
+ if (tai != orig_tai) {
+ __timekeeping_set_tai_offset(tks, tai);
+ timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET);
+ clock_set = true;
+ } else {
+ tk_update_leap_state_all(&tk_core);
+ }
}
- tk_update_leap_state(tk);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
audit_ntp_log(&ad);
@@ -2623,15 +2627,8 @@ int do_adjtimex(struct __kernel_timex *txc)
*/
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
{
- unsigned long flags;
-
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
- write_seqcount_begin(&tk_core.seq);
-
+ guard(raw_spinlock_irqsave)(&tk_core.lock);
__hardpps(phase_ts, raw_ts);
-
- write_seqcount_end(&tk_core.seq);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
}
EXPORT_SYMBOL(hardpps);
#endif /* CONFIG_NTP_PPS */
diff --git a/kernel/time/timekeeping_debug.c b/kernel/time/timekeeping_debug.c
index b73e8850e58d..badeb222eab9 100644
--- a/kernel/time/timekeeping_debug.c
+++ b/kernel/time/timekeeping_debug.c
@@ -17,6 +17,9 @@
#define NUM_BINS 32
+/* Incremented every time mg_floor is updated */
+DEFINE_PER_CPU(unsigned long, timekeeping_mg_floor_swaps);
+
static unsigned int sleep_time_bin[NUM_BINS] = {0};
static int tk_debug_sleep_time_show(struct seq_file *s, void *data)
@@ -53,3 +56,13 @@ void tk_debug_account_sleep_time(const struct timespec64 *t)
(s64)t->tv_sec, t->tv_nsec / NSEC_PER_MSEC);
}
+unsigned long timekeeping_get_mg_floor_swaps(void)
+{
+ unsigned long sum = 0;
+ int cpu;
+
+ for_each_possible_cpu(cpu)
+ sum += data_race(per_cpu(timekeeping_mg_floor_swaps, cpu));
+
+ return sum;
+}
diff --git a/kernel/time/timekeeping_internal.h b/kernel/time/timekeeping_internal.h
index 4ca2787d1642..63e600e943a7 100644
--- a/kernel/time/timekeeping_internal.h
+++ b/kernel/time/timekeeping_internal.h
@@ -10,12 +10,26 @@
* timekeeping debug functions
*/
#ifdef CONFIG_DEBUG_FS
+
+DECLARE_PER_CPU(unsigned long, timekeeping_mg_floor_swaps);
+
+static inline void timekeeping_inc_mg_floor_swaps(void)
+{
+ this_cpu_inc(timekeeping_mg_floor_swaps);
+}
+
extern void tk_debug_account_sleep_time(const struct timespec64 *t);
+
#else
+
#define tk_debug_account_sleep_time(x)
+
+static inline void timekeeping_inc_mg_floor_swaps(void)
+{
+}
+
#endif
-#ifdef CONFIG_CLOCKSOURCE_VALIDATE_LAST_CYCLE
static inline u64 clocksource_delta(u64 now, u64 last, u64 mask)
{
u64 ret = (now - last) & mask;
@@ -26,14 +40,9 @@ static inline u64 clocksource_delta(u64 now, u64 last, u64 mask)
*/
return ret & ~(mask >> 1) ? 0 : ret;
}
-#else
-static inline u64 clocksource_delta(u64 now, u64 last, u64 mask)
-{
- return (now - last) & mask;
-}
-#endif
/* Semi public for serialization of non timekeeper VDSO updates. */
-extern raw_spinlock_t timekeeper_lock;
+unsigned long timekeeper_lock_irqsave(void);
+void timekeeper_unlock_irqrestore(unsigned long flags);
#endif /* _TIMEKEEPING_INTERNAL_H */
diff --git a/kernel/time/timer.c b/kernel/time/timer.c
index 0fc9d066a7be..a5860bf6d16f 100644
--- a/kernel/time/timer.c
+++ b/kernel/time/timer.c
@@ -37,7 +37,6 @@
#include <linux/tick.h>
#include <linux/kallsyms.h>
#include <linux/irq_work.h>
-#include <linux/sched/signal.h>
#include <linux/sched/sysctl.h>
#include <linux/sched/nohz.h>
#include <linux/sched/debug.h>
@@ -2422,7 +2421,8 @@ static inline void __run_timers(struct timer_base *base)
static void __run_timer_base(struct timer_base *base)
{
- if (time_before(jiffies, base->next_expiry))
+ /* Can race against a remote CPU updating next_expiry under the lock */
+ if (time_before(jiffies, READ_ONCE(base->next_expiry)))
return;
timer_base_lock_expiry(base);
@@ -2499,7 +2499,7 @@ static void run_local_timers(void)
*/
if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) ||
(i == BASE_DEF && tmigr_requires_handle_remote())) {
- raise_softirq(TIMER_SOFTIRQ);
+ raise_timer_softirq(TIMER_SOFTIRQ);
return;
}
}
@@ -2526,141 +2526,6 @@ void update_process_times(int user_tick)
run_posix_cpu_timers();
}
-/*
- * Since schedule_timeout()'s timer is defined on the stack, it must store
- * the target task on the stack as well.
