diff options
Diffstat (limited to 'kernel/sched/syscalls.c')
| -rw-r--r-- | kernel/sched/syscalls.c | 1699 | 
1 files changed, 1699 insertions, 0 deletions
| diff --git a/kernel/sched/syscalls.c b/kernel/sched/syscalls.c new file mode 100644 index 000000000000..ae1b42775ef9 --- /dev/null +++ b/kernel/sched/syscalls.c @@ -0,0 +1,1699 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + *  kernel/sched/syscalls.c + * + *  Core kernel scheduler syscalls related code + * + *  Copyright (C) 1991-2002  Linus Torvalds + *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat + */ +#include <linux/sched.h> +#include <linux/cpuset.h> +#include <linux/sched/debug.h> + +#include <uapi/linux/sched/types.h> + +#include "sched.h" +#include "autogroup.h" + +static inline int __normal_prio(int policy, int rt_prio, int nice) +{ +	int prio; + +	if (dl_policy(policy)) +		prio = MAX_DL_PRIO - 1; +	else if (rt_policy(policy)) +		prio = MAX_RT_PRIO - 1 - rt_prio; +	else +		prio = NICE_TO_PRIO(nice); + +	return prio; +} + +/* + * Calculate the expected normal priority: i.e. priority + * without taking RT-inheritance into account. Might be + * boosted by interactivity modifiers. Changes upon fork, + * setprio syscalls, and whenever the interactivity + * estimator recalculates. + */ +static inline int normal_prio(struct task_struct *p) +{ +	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); +} + +/* + * Calculate the current priority, i.e. the priority + * taken into account by the scheduler. This value might + * be boosted by RT tasks, or might be boosted by + * interactivity modifiers. Will be RT if the task got + * RT-boosted. If not then it returns p->normal_prio. + */ +static int effective_prio(struct task_struct *p) +{ +	p->normal_prio = normal_prio(p); +	/* +	 * If we are RT tasks or we were boosted to RT priority, +	 * keep the priority unchanged. Otherwise, update priority +	 * to the normal priority: +	 */ +	if (!rt_prio(p->prio)) +		return p->normal_prio; +	return p->prio; +} + +void set_user_nice(struct task_struct *p, long nice) +{ +	bool queued, running; +	struct rq *rq; +	int old_prio; + +	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) +		return; +	/* +	 * We have to be careful, if called from sys_setpriority(), +	 * the task might be in the middle of scheduling on another CPU. +	 */ +	CLASS(task_rq_lock, rq_guard)(p); +	rq = rq_guard.rq; + +	update_rq_clock(rq); + +	/* +	 * The RT priorities are set via sched_setscheduler(), but we still +	 * allow the 'normal' nice value to be set - but as expected +	 * it won't have any effect on scheduling until the task is +	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: +	 */ +	if (task_has_dl_policy(p) || task_has_rt_policy(p)) { +		p->static_prio = NICE_TO_PRIO(nice); +		return; +	} + +	queued = task_on_rq_queued(p); +	running = task_current(rq, p); +	if (queued) +		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); +	if (running) +		put_prev_task(rq, p); + +	p->static_prio = NICE_TO_PRIO(nice); +	set_load_weight(p, true); +	old_prio = p->prio; +	p->prio = effective_prio(p); + +	if (queued) +		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); +	if (running) +		set_next_task(rq, p); + +	/* +	 * If the task increased its priority or is running and +	 * lowered its priority, then reschedule its CPU: +	 */ +	p->sched_class->prio_changed(rq, p, old_prio); +} +EXPORT_SYMBOL(set_user_nice); + +/* + * is_nice_reduction - check if nice value is an actual reduction + * + * Similar to can_nice() but does not perform a capability check. + * + * @p: task + * @nice: nice value + */ +static bool is_nice_reduction(const struct task_struct *p, const int nice) +{ +	/* Convert nice value [19,-20] to rlimit style value [1,40]: */ +	int nice_rlim = nice_to_rlimit(nice); + +	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); +} + +/* + * can_nice - check if a task can reduce its nice value + * @p: task + * @nice: nice value + */ +int can_nice(const struct task_struct *p, const int nice) +{ +	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); +} + +#ifdef __ARCH_WANT_SYS_NICE + +/* + * sys_nice - change the priority of the current process. + * @increment: priority increment + * + * sys_setpriority is a more generic, but much slower function that + * does similar things. + */ +SYSCALL_DEFINE1(nice, int, increment) +{ +	long nice, retval; + +	/* +	 * Setpriority might change our priority at the same moment. +	 * We don't have to worry. Conceptually one call occurs first +	 * and we have a single winner. +	 */ +	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); +	nice = task_nice(current) + increment; + +	nice = clamp_val(nice, MIN_NICE, MAX_NICE); +	if (increment < 0 && !can_nice(current, nice)) +		return -EPERM; + +	retval = security_task_setnice(current, nice); +	if (retval) +		return retval; + +	set_user_nice(current, nice); +	return 0; +} + +#endif + +/** + * task_prio - return the priority value of a given task. + * @p: the task in question. + * + * Return: The priority value as seen by users in /proc. + * + * sched policy         return value   kernel prio    user prio/nice + * + * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19] + * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99] + * deadline                     -101             -1           0 + */ +int task_prio(const