diff options
Diffstat (limited to 'kernel/time/hrtimer.c')
| -rw-r--r-- | kernel/time/hrtimer.c | 713 | 
1 files changed, 333 insertions, 380 deletions
| diff --git a/kernel/time/hrtimer.c b/kernel/time/hrtimer.c index 76d4bd962b19..5c7ae4b641c4 100644 --- a/kernel/time/hrtimer.c +++ b/kernel/time/hrtimer.c @@ -66,33 +66,29 @@   */  DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =  { -  	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), +	.seq = SEQCNT_ZERO(hrtimer_bases.seq),  	.clock_base =  	{  		{  			.index = HRTIMER_BASE_MONOTONIC,  			.clockid = CLOCK_MONOTONIC,  			.get_time = &ktime_get, -			.resolution = KTIME_LOW_RES,  		},  		{  			.index = HRTIMER_BASE_REALTIME,  			.clockid = CLOCK_REALTIME,  			.get_time = &ktime_get_real, -			.resolution = KTIME_LOW_RES,  		},  		{  			.index = HRTIMER_BASE_BOOTTIME,  			.clockid = CLOCK_BOOTTIME,  			.get_time = &ktime_get_boottime, -			.resolution = KTIME_LOW_RES,  		},  		{  			.index = HRTIMER_BASE_TAI,  			.clockid = CLOCK_TAI,  			.get_time = &ktime_get_clocktai, -			.resolution = KTIME_LOW_RES,  		},  	}  }; @@ -109,27 +105,6 @@ static inline int hrtimer_clockid_to_base(clockid_t clock_id)  	return hrtimer_clock_to_base_table[clock_id];  } - -/* - * Get the coarse grained time at the softirq based on xtime and - * wall_to_monotonic. - */ -static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) -{ -	ktime_t xtim, mono, boot, tai; -	ktime_t off_real, off_boot, off_tai; - -	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai); -	boot = ktime_add(mono, off_boot); -	xtim = ktime_add(mono, off_real); -	tai = ktime_add(mono, off_tai); - -	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; -	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; -	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; -	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai; -} -  /*   * Functions and macros which are different for UP/SMP systems are kept in a   * single place @@ -137,6 +112,18 @@ static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)  #ifdef CONFIG_SMP  /* + * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() + * such that hrtimer_callback_running() can unconditionally dereference + * timer->base->cpu_base + */ +static struct hrtimer_cpu_base migration_cpu_base = { +	.seq = SEQCNT_ZERO(migration_cpu_base), +	.clock_base = { { .cpu_base = &migration_cpu_base, }, }, +}; + +#define migration_base	migration_cpu_base.clock_base[0] + +/*   * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock   * means that all timers which are tied to this base via timer->base are   * locked, and the base itself is locked too. @@ -145,8 +132,8 @@ static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)   * be found on the lists/queues.   *   * When the timer's base is locked, and the timer removed from list, it is - * possible to set timer->base = NULL and drop the lock: the timer remains - * locked. + * possible to set timer->base = &migration_base and drop the lock: the timer + * remains locked.   */  static  struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, @@ -156,7 +143,7 @@ struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,  	for (;;) {  		base = timer->base; -		if (likely(base != NULL)) { +		if (likely(base != &migration_base)) {  			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);  			if (likely(base == timer->base))  				return base; @@ -190,6 +177,24 @@ hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)  #endif  } +#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) +static inline +struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, +					 int pinned) +{ +	if (pinned || !base->migration_enabled) +		return this_cpu_ptr(&hrtimer_bases); +	return &per_cpu(hrtimer_bases, get_nohz_timer_target()); +} +#else +static inline +struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, +					 int pinned) +{ +	return this_cpu_ptr(&hrtimer_bases); +} +#endif +  /*   * Switch the timer base to the current CPU when possible.   */ @@ -197,14 +202,13 @@ static inline struct hrtimer_clock_base *  switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,  		    int pinned)  { +	struct hrtimer_cpu_base *new_cpu_base, *this_base;  	struct hrtimer_clock_base *new_base; -	struct hrtimer_cpu_base *new_cpu_base; -	int this_cpu = smp_processor_id(); -	int cpu = get_nohz_timer_target(pinned);  	int basenum = base->index; +	this_base = this_cpu_ptr(&hrtimer_bases); +	new_cpu_base = get_target_base(this_base, pinned);  again: -	new_cpu_base = &per_cpu(hrtimer_bases, cpu);  	new_base = &new_cpu_base->clock_base[basenum];  	if (base != new_base) { @@ -220,22 +224,24 @@ again:  		if (unlikely(hrtimer_callback_running(timer)))  			return base; -		/* See the comment in lock_timer_base() */ -		timer->base = NULL; +		/* See the comment in lock_hrtimer_base() */ +		timer->base = &migration_base;  		raw_spin_unlock(&base->cpu_base->lock);  		raw_spin_lock(&new_base->cpu_base->lock); -		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { -			cpu = this_cpu; +		if (new_cpu_base != this_base && +		    hrtimer_check_target(timer, new_base)) {  			raw_spin_unlock(&new_base->cpu_base->lock);  			raw_spin_lock(&base->cpu_base->lock); +			new_cpu_base = this_base;  			timer->base = base;  			goto again;  		}  		timer->base = new_base;  	} else { -		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { -			cpu = this_cpu; +		if (new_cpu_base != this_base && +		    hrtimer_check_target(timer, new_base)) { +			new_cpu_base = this_base;  			goto again;  		}  	} @@ -266,21 +272,23 @@ lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)  /*   * Divide a ktime value by a nanosecond value   */ -u64 __ktime_divns(const ktime_t kt, s64 div) +s64 __ktime_divns(const ktime_t kt, s64 div)  { -	u64 dclc;  	int sft = 0; +	s64 dclc; +	u64 tmp;  	dclc = ktime_to_ns(kt); +	tmp = dclc < 0 ? -dclc : dclc; +  	/* Make sure the divisor is less than 2^32: */  	while (div >> 32) {  		sft++;  		div >>= 1;  	} -	dclc >>= sft; -	do_div(dclc, (unsigned long) div); - -	return dclc; +	tmp >>= sft; +	do_div(tmp, (unsigned long) div); +	return dclc < 0 ? -tmp : tmp;  }  EXPORT_SYMBOL_GPL(__ktime_divns);  #endif /* BITS_PER_LONG >= 64 */ @@ -441,24 +449,35 @@ static inline void debug_deactivate(struct hrtimer *timer)  }  #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) +static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, +					     struct hrtimer *timer) +{ +#ifdef CONFIG_HIGH_RES_TIMERS +	cpu_base->next_timer = timer; +#endif +} +  static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)  {  	struct hrtimer_clock_base *base = cpu_base->clock_base;  	ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; -	int i; +	unsigned int active = cpu_base->active_bases; -	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { +	hrtimer_update_next_timer(cpu_base, NULL); +	for (; active; base++, active >>= 1) {  		struct timerqueue_node *next;  		struct hrtimer *timer; -		next = timerqueue_getnext(&base->active); -		if (!next) +		if (!(active & 0x01))  			continue; +		next = timerqueue_getnext(&base->active);  		timer = container_of(next, struct hrtimer, node);  		expires = ktime_sub(hrtimer_get_expires(timer), base->offset); -		if (expires.tv64 < expires_next.tv64) +		if (expires.tv64 < expires_next.tv64) {  			expires_next = expires; +			hrtimer_update_next_timer(cpu_base, timer); +		}  	}  	/*  	 * clock_was_set() might have changed base->offset of any of @@ -471,6 +490,16 @@ static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)  }  #endif +static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) +{ +	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; +	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; +	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; + +	return ktime_get_update_offsets_now(&base->clock_was_set_seq, +					    offs_real, offs_boot, offs_tai); +} +  /* High resolution timer related functions */  #ifdef CONFIG_HIGH_RES_TIMERS @@ -478,6 +507,8 @@ static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)   * High resolution timer enabled ?   */  static int hrtimer_hres_enabled __read_mostly  = 1; +unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; +EXPORT_SYMBOL_GPL(hrtimer_resolution);  /*   * Enable / Disable high resolution mode @@ -506,9 +537,14 @@ static inline int hrtimer_is_hres_enabled(void)  /*   * Is the high resolution mode active ?   */ +static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) +{ +	return cpu_base->hres_active; +} +  static inline int hrtimer_hres_active(void)  { -	return __this_cpu_read(hrtimer_bases.hres_active); +	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));  }  /* @@ -519,7 +555,12 @@ static inline int hrtimer_hres_active(void)  static void  hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)  { -	ktime_t expires_next = __hrtimer_get_next_event(cpu_base); +	ktime_t expires_next; + +	if (!cpu_base->hres_active) +		return; + +	expires_next = __hrtimer_get_next_event(cpu_base);  	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)  		return; @@ -543,63 +584,53 @@ hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)  	if (cpu_base->hang_detected)  		return; -	if (cpu_base->expires_next.tv64 != KTIME_MAX) -		tick_program_event(cpu_base->expires_next, 1); +	tick_program_event(cpu_base->expires_next, 1);  }  /* - * Shared reprogramming for clock_realtime and clock_monotonic - *   * When a timer is enqueued and expires earlier than the already enqueued   * timers, we have to check, whether it expires earlier than the timer for   * which the clock event device was armed.   * - * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming - * and no expiry check happens. The timer gets enqueued into the rbtree. The - * reprogramming and expiry check is done in the hrtimer_interrupt or in the - * softirq. - *   * Called with interrupts disabled and base->cpu_base.lock held   */ -static int hrtimer_reprogram(struct hrtimer *timer, -			     struct hrtimer_clock_base *base) +static void hrtimer_reprogram(struct hrtimer *timer, +			      struct hrtimer_clock_base *base)  {  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);  	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); -	int res;  	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);  	/* -	 * When the callback is running, we do not reprogram the clock event -	 * device. The timer callback is either running on a different CPU or -	 * the callback is executed in the hrtimer_interrupt context. The -	 * reprogramming is handled either by the softirq, which called the -	 * callback or at the end of the hrtimer_interrupt. +	 * If the timer is not on the current cpu, we cannot reprogram +	 * the other cpus clock event device.  	 */ -	if (hrtimer_callback_running(timer)) -		return 0; +	if (base->cpu_base != cpu_base) +		return; + +	/* +	 * If the hrtimer interrupt is running, then it will +	 * reevaluate the clock bases and reprogram the clock event +	 * device. The callbacks are always executed in hard interrupt +	 * context so we don't need an extra check for a running +	 * callback. +	 */ +	if (cpu_base->in_hrtirq) +		return;  	/*  	 * CLOCK_REALTIME timer might be requested with an absolute -	 * expiry time which is less than base->offset. Nothing wrong -	 * about that, just avoid to call into the tick code, which -	 * has now objections against negative expiry values. +	 * expiry time which is less than base->offset. Set it to 0.  	 */  	if (expires.tv64 < 0) -		return -ETIME; +		expires.tv64 = 0;  	if (expires.tv64 >= cpu_base->expires_next.tv64) -		return 0; +		return; -	/* -	 * When the target cpu of the timer is currently executing -	 * hrtimer_interrupt(), then we do not touch the clock event -	 * device. hrtimer_interrupt() will reevaluate all clock bases -	 * before reprogramming the device. -	 */ -	if (cpu_base->in_hrtirq) -		return 0; +	/* Update the pointer to the next expiring timer */ +	cpu_base->next_timer = timer;  	/*  	 * If a hang was detected in the last timer interrupt then we @@ -608,15 +639,14 @@ static int hrtimer_reprogram(struct hrtimer *timer,  	 * to make progress.  	 */  	if (cpu_base->hang_detected) -		return 0; +		return;  	/* -	 * Clockevents returns -ETIME, when the event was in the past. +	 * Program the timer hardware. We enforce the expiry for +	 * events which are already in the past.  	 */ -	res = tick_program_event(expires, 0); -	if (!IS_ERR_VALUE(res)) -		cpu_base->expires_next = expires; -	return res; +	cpu_base->expires_next = expires; +	tick_program_event(expires, 1);  }  /* @@ -628,15 +658,6 @@ static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)  	base->hres_active = 0;  } -static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) -{ -	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; -	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; -	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; - -	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai); -} -  /*   * Retrigger next event is called after clock was set   * @@ -646,7 +667,7 @@ static void retrigger_next_event(void *arg)  {  	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); -	if (!hrtimer_hres_active()) +	if (!base->hres_active)  		return;  	raw_spin_lock(&base->lock); @@ -660,29 +681,19 @@ static void retrigger_next_event(void *arg)   */  static int hrtimer_switch_to_hres(void)  { -	int i, cpu = smp_processor_id(); -	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); -	unsigned long flags; - -	if (base->hres_active) -		return 1; - -	local_irq_save(flags); +	