- */
-struct process_timer {
- struct timer_list timer;
- struct task_struct *task;
-};
-
-static void process_timeout(struct timer_list *t)
-{
- struct process_timer *timeout = from_timer(timeout, t, timer);
-
- wake_up_process(timeout->task);
-}
-
-/**
- * schedule_timeout - sleep until timeout
- * @timeout: timeout value in jiffies
- *
- * Make the current task sleep until @timeout jiffies have elapsed.
- * The function behavior depends on the current task state
- * (see also set_current_state() description):
- *
- * %TASK_RUNNING - the scheduler is called, but the task does not sleep
- * at all. That happens because sched_submit_work() does nothing for
- * tasks in %TASK_RUNNING state.
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
- * pass before the routine returns unless the current task is explicitly
- * woken up, (e.g. by wake_up_process()).
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task or the current task is explicitly woken
- * up.
- *
- * The current task state is guaranteed to be %TASK_RUNNING when this
- * routine returns.
- *
- * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
- * the CPU away without a bound on the timeout. In this case the return
- * value will be %MAX_SCHEDULE_TIMEOUT.
- *
- * Returns 0 when the timer has expired otherwise the remaining time in
- * jiffies will be returned. In all cases the return value is guaranteed
- * to be non-negative.
- */
-signed long __sched schedule_timeout(signed long timeout)
-{
- struct process_timer timer;
- unsigned long expire;
-
- switch (timeout)
- {
- case MAX_SCHEDULE_TIMEOUT:
- /*
- * These two special cases are useful to be comfortable
- * in the caller. Nothing more. We could take
- * MAX_SCHEDULE_TIMEOUT from one of the negative value
- * but I' d like to return a valid offset (>=0) to allow
- * the caller to do everything it want with the retval.
- */
- schedule();
- goto out;
- default:
- /*
- * Another bit of PARANOID. Note that the retval will be
- * 0 since no piece of kernel is supposed to do a check
- * for a negative retval of schedule_timeout() (since it
- * should never happens anyway). You just have the printk()
- * that will tell you if something is gone wrong and where.
- */
- if (timeout < 0) {
- printk(KERN_ERR "schedule_timeout: wrong timeout "
- "value %lx\n", timeout);
- dump_stack();
- __set_current_state(TASK_RUNNING);
- goto out;
- }
- }
-
- expire = timeout + jiffies;
-
- timer.task = current;
- timer_setup_on_stack(&timer.timer, process_timeout, 0);
- __mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
- schedule();
- del_timer_sync(&timer.timer);
-
- /* Remove the timer from the object tracker */
- destroy_timer_on_stack(&timer.timer);
-
- timeout = expire - jiffies;
-
- out:
- return timeout < 0 ? 0 : timeout;
-}
-EXPORT_SYMBOL(schedule_timeout);
-
-/*
- * We can use __set_current_state() here because schedule_timeout() calls
- * schedule() unconditionally.