struct task_struct *p) +{ +	return p->prio - MAX_RT_PRIO; +} + +/** + * idle_cpu - is a given CPU idle currently? + * @cpu: the processor in question. + * + * Return: 1 if the CPU is currently idle. 0 otherwise. + */ +int idle_cpu(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); + +	if (rq->curr != rq->idle) +		return 0; + +	if (rq->nr_running) +		return 0; + +#ifdef CONFIG_SMP +	if (rq->ttwu_pending) +		return 0; +#endif + +	return 1; +} + +/** + * available_idle_cpu - is a given CPU idle for enqueuing work. + * @cpu: the CPU in question. + * + * Return: 1 if the CPU is currently idle. 0 otherwise. + */ +int available_idle_cpu(int cpu) +{ +	if (!idle_cpu(cpu)) +		return 0; + +	if (vcpu_is_preempted(cpu)) +		return 0; + +	return 1; +} + +/** + * idle_task - return the idle task for a given CPU. + * @cpu: the processor in question. + * + * Return: The idle task for the CPU @cpu. + */ +struct task_struct *idle_task(int cpu) +{ +	return cpu_rq(cpu)->idle; +} + +#ifdef CONFIG_SCHED_CORE +int sched_core_idle_cpu(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); + +	if (sched_core_enabled(rq) && rq->curr == rq->idle) +		return 1; + +	return idle_cpu(cpu); +} + +#endif + +#ifdef CONFIG_SMP +/* + * This function computes an effective utilization for the given CPU, to be + * used for frequency selection given the linear relation: f = u * f_max. + * + * The scheduler tracks the following metrics: + * + *   cpu_util_{cfs,rt,dl,irq}() + *   cpu_bw_dl() + * + * Where the cfs,rt and dl util numbers are tracked with the same metric and + * synchronized windows and are thus directly comparable. + * + * The cfs,rt,dl utilization are the running times measured with rq->clock_task + * which excludes things like IRQ and steal-time. These latter are then accrued + * in the IRQ utilization. + * + * The DL bandwidth number OTOH is not a measured metric but a value computed + * based on the task model parameters and gives the minimal utilization + * required to meet deadlines. + */ +unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, +				 unsigned long *min, +				 unsigned long *max) +{ +	unsigned long util, irq, scale; +	struct rq *rq = cpu_rq(cpu); + +	scale = arch_scale_cpu_capacity(cpu); + +	/* +	 * Early check to see if IRQ/steal time saturates the CPU, can be +	 * because of inaccuracies in how we track these -- see +	 * update_irq_load_avg(). +	 */ +	irq = cpu_util_irq(rq); +	if (unlikely(irq >= scale)) { +		if (min) +			*min = scale; +		if (max) +			*max = scale; +		return scale; +	} + +	if (min) { +		/* +		 * The minimum utilization returns the highest level between: +		 * - the computed DL bandwidth needed with the IRQ pressure which +		 *   steals time to the deadline task. +		 * - The minimum performance requirement for CFS and/or RT. +		 */ +		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); + +		/* +		 * When an RT task is runnable and uclamp is not used, we must +		 * ensure that the task will run at maximum compute capacity. +		 */ +		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) +			*min = max(*min, scale); +	} + +	/* +	 * Because the time spend on RT/DL tasks is visible as 'lost' time to +	 * CFS tasks and we use the same metric to track the effective +	 * utilization (PELT windows are synchronized) we can directly add them +	 * to obtain the CPU's actual utilization. +	 */ +	util = util_cfs + cpu_util_rt(rq); +	util += cpu_util_dl(rq); + +	/* +	 * The maximum hint is a soft bandwidth requirement, which can be lower +	 * than the actual utilization because of uclamp_max requirements. +	 */ +	if (max) +		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); + +	if (util >= scale) +		return scale; + +	/* +	 * There is still idle time; further improve the number by using the +	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we +	 * need to scale the task numbers: +	 * +	 *              max - irq +	 *   U' = irq + --------- * U +	 *                 max +	 */ +	util = scale_irq_capacity(util, irq, scale); +	util += irq; + +	return min(scale, util); +} + +unsigned long sched_cpu_util(int cpu) +{ +	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); +} +#endif /* CONFIG_SMP */ + +/** + * find_process_by_pid - find a process with a matching PID value. + * @pid: the pid in question. + * + * The task of @pid, if found. %NULL otherwise. + */ +static struct task_struct *find_process_by_pid(pid_t pid) +{ +	return pid ? find_task_by_vpid(pid) : current; +} + +static struct task_struct *find_get_task(pid_t pid) +{ +	struct task_struct *p; +	guard(rcu)(); + +	p = find_process_by_pid(pid); +	if (likely(p)) +		get_task_struct(p); + +	return p; +} + +DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), +	     find_get_task(pid), pid_t pid) + +/* + * sched_setparam() passes in -1 for its policy, to let the functions + * it calls know not to change it. + */ +#define SETPARAM_POLICY	-1 + +static void __setscheduler_params(struct task_struct *p, +		const struct sched_attr *attr) +{ +	int policy = attr->sched_policy; + +	if (policy == SETPARAM_POLICY) +		policy = p->policy; + +	p->policy = policy; + +	if (dl_policy(policy)) +		__setparam_dl(p, attr); +	else if (fair_policy(policy)) +		p->static_prio = NICE_TO_PRIO(attr->sched_nice); + +	/* +	 * __sched_setscheduler() ensures attr->sched_priority == 0 when +	 * !rt_policy. Always