diff options
Diffstat (limited to 'kernel/sched/sched.h')
| -rw-r--r-- | kernel/sched/sched.h | 179 |
1 files changed, 110 insertions, 69 deletions
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index ec7b3e0a2b20..04846272409c 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -286,12 +286,6 @@ struct rt_bandwidth { void __dl_clear_params(struct task_struct *p); -struct dl_bandwidth { - raw_spinlock_t dl_runtime_lock; - u64 dl_runtime; - u64 dl_period; -}; - static inline int dl_bandwidth_enabled(void) { return sysctl_sched_rt_runtime >= 0; @@ -330,7 +324,7 @@ extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); extern bool __checkparam_dl(const struct sched_attr *attr); extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); -extern int dl_cpu_busy(int cpu, struct task_struct *p); +extern int dl_bw_check_overflow(int cpu); #ifdef CONFIG_CGROUP_SCHED @@ -460,11 +454,12 @@ extern void unregister_fair_sched_group(struct task_group *tg); extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, struct sched_entity *se, int cpu, struct sched_entity *parent); -extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); +extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); +extern bool cfs_task_bw_constrained(struct task_struct *p); extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int cpu, @@ -500,6 +495,7 @@ static inline void set_task_rq_fair(struct sched_entity *se, #else /* CONFIG_CGROUP_SCHED */ struct cfs_bandwidth { }; +static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } #endif /* CONFIG_CGROUP_SCHED */ @@ -554,6 +550,9 @@ struct cfs_rq { unsigned int idle_nr_running; /* SCHED_IDLE */ unsigned int idle_h_nr_running; /* SCHED_IDLE */ + s64 avg_vruntime; + u64 avg_load; + u64 exec_clock; u64 min_vruntime; #ifdef CONFIG_SCHED_CORE @@ -573,8 +572,6 @@ struct cfs_rq { */ struct sched_entity *curr; struct sched_entity *next; - struct sched_entity *last; - struct sched_entity *skip; #ifdef CONFIG_SCHED_DEBUG unsigned int nr_spread_over; @@ -642,6 +639,8 @@ struct cfs_rq { u64 throttled_clock; u64 throttled_clock_pelt; u64 throttled_clock_pelt_time; + u64 throttled_clock_self; + u64 throttled_clock_self_time; int throttled; int throttle_count; struct list_head throttled_list; @@ -754,6 +753,12 @@ struct dl_rq { u64 extra_bw; /* + * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM + * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). + */ + u64 max_bw; + + /* * Inverse of the fraction of CPU utilization that can be reclaimed * by the GRUB algorithm. */ @@ -1245,6 +1250,7 @@ static inline raw_spinlock_t *__rq_lockp(struct rq *rq) bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); +void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); /* * Helpers to check if the CPU's core cookie matches with the task's cookie @@ -1546,6 +1552,28 @@ static inline void rq_clock_cancel_skipupdate(struct rq *rq) rq->clock_update_flags &= ~RQCF_REQ_SKIP; } +/* + * During cpu offlining and rq wide unthrottling, we can trigger + * an update_rq_clock() for several cfs and rt runqueues (Typically + * when using list_for_each_entry_*) + * rq_clock_start_loop_update() can be called after updating the clock + * once and before iterating over the list to prevent multiple update. + * After the iterative traversal, we need to call rq_clock_stop_loop_update() + * to clear RQCF_ACT_SKIP of rq->clock_update_flags. + */ +static inline void rq_clock_start_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP); + rq->clock_update_flags |= RQCF_ACT_SKIP; +} + +static inline void rq_clock_stop_loop_update(struct rq *rq) +{ + lockdep_assert_rq_held(rq); + rq->clock_update_flags &= ~RQCF_ACT_SKIP; +} + struct rq_flags { unsigned long flags; struct pin_cookie cookie; @@ -1678,6 +1706,21 @@ rq_unlock(struct rq *rq, struct rq_flags *rf) raw_spin_rq_unlock(rq); } +DEFINE_LOCK_GUARD_1(rq_lock, struct rq, + rq_lock(_T->lock, &_T->rf), + rq_unlock(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, + rq_lock_irq(_T->lock, &_T->rf), + rq_unlock_irq(_T->lock, &_T->rf), + struct rq_flags rf) + +DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, + rq_lock_irqsave(_T->lock, &_T->rf), + rq_unlock_irqrestore(_T->lock, &_T->rf), + struct rq_flags rf) + static inline struct rq * this_rq_lock_irq(struct rq_flags *rf) __acquires(rq->lock) @@ -1772,6 +1815,13 @@ queue_balance_callback(struct rq *rq, for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ __sd; __sd = __sd->parent) +/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ +#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | +static const unsigned int SD_SHARED_CHILD_MASK = +#include <linux/sched/sd_flags.h> +0; +#undef SD_FLAG + /** * highest_flag_domain - Return highest sched_domain containing flag. * @cpu: The CPU whose highest level of sched domain is to @@ -1779,16 +1829,25 @@ queue_balance_callback(struct rq *rq, * @flag: The flag to check for the highest sched_domain * for the given CPU. * - * Returns the highest sched_domain of a CPU which contains the given flag. + * Returns the highest sched_domain of a CPU which contains @flag. If @flag has + * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. */ static inline struct sched_domain *highest_flag_domain(int cpu, int flag) { struct sched_domain *sd, *hsd = NULL; for_each_domain(cpu, sd) { - if (!