- */
-signed long __sched schedule_timeout_interruptible(signed long timeout)
-{
- __set_current_state(TASK_INTERRUPTIBLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_interruptible);
-
-signed long __sched schedule_timeout_killable(signed long timeout)
-{
- __set_current_state(TASK_KILLABLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_killable);
-
-signed long __sched schedule_timeout_uninterruptible(signed long timeout)
-{
- __set_current_state(TASK_UNINTERRUPTIBLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_uninterruptible);
-
-/*
- * Like schedule_timeout_uninterruptible(), except this task will not contribute
- * to load average.
- */
-signed long __sched schedule_timeout_idle(signed long timeout)
-{
- __set_current_state(TASK_IDLE);
- return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_idle);
-
#ifdef CONFIG_HOTPLUG_CPU
static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
{
@@ -2757,59 +2622,3 @@ void __init init_timers(void)
posix_cputimers_init_work();
open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
}
-
-/**
- * msleep - sleep safely even with waitqueue interruptions
- * @msecs: Time in milliseconds to sleep for
- */
-void msleep(unsigned int msecs)
-{
- unsigned long timeout = msecs_to_jiffies(msecs);
-
- while (timeout)
- timeout = schedule_timeout_uninterruptible(timeout);
-}
-
-EXPORT_SYMBOL(msleep);
-
-/**
- * msleep_interruptible - sleep waiting for signals
- * @msecs: Time in milliseconds to sleep for
- */
-unsigned long msleep_interruptible(unsigned int msecs)
-{
- unsigned long timeout = msecs_to_jiffies(msecs);
-
- while (timeout && !signal_pending(current))
- timeout = schedule_timeout_interruptible(timeout);
- return jiffies_to_msecs(timeout);
-}
-
-EXPORT_SYMBOL(msleep_interruptible);
-
-/**
- * usleep_range_state - Sleep for an approximate time in a given state
- * @min: Minimum time in usecs to sleep
- * @max: Maximum time in usecs to sleep
- * @state: State of the current task that will be while sleeping
- *
- * In non-atomic context where the exact wakeup time is flexible, use
- * usleep_range_state() instead of udelay(). The sleep improves responsiveness
- * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
- * power usage by allowing hrtimers to take advantage of an already-
- * scheduled interrupt instead of scheduling a new one just for this sleep.
- */
-void __sched usleep_range_state(unsigned long min, unsigned long max,
- unsigned int state)
-{
- ktime_t exp = ktime_add_us(ktime_get(), min);
- u64 delta = (u64)(max - min) * NSEC_PER_USEC;
-
- for (;;) {
- __set_current_state(state);
- /* Do not return before the requested sleep time has elapsed */
- if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
- break;
- }
-}
-EXPORT_SYMBOL(usleep_range_state);
diff --git a/kernel/time/vsyscall.c b/kernel/time/vsyscall.c
index 9193d6133e5d..05d383143165 100644
--- a/kernel/time/vsyscall.c
+++ b/kernel/time/vsyscall.c
@@ -119,7 +119,7 @@ void update_vsyscall(struct timekeeper *tk)
if (clock_mode != VDSO_CLOCKMODE_NONE)
update_vdso_data(vdata, tk);
- __arch_update_vsyscall(vdata, tk);
+ __arch_update_vsyscall(vdata);
vdso_write_end(vdata);
@@ -151,9 +151,8 @@ void update_vsyscall_tz(void)
unsigned long vdso_update_begin(void)
{