setting this ensures that things like +	 * getparam()/getattr() don't report silly values for !rt tasks. +	 */ +	p->rt_priority = attr->sched_priority; +	p->normal_prio = normal_prio(p); +	set_load_weight(p, true); +} + +/* + * Check the target process has a UID that matches the current process's: + */ +static bool check_same_owner(struct task_struct *p) +{ +	const struct cred *cred = current_cred(), *pcred; +	guard(rcu)(); + +	pcred = __task_cred(p); +	return (uid_eq(cred->euid, pcred->euid) || +		uid_eq(cred->euid, pcred->uid)); +} + +#ifdef CONFIG_UCLAMP_TASK + +static int uclamp_validate(struct task_struct *p, +			   const struct sched_attr *attr) +{ +	int util_min = p->uclamp_req[UCLAMP_MIN].value; +	int util_max = p->uclamp_req[UCLAMP_MAX].value; + +	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { +		util_min = attr->sched_util_min; + +		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) +			return -EINVAL; +	} + +	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { +		util_max = attr->sched_util_max; + +		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) +			return -EINVAL; +	} + +	if (util_min != -1 && util_max != -1 && util_min > util_max) +		return -EINVAL; + +	/* +	 * We have valid uclamp attributes; make sure uclamp is enabled. +	 * +	 * We need to do that here, because enabling static branches is a +	 * blocking operation which obviously cannot be done while holding +	 * scheduler locks. +	 */ +	static_branch_enable(&sched_uclamp_used); + +	return 0; +} + +static bool uclamp_reset(const struct sched_attr *attr, +			 enum uclamp_id clamp_id, +			 struct uclamp_se *uc_se) +{ +	/* Reset on sched class change for a non user-defined clamp value. */ +	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && +	    !uc_se->user_defined) +		return true; + +	/* Reset on sched_util_{min,max} == -1. */ +	if (clamp_id == UCLAMP_MIN && +	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && +	    attr->sched_util_min == -1) { +		return true; +	} + +	if (clamp_id == UCLAMP_MAX && +	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && +	    attr->sched_util_max == -1) { +		return true; +	} + +	return false; +} + +static void __setscheduler_uclamp(struct task_struct *p, +				  const struct sched_attr *attr) +{ +	enum uclamp_id clamp_id; + +	for_each_clamp_id(clamp_id) { +		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; +		unsigned int value; + +		if (!uclamp_reset(attr, clamp_id, uc_se)) +			continue; + +		/* +		 * RT by default have a 100% boost value that could be modified +		 * at runtime. +		 */ +		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) +			value = sysctl_sched_uclamp_util_min_rt_default; +		else +			value = uclamp_none(clamp_id); + +		uclamp_se_set(uc_se, value, false); + +	} + +	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) +		return; + +	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && +	    attr->sched_util_min != -1) { +		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], +			      attr->sched_util_min, true); +	} + +	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && +	    attr->sched_util_max != -1) { +		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], +			      attr->sched_util_max, true); +	} +} + +#else /* !CONFIG_UCLAMP_TASK: */ + +static inline int uclamp_validate(struct task_struct *p, +				  const struct sched_attr *attr) +{ +	return -EOPNOTSUPP; +} +static void __setscheduler_uclamp(struct task_struct *p, +				  const struct sched_attr *attr) { } +#endif + +/* + * Allow unprivileged RT tasks to decrease priority. + * Only issue a capable test if needed and only once to avoid an audit + * event on permitted non-privileged operations: + */ +static int user_check_sched_setscheduler(struct task_struct *p, +					 const struct sched_attr *attr, +					 int policy, int reset_on_fork) +{ +	if (fair_policy(policy)) { +		if (attr->sched_nice < task_nice(p) && +		    !is_nice_reduction(p, attr->sched_nice)) +			goto req_priv; +	} + +	if (rt_policy(policy)) { +		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); + +		/* Can't set/change the rt policy: */ +		if (policy != p->policy && !rlim_rtprio) +			goto req_priv; + +		/* Can't increase priority: */ +		if (attr->sched_priority > p->rt_priority && +		    attr->sched_priority > rlim_rtprio) +			goto req_priv; +	} + +	/* +	 * Can't set/change SCHED_DEADLINE policy at all for now +	 * (safest behavior); in the future we would like to allow +	 * unprivileged DL tasks to increase their relative deadline +	 * or reduce their runtime (both ways reducing utilization) +	 */ +	if (dl_policy(policy)) +		goto req_priv; + +	/* +	 * Treat SCHED_IDLE as nice 20. Only allow a switch to +	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. +	 */ +	if (task_has_idle_policy(p) && !idle_policy(policy)) { +		if (!is_nice_reduction(p, task_nice(p))) +			goto req_priv; +	} + +	/* Can't change other user's priorities: */ +	if (!check_same_owner(p)) +		goto req_priv; + +	/* Normal users shall not reset the sched_reset_on_fork flag: */ +	if (p->sched_reset_on_fork && !reset_on_fork) +		goto req_priv; + +	return 0; + +req_priv: +	if (!capable(CAP_SYS_NICE)) +		return -EPERM; + +	return 0; +} + +int __sched_setscheduler(struct task_struct *p, +			 const struct sched_attr *attr, +			 bool user, bool pi) +{ +	int oldpolicy = -1, policy = attr->sched_policy; +	int retval, oldprio, newprio, queued, running; +	const struct sched_class *prev_class; +	struct balance_callback *head; +	struct rq_flags rf; +	int reset_on_fork; +	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; +	struct rq *rq; +	bool cpuset_locked = false; + +	/* The pi code expects interrupts enabled */ +	BUG_ON(pi && in_interrupt()); +recheck: +	/* Double check policy once rq lock held: */ +	if (policy < 0) { +		reset_on_fork = p->sched_reset_on_fork; +		policy = oldpolicy = p->policy; +	} else { +		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); + +		if (!valid_policy(policy)) +			return -EINVAL; +	} + +	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) +		return -EINVAL; + +	/* +	 * Valid priorities for SCHED_FIFO and SCHED_RR are +	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, +	 * SCHED_BATCH and SCHED_IDLE is 0. +	 */ +	if (attr->sched_priority > MAX_RT_PRIO-1) +		return -EINVAL; +	if ((dl_policy(policy) && !__checkparam_dl(attr)) || +	    (rt_policy(policy) != (attr->sched_priority != 0))) +		return -EINVAL; + +	if (user) { +		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); +		if (retval) +			return retval; + +		if (attr->sched_flags & SCHED_FLAG_SUGOV) +			return -EINVAL; + +		retval = security_task_setscheduler(p); +		if (retval) +			return retval; +	} + +	/* Update task specific "requested" clamps */ +	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { +		retval = uclamp_validate(p, attr); +		if (retval) +			return retval; +	} + +	/* +	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets +	 * information. +	 */ +	if (dl_policy(policy) || dl_policy(p->policy)) { +		cpuset_locked = true; +		cpuset_lock(); +	} + +	/* +	 * Make sure no PI-waiters arrive (or leave) while we are +	 * changing the priority of the task: +	 * +	 * To be able to change p->policy safely, the appropriate +	 * runqueue lock must be held. +	 */ +	rq = task_rq_lock(p, &rf); +	update_rq_clock(rq); + +	/* +	 * Changing the policy of the stop threads its a very bad idea: +	 */ +	if (p == rq->stop) { +		retval = -EINVAL; +		goto unlock; +	} + +	/* +	 * If not changing anything there's no need to proceed further, +	 * but store a possible modification of reset_on_fork. +	 */ +	if (unlikely(policy == p->policy)) { +		if (fair_policy(policy) && attr->sched_nice != task_nice(p)) +			goto change; +		if (rt_policy(policy) && attr->sched_priority != p->rt_priority) +			goto change; +		if (dl_policy(policy) && dl_param_changed(p, attr)) +			goto change; +		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) +			goto change; + +		p->sched_reset_on_fork = reset_on_fork; +		retval = 0; +		goto unlock; +	} +change: + +	if (user) { +#ifdef CONFIG_RT_GROUP_SCHED +		/* +		 * Do not allow real-time tasks into groups that have no runtime +		 * assigned. +		 */ +		if (rt_bandwidth_enabled() && rt_policy(policy) && +				task_group(p)->rt_bandwidth.rt_runtime == 0 && +				!task_group_is_autogroup(task_group(p))) { +			retval = -EPERM; +			goto unlock; +		} +#endif +#ifdef CONFIG_SMP +		if (dl_bandwidth_enabled() && dl_policy(policy) && +				!(attr->sched_flags & SCHED_FLAG_SUGOV)) { +			cpumask_t *span = rq->rd->span; + +			/* +			 * Don't allow tasks with an affinity mask smaller than +			 * the entire root_domain to become SCHED_DEADLINE. We +			 * will also fail if there's no bandwidth available. +			 */ +			if (!cpumask_subset(span, p->cpus_ptr) || +			    rq->rd->dl_bw.bw == 0) { +				retval = -EPERM; +				goto unlock; +			} +		} +#endif +	} + +	/* Re-check policy now with rq lock held: */ +	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { +		policy = oldpolicy = -1; +		task_rq_unlock(rq, p, &rf); +		if (cpuset_locked) +			cpuset_unlock(); +		goto recheck; +	} + +	/* +	 * If setscheduling to SCHED_DEADLINE (or changing the parameters +	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth +	 * is available. +	 */ +	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { +		retval = -EBUSY; +		goto unlock; +	} + +	p->sched_reset_on_fork = reset_on_fork; +	oldprio = p->prio; + +	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); +	if (pi) { +		/* +		 * Take priority boosted tasks into account. If the new +		 * effective priority is unchanged, we just store the new +		 * normal parameters and do not touch the scheduler class and +		 * the runqueue. This will be done when the task deboost +		 * itself. +		 */ +		newprio = rt_effective_prio(p, newprio); +		if (newprio == oldprio) +			queue_flags &= ~DEQUEUE_MOVE; +	} + +	queued = task_on_rq_queued(p); +	running = task_current(rq, p); +	if (queued) +		dequeue_task(rq, p, queue_flags); +	if (running) +		put_prev_task(rq, p); + +	prev_class = p->sched_class; + +	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { +		__setscheduler_params(p, attr); +		__setscheduler_prio(p, newprio); +	} +	__setscheduler_uclamp(p, attr); + +	if (queued) { +		/* +		 * We enqueue to tail when the priority of a task is +		 * increased (user space view). +		 */ +		if (oldprio < p->prio) +			queue_flags |= ENQUEUE_HEAD; + +		enqueue_task(rq, p, queue_flags); +	} +	if (running) +		set_next_task(rq, p); + +	check_class_changed(rq, p, prev_class, oldprio); + +	/* Avoid rq from going away on us: */ +	preempt_disable(); +	head = splice_balance_callbacks(rq); +	task_rq_unlock(rq, p, &rf); + +	