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);  	if (tick_init_highres()) { -		local_irq_restore(flags);  		printk(KERN_WARNING "Could not switch to high resolution " -				    "mode on CPU %d\n", cpu); +				    "mode on CPU %d\n", base->cpu);  		return 0;  	}  	base->hres_active = 1; -	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) -		base->clock_base[i].resolution = KTIME_HIGH_RES; +	hrtimer_resolution = HIGH_RES_NSEC;  	tick_setup_sched_timer();  	/* "Retrigger" the interrupt to get things going */  	retrigger_next_event(NULL); -	local_irq_restore(flags);  	return 1;  } @@ -704,6 +715,7 @@ void clock_was_set_delayed(void)  #else +static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }  static inline int hrtimer_hres_active(void) { return 0; }  static inline int hrtimer_is_hres_enabled(void) { return 0; }  static inline int hrtimer_switch_to_hres(void) { return 0; } @@ -801,6 +813,14 @@ void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)   *   * Forward the timer expiry so it will expire in the future.   * Returns the number of overruns. + * + * Can be safely called from the callback function of @timer. If + * called from other contexts @timer must neither be enqueued nor + * running the callback and the caller needs to take care of + * serialization. + * + * Note: This only updates the timer expiry value and does not requeue + * the timer.   */  u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)  { @@ -812,8 +832,11 @@ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)  	if (delta.tv64 < 0)  		return 0; -	if (interval.tv64 < timer->base->resolution.tv64) -		interval.tv64 = timer->base->resolution.tv64; +	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) +		return 0; + +	if (interval.tv64 < hrtimer_resolution) +		interval.tv64 = hrtimer_resolution;  	if (unlikely(delta.tv64 >= interval.tv64)) {  		s64 incr = ktime_to_ns(interval); @@ -847,16 +870,11 @@ static int enqueue_hrtimer(struct hrtimer *timer,  {  	debug_activate(timer); -	timerqueue_add(&base->active, &timer->node);  	base->cpu_base->active_bases |= 1 << base->index; -	/* -	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the -	 * state of a possibly running callback. -	 */ -	timer->state |= HRTIMER_STATE_ENQUEUED; +	timer->state = HRTIMER_STATE_ENQUEUED; -	return (&timer->node == base->active.next); +	return timerqueue_add(&base->active, &timer->node);  }  /* @@ -873,39 +891,38 @@ static void __remove_hrtimer(struct hrtimer *timer,  			     struct hrtimer_clock_base *base,  			     unsigned long newstate, int reprogram)  { -	struct timerqueue_node *next_timer; -	if (!(timer->state & HRTIMER_STATE_ENQUEUED)) -		goto out; +	struct hrtimer_cpu_base *cpu_base = base->cpu_base; +	unsigned int state = timer->state; + +	timer->state = newstate; +	if (!(state & HRTIMER_STATE_ENQUEUED)) +		return; + +	if (!timerqueue_del(&base->active, &timer->node)) +		cpu_base->active_bases &= ~(1 << base->index); -	next_timer = timerqueue_getnext(&base->active); -	timerqueue_del(&base->active, &timer->node); -	if (&timer->node == next_timer) {  #ifdef CONFIG_HIGH_RES_TIMERS -		/* Reprogram the clock event device. if enabled */ -		if (reprogram && hrtimer_hres_active()) { -			ktime_t expires; - -			expires = ktime_sub(hrtimer_get_expires(timer), -					    base->offset); -			if (base->cpu_base->expires_next.tv64 == expires.tv64) -				hrtimer_force_reprogram(base->cpu_base, 1); -		} +	/* +	 * Note: If reprogram is false we do not update +	 * cpu_base->next_timer. This happens when we remove the first +	 * timer on a remote cpu. No harm as we never dereference +	 * cpu_base->next_timer. So the worst thing what can happen is +	 * an superflous call to hrtimer_force_reprogram() on the +	 * remote cpu later on if the same timer gets enqueued again. +	 */ +	if (reprogram && timer == cpu_base->next_timer) +		hrtimer_force_reprogram(cpu_base, 1);  #endif -	} -	if (!timerqueue_getnext(&base->active)) -		base->cpu_base->active_bases &= ~(1 << base->index); -out: -	timer->state = newstate;  }  /*   * remove hrtimer, called with base lock held   */  static inline int -remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) +remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)  {  	if (hrtimer_is_queued(timer)) { -		unsigned long state; +		unsigned long state = timer->state;  		int reprogram;  		/* @@ -919,30 +936,35 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)  		debug_deactivate(timer);  		timer_stats_hrtimer_clear_start_info(timer);  		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); -		