(sd->flags & flag)) + if (sd->flags & flag) { + hsd = sd; + continue; + } + + /* + * Stop the search if @flag is known to be shared at lower + * levels. It will not be found further up. + */ + if (flag & SD_SHARED_CHILD_MASK) break; - hsd = sd; } return hsd; @@ -1844,6 +1903,7 @@ struct sched_group { atomic_t ref; unsigned int group_weight; + unsigned int cores; struct sched_group_capacity *sgc; int asym_prefer_cpu; /* CPU of highest priority in group */ int flags; @@ -2093,12 +2153,13 @@ static inline int task_on_rq_migrating(struct task_struct *p) } /* Wake flags. The first three directly map to some SD flag value */ -#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ -#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ -#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ +#define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ +#define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ +#define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ -#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ -#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ +#define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ +#define WF_MIGRATED 0x20 /* Internal use, task got migrated */ +#define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ #ifdef CONFIG_SMP static_assert(WF_EXEC == SD_BALANCE_EXEC); @@ -2157,6 +2218,7 @@ extern const u32 sched_prio_to_wmult[40]; #else #define ENQUEUE_MIGRATED 0x00 #endif +#define ENQUEUE_INITIAL 0x80 #define RETRY_TASK ((void *)-1UL) @@ -2360,6 +2422,7 @@ static inline struct cpuidle_state *idle_get_state(struct rq *rq) #endif extern void schedule_idle(void); +asmlinkage void schedule_user(void); extern void sysrq_sched_debug_show(void); extern void sched_init_granularity(void); @@ -2378,7 +2441,6 @@ extern struct rt_bandwidth def_rt_bandwidth; extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); -extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); extern void init_dl_task_timer(struct sched_dl_entity *dl_se); extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); @@ -2462,11 +2524,9 @@ extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); extern const_debug unsigned int sysctl_sched_nr_migrate; extern const_debug unsigned int sysctl_sched_migration_cost; +extern unsigned int sysctl_sched_base_slice; + #ifdef CONFIG_SCHED_DEBUG -extern unsigned int sysctl_sched_latency; -extern unsigned int sysctl_sched_min_granularity; -extern unsigned int sysctl_sched_idle_min_granularity; -extern unsigned int sysctl_sched_wakeup_granularity; extern int sysctl_resched_latency_warn_ms; extern int sysctl_resched_latency_warn_once; @@ -2572,6 +2632,12 @@ static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {} #endif +#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ +__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ +static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ +{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ + _lock; return _t; } + #ifdef CONFIG_SMP static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) @@ -2701,6 +2767,16 @@ static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); } +static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) +{ + raw_spin_unlock(l1); + raw_spin_unlock(l2); +} + +DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, + double_raw_lock(_T->lock, _T->lock2), + double_raw_unlock(_T->lock, _T->lock2)) + /* * double_rq_unlock - safely unlock two runqueues * @@ -2758,6 +2834,10 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) #endif +DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, + double_rq_lock(_T->lock, _T->lock2), + double_rq_unlock(_T->lock, _T->lock2)) + extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); @@ -2946,53 +3026,9 @@ static inline unsigned long cpu_util_dl(struct rq *rq) return READ_ONCE(rq->avg_dl.util_avg); } -/** - * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks. - * @cpu: the CPU to get the utilization for. - * - * The unit of the return value must be the same as the one of CPU capacity - * so that CPU utilization can be compared with CPU capacity. - * - * CPU utilization is the sum of running time of runnable tasks plus the - * recent utilization of currently non-runnable tasks on that CPU. - * It represents the amount of CPU capacity currently used by CFS tasks in - * the range [0..max CPU capacity] with max CPU capacity being the CPU - * capacity at f_max. - * - * The estimated CPU utilization is defined as the maximum between CPU - * utilization and sum of the estimated utilization of the currently - * runnable tasks on that CPU. It preserves a utilization "snapshot" of - * previously-executed tasks, which helps better deduce how busy a CPU will - * be when a long-sleeping task wakes up. The contribution to CPU utilization - * of such a task would be significantly decayed at this point of time. - * - * CPU utilization can be higher than the current CPU capacity - * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because - * of rounding errors as well as task migrations or wakeups of new tasks. - * CPU utilization has to be capped to fit into the [0..max CPU capacity] - * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) - * could be seen as over-utilized even though CPU1 has 20% of spare CPU - * capacity. CPU utilization is allowed to overshoot current CPU capacity - * though since this is useful for predicting the CPU capacity required - * after task migrations (scheduler-driven DVFS). - * - * Return: (Estimated) utilization for the specified CPU. - */ -static inline unsigned long cpu_util_cfs(int cpu) -{ - struct cfs_rq *cfs_rq; - unsigned long util; - - cfs_rq = &cpu_rq(cpu)->cfs; - util = READ_ONCE(cfs_rq->avg.util_avg); - if (sched_feat(UTIL_EST)) { - util = max_t(unsigned long, util, - READ_ONCE(cfs_rq->avg.util_est.enqueued)); - } - - return min(util, capacity_orig_of(cpu)); -} +extern unsigned long cpu_util_cfs(int cpu); +extern unsigned long cpu_util_cfs_boost(int cpu); static inline unsigned long cpu_util_rt(struct rq *rq) { @@ -3236,6 +3272,8 @@ static inline bool is_per_cpu_kthread(struct task_struct *p) extern void swake_up_all_locked(struct swait_queue_head *q); extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); +extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); + #ifdef CONFIG_PREEMPT_DYNAMIC extern int preempt_dynamic_mode; extern int sched_dynamic_mode(const char *str); @@ -3487,4 +3525,7 @@ static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } static inline void init_sched_mm_cid(struct task_struct *t) { } #endif +extern u64 avg_vruntime(struct cfs_rq *cfs_rq); +extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); + #endif /* _KERNEL_SCHED_SCHED_H */ |