if (pi) { +		if (cpuset_locked) +			cpuset_unlock(); +		rt_mutex_adjust_pi(p); +	} + +	/* Run balance callbacks after we've adjusted the PI chain: */ +	balance_callbacks(rq, head); +	preempt_enable(); + +	return 0; + +unlock: +	task_rq_unlock(rq, p, &rf); +	if (cpuset_locked) +		cpuset_unlock(); +	return retval; +} + +static int _sched_setscheduler(struct task_struct *p, int policy, +			       const struct sched_param *param, bool check) +{ +	struct sched_attr attr = { +		.sched_policy   = policy, +		.sched_priority = param->sched_priority, +		.sched_nice	= PRIO_TO_NICE(p->static_prio), +	}; + +	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */ +	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { +		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; +		policy &= ~SCHED_RESET_ON_FORK; +		attr.sched_policy = policy; +	} + +	return __sched_setscheduler(p, &attr, check, true); +} +/** + * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Use sched_set_fifo(), read its comment. + * + * Return: 0 on success. An error code otherwise. + * + * NOTE that the task may be already dead. + */ +int sched_setscheduler(struct task_struct *p, int policy, +		       const struct sched_param *param) +{ +	return _sched_setscheduler(p, policy, param, true); +} + +int sched_setattr(struct task_struct *p, const struct sched_attr *attr) +{ +	return __sched_setscheduler(p, attr, true, true); +} + +int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) +{ +	return __sched_setscheduler(p, attr, false, true); +} +EXPORT_SYMBOL_GPL(sched_setattr_nocheck); + +/** + * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernel-space. + * @p: the task in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Just like sched_setscheduler, only don't bother checking if the + * current context has permission.  For example, this is needed in + * stop_machine(): we create temporary high priority worker threads, + * but our caller might not have that capability. + * + * Return: 0 on success. An error code otherwise. + */ +int sched_setscheduler_nocheck(struct task_struct *p, int policy, +			       const struct sched_param *param) +{ +	return _sched_setscheduler(p, policy, param, false); +} + +/* + * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally + * incapable of resource management, which is the one thing an OS really should + * be doing. + * + * This is of course the reason it is limited to privileged users only. + * + * Worse still; it is fundamentally impossible to compose static priority + * workloads. You cannot take two correctly working static prio workloads + * and smash them together and still expect them to work. + * + * For this reason 'all' FIFO tasks the kernel creates are basically at: + * + *   MAX_RT_PRIO / 2 + * + * The administrator _MUST_ configure the system, the kernel simply doesn't + * know enough information to make a sensible choice. + */ +void sched_set_fifo(struct task_struct *p) +{ +	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; +	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_fifo); + +/* + * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. + */ +void sched_set_fifo_low(struct task_struct *p) +{ +	struct sched_param sp = { .sched_priority = 1 }; +	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_fifo_low); + +void sched_set_normal(struct task_struct *p, int nice) +{ +	struct sched_attr attr = { +		.sched_policy = SCHED_NORMAL, +		.sched_nice = nice, +	}; +	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); +} +EXPORT_SYMBOL_GPL(sched_set_normal); + +static int +do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) +{ +	struct sched_param lparam; + +	if (!param || pid < 0) +		return -EINVAL; +	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) +		return -EFAULT; + +	CLASS(find_get_task, p)(pid); +	if (!p) +		return -ESRCH; + +	return sched_setscheduler(p, policy, &lparam); +} + +/* + * Mimics kernel/events/core.c perf_copy_attr(). + */ +static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) +{ +	u32 size; +	int ret; + +	/* Zero the full structure, so that a short copy will be nice: */ +	memset(attr, 0, sizeof(*attr)); + +	ret = get_user(size, &uattr->size); +	if (ret) +		return ret; + +	/* ABI compatibility quirk: */ +	if (!size) +		size = SCHED_ATTR_SIZE_VER0; +	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) +		goto err_size; + +	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); +	if (ret) { +		if (ret == -E2BIG) +			goto err_size; +		return ret; +	} + +	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && +	    size < SCHED_ATTR_SIZE_VER1) +		return -EINVAL; + +	/* +	 * XXX: Do we want to be lenient like existing syscalls; or do we want +	 * to be strict and return an error on out-of-bounds values? +	 */ +	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); + +	return 0; + +err_size: +	put_user(sizeof(*attr), &uattr->size); +	return -E2BIG; +} + +static void get_params(struct task_struct *p, struct sched_attr *attr) +{ +	if (task_has_dl_policy(p)) +		__getparam_dl(p, attr); +	else if (task_has_rt_policy(p)) +		attr->sched_priority = p->rt_priority; +	else +		attr->sched_nice = task_nice(p); +} + +/** + * sys_sched_setscheduler - set/change the scheduler policy and RT priority + * @pid: the pid in question. + * @policy: new policy. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) +{ +	if (policy < 0) +		return -EINVAL; + +	return do_sched_setscheduler(pid, policy, param); +} + +/** + * sys_sched_setparam - set/change the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the new RT priority. + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) +{ +	return do_sched_setscheduler(pid, SETPARAM_POLICY, param); +} + +/** + * sys_sched_setattr - same as above, but with extended sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @flags: for future extension. + */ +SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, +			       unsigned int, flags) +{ +	struct sched_attr attr; +	int retval; + +	if (!uattr || pid < 0 || flags) +		return -EINVAL; + +	retval = sched_copy_attr(uattr, &attr); +	if (retval) +		return retval; + +	if ((int)attr.sched_policy < 0) +		return -EINVAL; +	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) +		attr.sched_policy = SETPARAM_POLICY; + +	CLASS(find_get_task, p)(pid); +	if (!p) +		return -ESRCH; + +	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) +		get_params(p, &attr); + +	return sched_setattr(p, &attr); +} + +/** + * sys_sched_getscheduler - get the policy (scheduling class) of a thread + * @pid: the pid in question. + * + * Return: On success, the policy of the thread. Otherwise, a negative error + * code. + */ +SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) +{ +	struct task_struct *p; +	int retval; + +	if (pid < 0) +		return -EINVAL; + +	guard(rcu)(); +	p = find_process_by_pid(pid); +	if (!p) +		return -ESRCH; + +	retval = security_task_getscheduler(p); +	if (!retval) { +		retval = p->policy; +		if (p->sched_reset_on_fork) +			retval |= SCHED_RESET_ON_FORK; +	} +	return retval; +} + +/** + * sys_sched_getparam - get the RT priority of a thread + * @pid: the pid in question. + * @param: structure containing the RT priority. + * + * Return: On success, 0 and the RT priority is in @param. Otherwise, an error + * code. + */ +SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) +{ +	struct sched_param lp = { .sched_priority = 0 }; +	struct task_struct *p; +	int retval; + +	if (!param || pid < 0) +		return -EINVAL; + +	scoped_guard (rcu) { +		p = find_process_by_pid(pid); +		if (!p) +			return -ESRCH; + +		retval = security_task_getscheduler(p); +		if (retval) +			return retval; + +		if (task_has_rt_policy(p)) +			lp.sched_priority = p->rt_priority; +	} + +	/* +	 * This one might sleep, we cannot do it with a spinlock held ... +	 */ +	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; +} + +/* + * Copy the kernel size attribute structure (which might be larger + * than what user-space knows about) to user-space. + * + * Note that all cases are valid: user-space buffer can be larger or + * smaller than the kernel-space buffer. The usual case is that both + * have the same size. + */ +static int +sched_attr_copy_to_user(struct sched_attr __user *uattr, +			struct sched_attr *kattr, +			unsigned int usize) +{ +	unsigned int ksize = sizeof(*kattr); + +	if (!access_ok(uattr, usize)) +		return -EFAULT; + +	/* +	 * sched_getattr() ABI forwards and backwards compatibility: +	 * +	 * If usize == ksize then we just copy everything to user-space and all is good. +	 * +	 * If usize < ksize then we only copy as much as user-space has space for, +	 * this keeps ABI compatibility as well. We skip the rest. +	 * +	 * If usize > ksize then user-space is using a newer version of the ABI, +	 * which part the kernel doesn't know about. Just ignore it - tooling can +	 * detect the kernel's knowledge of attributes from the attr->size value +	 * which is set to ksize in this case. +	 */ +	kattr->size = min(usize, ksize); + +	if (copy_to_user(uattr, kattr, kattr->size)) +		return -EFAULT; + +	return 0; +} + +/** + * sys_sched_getattr - similar to sched_getparam, but with sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @usize: sizeof(attr) for fwd/bwd comp. + * @flags: for future extension. + */ +SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, +		unsigned int, usize, unsigned int, flags) +{ +	struct sched_attr kattr = { }; +	struct task_struct *p; +	int retval; + +	if (!uattr || pid < 0 || usize > PAGE_SIZE || +	    usize < SCHED_ATTR_SIZE_VER0 || flags) +		return -EINVAL; + +	scoped_guard (rcu) { +		p = find_process_by_pid(pid); +		if (!p) +			return -ESRCH; + +		retval = security_task_getscheduler(p); +		if (retval) +			return retval; + +		kattr.sched_policy = p->policy; +		if (p->sched_reset_on_fork) +			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; +		get_params(p, &kattr); +		kattr.sched_flags &= SCHED_FLAG_ALL; + +#ifdef CONFIG_UCLAMP_TASK +		/* +		 * This could race with another potential updater, but this is fine +		 * because it'll correctly read the old or the new value. We don't need +		 * to guarantee who wins the race as long as it doesn't return garbage. +		 */ +		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; +		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value; +#endif +	} + +	return sched_attr_copy_to_user(uattr, &kattr, usize); +} + +#ifdef CONFIG_SMP +int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) +{ +	/* +	 * If the task isn't a deadline task or admission control is +	 * disabled then we don't care about affinity changes. +	 */ +	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) +		return 0; + +	