/* -		 * We must preserve the CALLBACK state flag here, -		 * otherwise we could move the timer base in -		 * switch_hrtimer_base. -		 */ -		state = timer->state & HRTIMER_STATE_CALLBACK; + +		if (!restart) +			state = HRTIMER_STATE_INACTIVE; +  		__remove_hrtimer(timer, base, state, reprogram);  		return 1;  	}  	return 0;  } -int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, -		unsigned long delta_ns, const enum hrtimer_mode mode, -		int wakeup) +/** + * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU + * @timer:	the timer to be added + * @tim:	expiry time + * @delta_ns:	"slack" range for the timer + * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or + *		relative (HRTIMER_MODE_REL) + */ +void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, +			    unsigned long delta_ns, const enum hrtimer_mode mode)  {  	struct hrtimer_clock_base *base, *new_base;  	unsigned long flags; -	int ret, leftmost; +	int leftmost;  	base = lock_hrtimer_base(timer, &flags);  	/* Remove an active timer from the queue: */ -	ret = remove_hrtimer(timer, base); +	remove_hrtimer(timer, base, true);  	if (mode & HRTIMER_MODE_REL) {  		tim = ktime_add_safe(tim, base->get_time()); @@ -954,7 +976,7 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,  		 * timeouts. This will go away with the GTOD framework.  		 */  #ifdef CONFIG_TIME_LOW_RES -		tim = ktime_add_safe(tim, base->resolution); +		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));  #endif  	} @@ -966,85 +988,25 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,  	timer_stats_hrtimer_set_start_info(timer);  	leftmost = enqueue_hrtimer(timer, new_base); - -	if (!leftmost) { -		unlock_hrtimer_base(timer, &flags); -		return ret; -	} +	if (!leftmost) +		goto unlock;  	if (!hrtimer_is_hres_active(timer)) {  		/*  		 * Kick to reschedule the next tick to handle the new timer  		 * on dynticks target.  		 */ -		wake_up_nohz_cpu(new_base->cpu_base->cpu); -	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) && -			hrtimer_reprogram(timer, new_base)) { -		/* -		 * Only allow reprogramming if the new base is on this CPU. -		 * (it might still be on another CPU if the timer was pending) -		 * -		 * XXX send_remote_softirq() ? -		 */ -		if (wakeup) { -			/* -			 * We need to drop cpu_base->lock to avoid a -			 * lock ordering issue vs. rq->lock. -			 */ -			raw_spin_unlock(&new_base->cpu_base->lock); -			raise_softirq_irqoff(HRTIMER_SOFTIRQ); -			local_irq_restore(flags); -			return ret; -		} else { -			__raise_softirq_irqoff(HRTIMER_SOFTIRQ); -		} +		if (new_base->cpu_base->nohz_active) +			wake_up_nohz_cpu(new_base->cpu_base->cpu); +	} else { +		hrtimer_reprogram(timer, new_base);  	} - +unlock:  	unlock_hrtimer_base(timer, &flags); - -	return ret; -} -EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns); - -/** - * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU - * @timer:	the timer to be added - * @tim:	expiry time - * @delta_ns:	"slack" range for the timer - * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or - *		relative (HRTIMER_MODE_REL) - * - * Returns: - *  0 on success - *  1 when the timer was active - */ -int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, -		unsigned long delta_ns, const enum hrtimer_mode mode) -{ -	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);  }  EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);  /** - * hrtimer_start - (re)start an hrtimer on the current CPU - * @timer:	the timer to be added - * @tim:	expiry time - * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or - *		relative (HRTIMER_MODE_REL) - * - * Returns: - *  0 on success - *  1 when the timer was active - */ -int -hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) -{ -	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); -} -EXPORT_SYMBOL_GPL(hrtimer_start); - - -/**   * hrtimer_try_to_cancel - try to deactivate a timer   * @timer:	hrtimer to stop   * @@ -1060,10 +1022,19 @@ int hrtimer_try_to_cancel(struct hrtimer *timer)  	unsigned long flags;  	int ret = -1; +	/* +	 * Check lockless first. If the timer is not active (neither +	 * enqueued nor running the callback, nothing to do here.  The +	 * base lock does not serialize against a concurrent enqueue, +	 * so we can avoid taking it. +	 */ +	if (!hrtimer_active(timer)) +		return 0; +  	base = lock_hrtimer_base(timer, &flags);  	if (!hrtimer_callback_running(timer)) -		ret = remove_hrtimer(timer, base); +		ret = remove_hrtimer(timer, base, false);  	unlock_hrtimer_base(timer, &flags); @@ -1113,26 +1084,22 @@ EXPORT_SYMBOL_GPL(hrtimer_get_remaining);  /**   * hrtimer_get_next_event - get the time until next expiry event   * - * Returns the delta to the next expiry event or KTIME_MAX if no timer - * is pending. + * Returns the next expiry time or KTIME_MAX if no timer is pending.   */ -ktime_t hrtimer_get_next_event(void) +u64 hrtimer_get_next_event(void)  {  	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); -	ktime_t mindelta = { .tv64 = KTIME_MAX }; +	u64 expires = KTIME_MAX;  	unsigned long flags;  	raw_spin_lock_irqsave(&cpu_base->lock, flags); -	if (!hrtimer_hres_active()) -		mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base), -				     ktime_get()); +	if (!__hrtimer_hres_active(cpu_base)) +		expires = __hrtimer_get_next_event(cpu_base).tv64;  	raw_spin_unlock_irqrestore(&cpu_base->lock, flags); -	if (mindelta.tv64 < 0) -		mindelta.tv64 = 0; -	return mindelta; +	return expires;  }  #endif @@ -1174,37 +1141,73 @@ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,  }  EXPORT_SYMBOL_GPL(hrtimer_init); -/** - * hrtimer_get_res - get the timer resolution for a clock - * @which_clock: which clock to query - * @tp:		 pointer to timespec variable to store the resolution +/* + * A timer is active, when it is enqueued into the rbtree or the + * callback function is running or it's in the state of being migrated + * to another cpu.   * - * Store the resolution of the clock selected by @which_clock in the - * variable pointed to by @tp. + * It is important for this function to not return a false negative.   */ -int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) +bool hrtimer_active(const struct hrtimer *timer)  {  	struct hrtimer_cpu_base *cpu_base; -	int base = hrtimer_clockid_to_base(which_clock); +	unsigned int seq; -	cpu_base = raw_cpu_ptr(&hrtimer_bases); -	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); +	do { +		cpu_base = READ_ONCE(timer->base->cpu_base); +		seq = raw_read_seqcount_begin(&cpu_base->seq); -	return 0; +		if (timer->state != HRTIMER_STATE_INACTIVE || +		    cpu_base->running == timer) +			return true; + +	} while (read_seqcount_retry(&cpu_base->seq, seq) || +		 cpu_base != READ_ONCE(timer->base->cpu_base)); + +	return false;  } -EXPORT_SYMBOL_GPL(hrtimer_get_res); +EXPORT_SYMBOL_GPL(hrtimer_active); -static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) +/* + * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 + * distinct sections: + * + *  - queued:	the timer is queued + *  - callback:	the timer is being ran + *  - post:	the timer is inactive or (re)queued + * + * On the read side we ensure we observe timer->state and cpu_base->running + * from the same section, if anything changed while we looked at it, we retry. + * This includes timer->base changing because sequence numbers alone are + * insufficient for that. + * + * The sequence numbers are required because otherwise we could still observe + * a false negative if the read side got smeared over multiple consequtive + * __run_hrtimer() invocations. + */ + +static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, +			  struct hrtimer_clock_base *base, +			  struct hrtimer *timer, ktime_t *now)  { -	struct hrtimer_clock_base *base = timer->base; -	struct hrtimer_cpu_base *cpu_base = base->cpu_base;  	enum hrtimer_restart (*fn)(struct hrtimer *);  	int restart; -	WARN_ON(!irqs_disabled()); +	lockdep_assert_held(&cpu_base->lock);  	debug_deactivate(timer); -	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); +	cpu_base->running = timer; + +	/* +	 * Separate the ->running assignment from the ->state assignment. +	 * +	 * As with a regular write barrier, this ensures the read side in +	 * hrtimer_active() cannot observe cpu_base->running == NULL && +	 * timer->state == INACTIVE. +	 */ +	raw_write_seqcount_barrier(&cpu_base->seq); + +	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);  	timer_stats_account_hrtimer(timer);  	fn = timer->function; @@ -1220,58 +1223,43 @@ static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)  	raw_spin_lock(&cpu_base->lock);  	/* -	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and +	 * Note: We clear the running state after enqueue_hrtimer and  	 * we do not reprogramm the event hardware. Happens either in  	 * hrtimer_start_range_ns() or in hrtimer_interrupt() +	 * +	 * Note: Because we dropped the cpu_base->lock above, +	 * hrtimer_start_range_ns() can have popped in and enqueued the timer +	 * for us already.  	 */ -	if (restart != HRTIMER_NORESTART) { -		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); +	if (restart != HRTIMER_NORESTART && +	    !(timer->state & HRTIMER_STATE_ENQUEUED))  		enqueue_hrtimer(timer, base); -	} -	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); +	/* +	 * Separate the ->running assignment from the ->state assignment. +	 * +	 * As with a regular write barrier, this ensures the read side in +	 * hrtimer_active() cannot observe cpu_base->running == NULL && +	 * timer->state == INACTIVE. +	 */ +	raw_write_seqcount_barrier(&cpu_base->seq); -	timer->state &= ~HRTIMER_STATE_CALLBACK; +	WARN_ON_ONCE(cpu_base->running != timer); +	cpu_base->running = NULL;  } -#ifdef CONFIG_HIGH_RES_TIMERS - -/* - * High resolution timer interrupt - * Called with interrupts disabled - */ -void hrtimer_interrupt(struct clock_event_device *dev) +static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)  { -	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); -	ktime_t expires_next, now, entry_time, delta; -	int i, retries = 0; - -	BUG_ON(!cpu_base->hres_active); -	cpu_base->nr_events++; -	dev->next_event.tv64 = KTIME_MAX; - -	raw_spin_lock(&cpu_base->lock); -	entry_time = now = hrtimer_update_base(cpu_base); -retry: -	cpu_base->in_hrtirq = 1; -	/* -	 * We set expires_next to KTIME_MAX here with cpu_base->lock -	 * held to prevent that a timer is enqueued in our queue via -	 * the migration code. This does not affect enqueueing of -	 * timers which run their callback and need to be requeued on -	 * this CPU. -	 */ -	cpu_base->expires_next.tv64 = KTIME_MAX; +	struct hrtimer_clock_base *base = cpu_base->clock_base; +	unsigned int active = cpu_base->active_bases; -	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { -		struct hrtimer_clock_base *base; +	for (; active; base++, active >>= 1) {  		struct timerqueue_node *node;  		ktime_t basenow; -		if (!(cpu_base->active_bases & (1 << i))) +		if (!(active & 0x01))  			continue; -		base = cpu_base->clock_base + i;  		basenow = ktime_add(now, base->offset);  		while ((node = timerqueue_getnext(&base->active))) { @@ -1294,9 +1282,42 @@ retry:  			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))  				break; -			__run_hrtimer(timer, &basenow); +			__run_hrtimer(cpu_base, base, timer, &basenow);  		}  	} +} + +#ifdef CONFIG_HIGH_RES_TIMERS + +/* + * High resolution timer interrupt + * Called with interrupts disabled + */ +void hrtimer_interrupt(struct clock_event_device *dev) +{ +	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); +	ktime_t expires_next, now, entry_time, delta; +	int retries = 0; + +	BUG_ON(!cpu_base->hres_active); +	cpu_base->nr_events++; +	dev->next_event.tv64 = KTIME_MAX; + +	raw_spin_lock(&cpu_base->lock); +	entry_time = now = hrtimer_update_base(cpu_base); +retry: +	cpu_base->in_hrtirq = 1; +	/* +	 * We set expires_next to KTIME_MAX here with cpu_base->lock +	 * held to prevent that a timer is enqueued in our queue via +	 * the migration code. This does not affect enqueueing of +	 * timers which run their callback and need to be requeued on +	 * this CPU. +	 */ +	cpu_base->expires_next.tv64 = KTIME_MAX; + +	__hrtimer_run_queues(cpu_base, now); +  	/* Reevaluate the clock bases for the next expiry */  	expires_next = __hrtimer_get_next_event(cpu_base);  	/* @@ -1308,8 +1329,7 @@ retry:  	raw_spin_unlock(&cpu_base->lock);  	/* Reprogramming necessary ? */ -	if (expires_next.tv64 == KTIME_MAX || -	    !tick_program_event(expires_next, 0)) { +	if (!tick_program_event(expires_next, 0)) {  		cpu_base->hang_detected = 0;  		return;  	} @@ -1342,8 +1362,8 @@ retry:  	cpu_base->hang_detected = 1;  	raw_spin_unlock(&cpu_base->lock);  	delta = ktime_sub(now, entry_time); -	if (delta.tv64 > cpu_base->max_hang_time.tv64) -		cpu_base->max_hang_time = delta; +	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time) +		cpu_base->max_hang_time = (unsigned int) delta.tv64;  	/*  	 * Limit it to a sensible value as we enforce a longer  	 * delay. Give the CPU at least 100ms to catch up. @@ -1361,7 +1381,7 @@ retry:   * local version of hrtimer_peek_ahead_timers() called with interrupts   * disabled.   */ -static void __hrtimer_peek_ahead_timers(void) +static inline void __hrtimer_peek_ahead_timers(void)  {  	struct tick_device *td; @@ -1373,29 +1393,6 @@ static void __hrtimer_peek_ahead_timers(void)  		hrtimer_interrupt(td->evtdev);  } -/** - * hrtimer_peek_ahead_timers -- run soft-expired timers now - * - * hrtimer_peek_ahead_timers will peek at the timer queue of - * the current cpu and check if there are any timers for which - * the soft expires time has passed. If any such timers exist, - * they are run immediately and then removed from the timer queue. - * - */ -void hrtimer_peek_ahead_timers(void) -{ -	unsigned long flags; - -	local_irq_save(flags); -	__hrtimer_peek_ahead_timers(); -	local_irq_restore(flags); -} - -static void run_hrtimer_softirq(struct softirq_action *h) -{ -	hrtimer_peek_ahead_timers(); -} -  #else /* CONFIG_HIGH_RES_TIMERS */  static inline void __hrtimer_peek_ahead_timers(void) { } @@ -1403,66 +1400,32 @@ static inline void __hrtimer_peek_ahead_timers(void) { }  #endif	/* !CONFIG_HIGH_RES_TIMERS */  /* - * Called from timer softirq every jiffy, expire hrtimers: - * - * For HRT its the fall back code to run the softirq in the timer - * softirq context in case the hrtimer initialization failed or has - * not been done yet. + * Called from run_local_timers in hardirq context every jiffy   */ -void hrtimer_run_pending(void) +void hrtimer_run_queues(void)  { -	if (hrtimer_hres_active()) +	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); +	ktime_t now; + +	if (__hrtimer_hres_active(cpu_base))  		return;  	/* -	 * This _is_ ugly: We have to check in the softirq context, -	 * whether we can switch to highres and / or nohz mode. The -	 * clocksource switch happens in the timer interrupt with -	 * xtime_lock held. Notification from there only sets the -	 * check bit in the tick_oneshot code, otherwise we might -	 * deadlock vs. xtime_lock. +	 * This _is_ ugly: We have to check periodically, whether we +	 * can switch to highres and / or nohz mode. The clocksource +	 * switch happens with xtime_lock held. Notification from +	 * there only sets the check bit in the tick_oneshot code, +	 * otherwise we might deadlock vs. xtime_lock.  	 */ -	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) +	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {  		hrtimer_switch_to_hres(); -} - -/* - * Called from hardirq context every jiffy - */ -void hrtimer_run_queues(void) -{ -	struct timerqueue_node *node; -	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); -	struct hrtimer_clock_base *base; -	int index, gettime = 1; - -	if (hrtimer_hres_active())  		return; - -	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { -		base = &cpu_base->clock_base[index]; -		if (!timerqueue_getnext(&base->active)) -			continue; - -		if (gettime) { -			hrtimer_get_softirq_time(cpu_base); -			gettime = 0; -		} - -		raw_spin_lock(&cpu_base->lock); - -		while ((node = timerqueue_getnext(&base->active))) { -			struct hrtimer *timer; - -			timer = container_of(node, struct hrtimer, node); -			if (base->softirq_time.tv64 <= -					hrtimer_get_expires_tv64(timer)) -				break; - -			__run_hrtimer(timer, &base->softirq_time); -		} -		raw_spin_unlock(&cpu_base->lock);  	} + +	raw_spin_lock(&cpu_base->lock); +	now = hrtimer_update_base(cpu_base); +	__hrtimer_run_queues(cpu_base, now); +	raw_spin_unlock(&cpu_base->lock);  }  /* @@ -1495,8 +1458,6 @@ static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mod  	do {  		set_current_state(TASK_INTERRUPTIBLE);  		hrtimer_start_expires(&t->timer, mode); -		if (!hrtimer_active(&t->timer)) -			t->task = NULL;  		if (likely(t->task))  			freezable_schedule(); @@ -1640,11 +1601,11 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,  		debug_deactivate(timer);  		/* -		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the +		 * Mark it as ENQUEUED not INACTIVE otherwise the  		 * timer could be seen as !active and just vanish away  		 * under us on another CPU  		 */ -		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); +		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);  		timer->base = new_base;  		/*  		 * Enqueue the timers on the new cpu. This does not @@ -1655,9 +1616,6 @@ static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,  		 * event device.  		 */  		enqueue_hrtimer(timer, new_base); - -		/* Clear the migration state bit */ -		timer->state &= ~HRTIMER_STATE_MIGRATE;  	}  } @@ -1729,9 +1687,6 @@ void __init hrtimers_init(void)  	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,  			  (void *)(long)smp_processor_id());  	register_cpu_notifier(&hrtimers_nb); -#ifdef CONFIG_HIGH_RES_TIMERS -	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); -#endif  }  /** @@ -1770,8 +1725,6 @@ schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,  	hrtimer_init_sleeper(&t, current);  	hrtimer_start_expires(&t.timer, mode); -	if (!hrtimer_active(&t.timer)) -		t.task = NULL;  	if (likely(t.task))  		schedule(); |