struct vdso_data *vdata = __arch_get_k_vdso_data();
- unsigned long flags;
+ unsigned long flags = timekeeper_lock_irqsave();
- raw_spin_lock_irqsave(&timekeeper_lock, flags);
vdso_write_begin(vdata);
return flags;
}
@@ -172,5 +171,5 @@ void vdso_update_end(unsigned long flags)
vdso_write_end(vdata);
__arch_sync_vdso_data(vdata);
- raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
+ timekeeper_unlock_irqrestore(flags);
}
diff --git a/kernel/trace/bpf_trace.c b/kernel/trace/bpf_trace.c
index 3bd402fa62a4..f86c78961708 100644
--- a/kernel/trace/bpf_trace.c
+++ b/kernel/trace/bpf_trace.c
@@ -1202,7 +1202,7 @@ static const struct bpf_func_proto bpf_get_func_arg_proto = {
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_ANYTHING,
- .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED,
+ .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
.arg3_size = sizeof(u64),
};
@@ -1219,7 +1219,7 @@ static const struct bpf_func_proto bpf_get_func_ret_proto = {
.func = get_func_ret,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
- .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_ALIGNED,
+ .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
.arg2_size = sizeof(u64),
};
@@ -2216,8 +2216,6 @@ void perf_event_detach_bpf_prog(struct perf_event *event)
old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
- if (ret == -ENOENT)
- goto unlock;
if (ret < 0) {
bpf_prog_array_delete_safe(old_array, event->prog);
} else {
@@ -3242,7 +3240,8 @@ uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
}
static int
-uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
+uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
+ __u64 *data)
{
struct bpf_uprobe *uprobe;
@@ -3251,7 +3250,8 @@ uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
}
static int
-uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs)
+uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
+ __u64 *data)
{
struct bpf_uprobe *uprobe;
diff --git a/kernel/trace/fgraph.c b/kernel/trace/fgraph.c
index 41e7a15dcb50..69e226a48daa 100644
--- a/kernel/trace/fgraph.c
+++ b/kernel/trace/fgraph.c
@@ -1252,10 +1252,10 @@ int register_ftrace_graph(struct fgraph_ops *gops)
int ret = 0;
int i = -1;
- mutex_lock(&ftrace_lock);
+ guard(mutex)(&ftrace_lock);
if (!fgraph_initialized) {
- ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "fgraph_idle_init",
+ ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "fgraph:online",
fgraph_cpu_init, NULL);
if (ret < 0) {
pr_warn("fgraph: Error to init cpu hotplug support\n");
@@ -1273,10 +1273,8 @@ int register_ftrace_graph(struct fgraph_ops *gops)
}
i = fgraph_lru_alloc_index();
- if (i < 0 || WARN_ON_ONCE(fgraph_array[i] != &fgraph_stub)) {
- ret = -ENOSPC;
- goto out;
- }
+ if (i < 0 || WARN_ON_ONCE(fgraph_array[i] != &fgraph_stub))
+ return -ENOSPC;
gops->idx = i;
ftrace_graph_active++;
@@ -1313,8 +1311,6 @@ error:
gops->saved_func = NULL;
fgraph_lru_release_index(i);
}
-out:
- mutex_unlock(&ftrace_lock);
return ret;
}
diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c
index 3ea4f7bb1837..5807116bcd0b 100644
--- a/kernel/trace/ring_buffer.c
+++ b/kernel/trace/ring_buffer.c
@@ -2337,12 +2337,9 @@ static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
if (!buffer->buffers[cpu])