/* +	 * Since bandwidth control happens on root_domain basis, +	 * if admission test is enabled, we only admit -deadline +	 * tasks allowed to run on all the CPUs in the task's +	 * root_domain. +	 */ +	guard(rcu)(); +	if (!cpumask_subset(task_rq(p)->rd->span, mask)) +		return -EBUSY; + +	return 0; +} +#endif /* CONFIG_SMP */ + +int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) +{ +	int retval; +	cpumask_var_t cpus_allowed, new_mask; + +	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) +		return -ENOMEM; + +	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { +		retval = -ENOMEM; +		goto out_free_cpus_allowed; +	} + +	cpuset_cpus_allowed(p, cpus_allowed); +	cpumask_and(new_mask, ctx->new_mask, cpus_allowed); + +	ctx->new_mask = new_mask; +	ctx->flags |= SCA_CHECK; + +	retval = dl_task_check_affinity(p, new_mask); +	if (retval) +		goto out_free_new_mask; + +	retval = __set_cpus_allowed_ptr(p, ctx); +	if (retval) +		goto out_free_new_mask; + +	cpuset_cpus_allowed(p, cpus_allowed); +	if (!cpumask_subset(new_mask, cpus_allowed)) { +		/* +		 * We must have raced with a concurrent cpuset update. +		 * Just reset the cpumask to the cpuset's cpus_allowed. +		 */ +		cpumask_copy(new_mask, cpus_allowed); + +		/* +		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() +		 * will restore the previous user_cpus_ptr value. +		 * +		 * In the unlikely event a previous user_cpus_ptr exists, +		 * we need to further restrict the mask to what is allowed +		 * by that old user_cpus_ptr. +		 */ +		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { +			bool empty = !cpumask_and(new_mask, new_mask, +						  ctx->user_mask); + +			if (WARN_ON_ONCE(empty)) +				cpumask_copy(new_mask, cpus_allowed); +		} +		__set_cpus_allowed_ptr(p, ctx); +		retval = -EINVAL; +	} + +out_free_new_mask: +	free_cpumask_var(new_mask); +out_free_cpus_allowed: +	free_cpumask_var(cpus_allowed); +	return retval; +} + +long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) +{ +	struct affinity_context ac; +	struct cpumask *user_mask; +	int retval; + +	CLASS(find_get_task, p)(pid); +	if (!p) +		return -ESRCH; + +	if (p->flags & PF_NO_SETAFFINITY) +		return -EINVAL; + +	if (!check_same_owner(p)) { +		guard(rcu)(); +		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) +			return -EPERM; +	} + +	retval = security_task_setscheduler(p); +	if (retval) +		return retval; + +	/* +	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and +	 * alloc_user_cpus_ptr() returns NULL. +	 */ +	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); +	if (user_mask) { +		cpumask_copy(user_mask, in_mask); +	} else if (IS_ENABLED(CONFIG_SMP)) { +		return -ENOMEM; +	} + +	ac = (struct affinity_context){ +		.new_mask  = in_mask, +		.user_mask = user_mask, +		.flags     = SCA_USER, +	}; + +	retval = __sched_setaffinity(p, &ac); +	kfree(ac.user_mask); + +	return retval; +} + +static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, +			     struct cpumask *new_mask) +{ +	if (len < cpumask_size()) +		cpumask_clear(new_mask); +	else if (len > cpumask_size()) +		len = cpumask_size(); + +	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; +} + +/** + * sys_sched_setaffinity - set the CPU affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to the new CPU mask + * + * Return: 0 on success. An error code otherwise. + */ +SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, +		unsigned long __user *, user_mask_ptr) +{ +	cpumask_var_t new_mask; +	int retval; + +	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) +		return -ENOMEM; + +	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); +	if (retval == 0) +		retval = sched_setaffinity(pid, new_mask); +	free_cpumask_var(new_mask); +	return retval; +} + +long sched_getaffinity(pid_t pid, struct cpumask *mask) +{ +	struct task_struct *p; +	int retval; + +	guard(rcu)(); +	p = find_process_by_pid(pid); +	if (!p) +		return -ESRCH; + +	retval = security_task_getscheduler(p); +	if (retval) +		return retval; + +	guard(raw_spinlock_irqsave)(&p->pi_lock); +	cpumask_and(mask, &p->cpus_mask, cpu_active_mask); + +	return 0; +} + +/** + * sys_sched_getaffinity - get the CPU affinity of a process + * @pid: pid of the process + * @len: length in bytes of the bitmask pointed to by user_mask_ptr + * @user_mask_ptr: user-space pointer to hold the current CPU mask + * + * Return: size of CPU mask copied to user_mask_ptr on success. An + * error code otherwise. + */ +SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, +		unsigned long __user *, user_mask_ptr) +{ +	int ret; +	cpumask_var_t mask; + +	if ((len * BITS_PER_BYTE) < nr_cpu_ids) +		return -EINVAL; +	if (len & (sizeof(unsigned long)-1)) +		return -EINVAL; + +	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) +		return -ENOMEM; + +	ret = sched_getaffinity(pid, mask); +	if (ret == 0) { +		unsigned int retlen = min(len, cpumask_size()); + +		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) +			ret = -EFAULT; +		else +			ret = retlen; +	} +	free_cpumask_var(mask); + +	return ret; +} + +static void do_sched_yield(void) +{ +	struct rq_flags rf; +	struct rq *rq; + +	rq = this_rq_lock_irq(&rf); + +	schedstat_inc(rq->yld_count); +	current->sched_class->yield_task(rq); + +	preempt_disable(); +	rq_unlock_irq(rq, &rf); +	sched_preempt_enable_no_resched(); + +	schedule(); +} + +/** + * sys_sched_yield - yield the current processor to other threads. + * + * This function yields the current CPU to other tasks. If there are no + * other threads running on this CPU then this function will return. + * + * Return: 0. + */ +SYSCALL_DEFINE0(sched_yield) +{ +	do_sched_yield(); +	return 0; +} + +/** + * yield - yield the current processor to other threads. + * + * Do not ever use this function, there's a 99% chance you're doing it wrong. + * + * The scheduler is at all times free to pick the calling task as the most + * eligible task to run, if removing the yield() call from your code breaks + * it, it's already broken. + * + * Typical broken usage is: + * + * while (!event) + *	yield(); + * + * where one assumes that yield() will let 'the other' process run that will + * make event true. If the current task is a SCHED_FIFO task that will never + * happen. Never use yield() as a progress guarantee!! + * + * If you want to use yield() to wait for something, use wait_event(). + * If you want to use yield() to be 'nice' for others, use cond_resched(). + * If you still want to use yield(), do not! + */ +void __sched yield(void) +{ +	set_current_state(TASK_RUNNING); +	do_sched_yield(); +} +EXPORT_SYMBOL(yield); + +/** + * yield_to - yield the current processor to another thread in + * your thread group, or accelerate that thread toward the + * processor it's on. + * @p: target task + * @preempt: whether task preemption is allowed or not + * + * It's the caller's job to ensure that the target task struct + * can't go away on us before we can do any checks. + * + * Return: + *	true (>0) if we indeed boosted the target task. + *	false (0) if we failed to boost the target. + *	-ESRCH if there's no task to yield to. + */ +int __sched yield_to(struct task_struct *p, bool preempt) +{ +	struct task_struct *curr = current; +	struct rq *rq, *p_rq; +	int yielded = 0; + +	scoped_guard (irqsave) { +		rq = this_rq(); + +again: +		p_rq = task_rq(p); +		/* +		 * If we're the only runnable task on the rq and target rq also +		 * has only one task, there's absolutely no point in yielding. +		 */ +		if (rq->nr_running == 1 && p_rq->nr_running == 1) +			return -ESRCH; + +		guard(double_rq_lock)(rq, p_rq); +		if (task_rq(p) != p_rq) +			goto again; + +		if (!curr->sched_class->yield_to_task) +			return 0; + +		if (curr->sched_class != p->sched_class) +			return 0; + +		if (task_on_cpu(p_rq, p) || !task_is_running(p)) +			return 0; + +		yielded = curr->sched_class->yield_to_task(rq, p); +		if (yielded) { +			schedstat_inc(rq->yld_count); +			/* +			 * Make p's CPU reschedule; pick_next_entity +			 * takes care of fairness. +			 */ +			if (preempt && rq != p_rq) +				resched_curr(p_rq); +		} +	} + +	if (yielded) +		schedule(); + +	return yielded; +} +EXPORT_SYMBOL_GPL(yield_to); + +/** + * sys_sched_get_priority_max - return maximum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the maximum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_max, int, policy) +{ +	int ret = -EINVAL; + +	switch (policy) { +	case SCHED_FIFO: +	case SCHED_RR: +		ret = MAX_RT_PRIO-1; +		break; +	case SCHED_DEADLINE: +	case SCHED_NORMAL: +	case SCHED_BATCH: +	case SCHED_IDLE: +		ret = 0; +		break; +	} +	return ret; +} + +/** + * sys_sched_get_priority_min - return minimum RT priority. + * @policy: scheduling class. + * + * Return: On success, this syscall returns the minimum + * rt_priority that can be used by a given scheduling class. + * On failure, a negative error code is returned. + */ +SYSCALL_DEFINE1(sched_get_priority_min, int, policy) +{ +	int ret = -EINVAL; + +	switch (policy) { +	case SCHED_FIFO: +	case SCHED_RR: +		ret = 1; +		break; +	case SCHED_DEADLINE: +	case SCHED_NORMAL: +	case SCHED_BATCH: +	case SCHED_IDLE: +		ret = 0; +	} +	return ret; +} + +static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) +{ +	unsigned int time_slice = 0; +	int retval; + +	if (pid < 0) +		return -EINVAL; + +	scoped_guard (rcu) { +		struct task_struct *p = find_process_by_pid(pid); +		if (!p) +			return -ESRCH; + +		retval = security_task_getscheduler(p); +		if (retval) +			return retval; + +		scoped_guard (task_rq_lock, p) { +			struct rq *rq = scope.rq; +			if (p->sched_class->get_rr_interval) +				time_slice = p->sched_class->get_rr_interval(rq, p); +		} +	} + +	jiffies_to_timespec64(time_slice, t); +	return 0; +} + +/** + * sys_sched_rr_get_interval - return the default time-slice of a process. + * @pid: pid of the process. + * @interval: userspace pointer to the time-slice value. + * + * this syscall writes the default time-slice value of a given process + * into the user-space timespec buffer. A value of '0' means infinity. + * + * Return: On success, 0 and the time-slice is in @interval. Otherwise, + * an error code. + */ +SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, +		struct __kernel_timespec __user *, interval) +{ +	struct timespec64 t; +	int retval = sched_rr_get_interval(pid, &t); + +	if (retval == 0) +		retval = put_timespec64(&t, interval); + +	return retval; +} + +#ifdef CONFIG_COMPAT_32BIT_TIME +SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, +		struct old_timespec32 __user *, interval) +{ +	struct timespec64 t; +	int retval = sched_rr_get_interval(pid, &t); + +	if (retval == 0) +		retval = put_old_timespec32(&t, interval); +	return retval; +} +#endif |