goto fail_free_buffers;
- /* If already mapped, do not hook to CPU hotplug */
- if (!start) {
- ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
- if (ret < 0)
- goto fail_free_buffers;
- }
+ ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
+ if (ret < 0)
+ goto fail_free_buffers;
mutex_init(&buffer->mutex);
diff --git a/kernel/trace/trace.c b/kernel/trace/trace.c
index a8f52b6527ca..6a891e00aa7f 100644
--- a/kernel/trace/trace.c
+++ b/kernel/trace/trace.c
@@ -2386,6 +2386,25 @@ void tracing_reset_online_cpus(struct array_buffer *buf)
ring_buffer_record_enable(buffer);
}
+static void tracing_reset_all_cpus(struct array_buffer *buf)
+{
+ struct trace_buffer *buffer = buf->buffer;
+
+ if (!buffer)
+ return;
+
+ ring_buffer_record_disable(buffer);
+
+ /* Make sure all commits have finished */
+ synchronize_rcu();
+
+ buf->time_start = buffer_ftrace_now(buf, buf->cpu);
+
+ ring_buffer_reset(buffer);
+
+ ring_buffer_record_enable(buffer);
+}
+
/* Must have trace_types_lock held */
void tracing_reset_all_online_cpus_unlocked(void)
{
@@ -5501,6 +5520,10 @@ static const struct file_operations tracing_iter_fops = {
static const char readme_msg[] =
"tracing mini-HOWTO:\n\n"
+ "By default tracefs removes all OTH file permission bits.\n"
+ "When mounting tracefs an optional group id can be specified\n"
+ "which adds the group to every directory and file in tracefs:\n\n"
+ "\t e.g. mount -t tracefs [-o [gid=<gid>]] nodev /sys/kernel/tracing\n\n"
"# echo 0 > tracing_on : quick way to disable tracing\n"
"# echo 1 > tracing_on : quick way to re-enable tracing\n\n"
" Important files:\n"
@@ -6141,8 +6164,13 @@ static void update_last_data(struct trace_array *tr)
if (!tr->text_delta && !tr->data_delta)
return;
- /* Clear old data */
- tracing_reset_online_cpus(&tr->array_buffer);
+ /*
+ * Need to clear all CPU buffers as there cannot be events
+ * from the previous boot mixed with events with this boot
+ * as that will cause a confusing trace. Need to clear all
+ * CPU buffers, even for those that may currently be offline.
+ */
+ tracing_reset_all_cpus(&tr->array_buffer);
/* Using current data now */
tr->text_delta = 0;
diff --git a/kernel/trace/trace_eprobe.c b/kernel/trace/trace_eprobe.c
index b0e0ec85912e..ebda68ee9abf 100644
--- a/kernel/trace/trace_eprobe.c
+++ b/kernel/trace/trace_eprobe.c
@@ -912,6 +912,11 @@ static int __trace_eprobe_create(int argc, const char *argv[])
}
}
+ if (argc - 2 > MAX_TRACE_ARGS) {
+ ret = -E2BIG;
+ goto error;
+ }
+
mutex_lock(&event_mutex);
event_call = find_and_get_event(sys_name, sys_event);
ep = alloc_event_probe(group, event, event_call, argc - 2);
@@ -937,7 +942,7 @@ static int __trace_eprobe_create(int argc, const char *argv[])
argc -= 2; argv += 2;
/* parse arguments */
- for (i = 0; i < argc && i < MAX_TRACE_ARGS; i++) {
+ for (i = 0; i < argc; i++) {
trace_probe_log_set_index(i + 2);
ret = trace_eprobe_tp_update_arg(ep, argv, i);
if (ret)
diff --git a/kernel/trace/trace_fprobe.c b/kernel/trace/trace_fprobe.c
index a079abd8955b..c62d1629cffe 100644
--- a/kernel/trace/trace_fprobe.c
+++ b/kernel/trace/trace_fprobe.c
@@ -1187,6 +1187,10 @@ static int __trace_fprobe_create(int argc, const char *argv[])
argc = new_argc;
argv = new_argv;
}
+ if (argc > MAX_TRACE_ARGS) {
+ ret = -E2BIG;
+ goto out;
+ }
ret = traceprobe_expand_dentry_args(argc, argv, &dbuf);
if (ret)
@@ -1203,7 +1207,7 @@ static int __trace_fprobe_create(int argc, const char *argv[])
}
/* parse arguments */
- for (i = 0; i < argc && i < MAX_TRACE_ARGS; i++) {
+ for (i = 0; i < argc; i++) {
trace_probe_log_set_index(i + 2);
ctx.offset = 0;
ret = traceprobe_parse_probe_arg(&tf->tp, i, argv[i], &ctx);
diff --git a/kernel/trace/trace_kprobe.c b/kernel/trace/trace_kprobe.c
index 61a6da808203..263fac44d3ca 100644
--- a/kernel/trace/trace_kprobe.c
+++ b/kernel/trace/trace_kprobe.c
@@ -1013,6 +1013,10 @@ static int __trace_kprobe_create(int argc, const char *argv[])
argc = new_argc;
argv = new_argv;
}
+ if (argc > MAX_TRACE_ARGS) {
+ ret = -E2BIG;
+ goto out;
+ }
ret = traceprobe_expand_dentry_args(argc, argv, &dbuf);
if (ret)
@@ -1029,7 +1033,7 @@ static int __trace_kprobe_create(int argc, const char *argv[])
}
/* parse arguments */
- for (i = 0; i < argc && i < MAX_TRACE_ARGS; i++) {
+ for (i = 0; i < argc; i++) {
trace_probe_log_set_index(i + 2);
ctx.offset = 0;
ret = traceprobe_parse_probe_arg(&tk->tp, i, argv[i], &ctx);
diff --git a/kernel/trace/trace_probe.c b/kernel/trace/trace_probe.c
index 39877c80d6cb..16a5e368e7b7 100644
--- a/kernel/trace/trace_probe.c
+++ b/kernel/trace/trace_probe.c
@@ -276,7 +276,7 @@ int traceprobe_parse_event_name(const char **pevent, const char **pgroup,
}
trace_probe_log_err(offset, NO_EVENT_NAME);
return -EINVAL;
- } else if (len > MAX_EVENT_NAME_LEN) {
+ } else if (len >= MAX_EVENT_NAME_LEN) {
trace_probe_log_err(offset, EVENT_TOO_LONG);
return -EINVAL;
}
diff --git a/kernel/trace/trace_uprobe.c b/kernel/trace/trace_uprobe.c
index c40531d2cbad..fed382b7881b 100644
--- a/kernel/trace/trace_uprobe.c
+++ b/kernel/trace/trace_uprobe.c
@@ -89,9 +89,11 @@ static struct trace_uprobe *to_trace_uprobe(struct dyn_event *ev)
static int register_uprobe_event(struct trace_uprobe *tu);
static int unregister_uprobe_event(struct trace_uprobe *tu);
-static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs);
+static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs,
+ __u64 *data);
static int uretprobe_dispatcher(struct uprobe_consumer *con,
- unsigned long func, struct pt_regs *regs);
+ unsigned long func, struct pt_regs *regs,
+ __u64 *data);
#ifdef CONFIG_STACK_GROWSUP
static unsigned long adjust_stack_addr(unsigned long addr, unsigned int n)
@@ -565,6 +567,8 @@ static int __trace_uprobe_create(int argc, const char **argv)
if (argc < 2)
return -ECANCELED;
+ if (argc - 2 > MAX_TRACE_ARGS)
+ return -E2BIG;
if (argv[0][1] == ':')
event = &argv[0][2];
@@ -690,7 +694,7 @@ static int __trace_uprobe_create(int argc, const char **argv)
tu->filename = filename;
/* parse arguments */
- for (i = 0; i < argc && i < MAX_TRACE_ARGS; i++) {
+ for (i = 0; i < argc; i++) {
struct traceprobe_parse_context ctx = {
.flags = (is_return ? TPARG_FL_RETURN : 0) | TPARG_FL_USER,
};
@@ -875,6 +879,7 @@ struct uprobe_cpu_buffer {
};
static struct uprobe_cpu_buffer __percpu *uprobe_cpu_buffer;
static int uprobe_buffer_refcnt;
+#define MAX_UCB_BUFFER_SIZE PAGE_SIZE
static int uprobe_buffer_init(void)
{
@@ -979,6 +984,11 @@ static struct uprobe_cpu_buffer *prepare_uprobe_buffer(struct trace_uprobe *tu,
ucb = uprobe_buffer_get();
ucb->dsize = tu->tp.size + dsize;
+ if (WARN_ON_ONCE(ucb->dsize > MAX_UCB_BUFFER_SIZE)) {
+ ucb->dsize = MAX_UCB_BUFFER_SIZE;
+ dsize = MAX_UCB_BUFFER_SIZE - tu->tp.size;
+ }
+
store_trace_args(ucb->buf, &tu->tp, regs, NULL, esize, dsize);
*ucbp = ucb;
@@ -998,9 +1008,6 @@ static void __uprobe_trace_func(struct trace_uprobe *tu,
WARN_ON(call != trace_file->event_call);
- if (WARN_ON_ONCE(ucb->dsize > PAGE_SIZE))
- return;
-
if (trace_trigger_soft_disabled(trace_file))
return;
@@ -1517,7 +1524,8 @@ trace_uprobe_register(struct trace_event_call *event, enum trace_reg type,
}
}
-static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs)
+static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs,
+ __u64 *data)
{
struct trace_uprobe *tu;
struct uprobe_dispatch_data udd;
@@ -1548,7 +1556,8 @@ static int uprobe_dispatcher(struct uprobe_consumer *con, struct pt_regs *regs)
}
static int uretprobe_dispatcher(struct uprobe_consumer *con,
- unsigned long func, struct pt_regs *regs)
+ unsigned long func, struct pt_regs *regs,
+ __u64 *data)
{
struct trace_uprobe *tu;
struct uprobe_dispatch_data udd;
diff --git a/kernel/ucount.c b/kernel/ucount.c
index 8c07714ff27d..696406939be5 100644
--- a/kernel/ucount.c
+++ b/kernel/ucount.c
@@ -307,7 +307,8 @@ void dec_rlimit_put_ucounts(struct ucounts *ucounts, enum rlimit_type type)
do_dec_rlimit_put_ucounts(ucounts, NULL, type);
}
-long inc_rlimit_get_ucounts(struct ucounts *ucounts, enum rlimit_type type)
+long inc_rlimit_get_ucounts(struct ucounts *ucounts, enum rlimit_type type,
+ bool override_rlimit)
{
/* Caller must hold a reference to ucounts */
struct ucounts *iter;
@@ -317,10 +318,11 @@ long inc_rlimit_get_ucounts(struct ucounts *ucounts, enum rlimit_type type)
for (iter = ucounts; iter; iter = iter->ns->ucounts) {
long new = atomic_long_add_return(1, &iter->rlimit[type]);
if (new < 0 || new > max)
- goto unwind;
+ goto dec_unwind;
if (iter == ucounts)
ret = new;
- max = get_userns_rlimit_max(iter->ns, type);
+ if (!override_rlimit)
+ max = get_userns_rlimit_max(iter->ns, type);
/*
* Grab an extra ucount reference for the caller when
* the rlimit count was previously 0.
@@ -334,7 +336,6 @@ long inc_rlimit_get_ucounts(struct ucounts *ucounts, enum rlimit_type type)
dec_unwind:
dec = atomic_long_sub_return(1, &iter->rlimit[type]);
WARN_ON_ONCE(dec < 0);
-unwind:
do_dec_rlimit_put_ucounts(ucounts, iter, type);
return 0;
}
diff --git a/kernel/umh.c b/kernel/umh.c
index ff1f13a27d29..be9234270777 100644
--- a/kernel/umh.c
+++ b/kernel/umh.c
@@ -13,7 +13,6 @@
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
-#include <linux/fdtable.h>
#include <linux/fs_struct.h>
#include <linux/workqueue.h>
#include <linux/security.h>
diff --git a/kernel/watch_queue.c b/kernel/watch_queue.c
index d36242fd4936..1895fbc32bcb 100644
--- a/kernel/watch_queue.c
+++ b/kernel/watch_queue.c
@@ -663,16 +663,14 @@ struct watch_queue *get_watch_queue(int fd)
{
struct pipe_inode_info *pipe;
struct watch_queue *wqueue = ERR_PTR(-EINVAL);
- struct fd f;
+ CLASS(fd, f)(fd);
- f = fdget(fd);
- if (fd_file(f)) {
+ if (!fd_empty(f)) {
pipe = get_pipe_info(fd_file(f), false);
if (pipe && pipe->watch_queue) {
wqueue = pipe->watch_queue;
kref_get(&wqueue->usage);
}
- fdput(f);
}
return wqueue;