diff options
Diffstat (limited to 'kernel/sched/fair.c')
| -rw-r--r-- | kernel/sched/fair.c | 205 |
1 files changed, 97 insertions, 108 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 6e476f6d9435..5146163bfabb 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -1502,7 +1502,6 @@ struct task_numa_env { static unsigned long cpu_load(struct rq *rq); static unsigned long cpu_runnable(struct rq *rq); -static unsigned long cpu_util(int cpu); static inline long adjust_numa_imbalance(int imbalance, int dst_running, int dst_weight); @@ -1569,7 +1568,7 @@ static void update_numa_stats(struct task_numa_env *env, ns->load += cpu_load(rq); ns->runnable += cpu_runnable(rq); - ns->util += cpu_util(cpu); + ns->util += cpu_util_cfs(cpu); ns->nr_running += rq->cfs.h_nr_running; ns->compute_capacity += capacity_of(cpu); @@ -3029,9 +3028,11 @@ enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) static inline void dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { - u32 divider = get_pelt_divider(&se->avg); sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); - cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; + sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); + /* See update_cfs_rq_load_avg() */ + cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, + cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); } #else static inline void @@ -3240,7 +3241,7 @@ static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) * As is, the util number is not freq-invariant (we'd have to * implement arch_scale_freq_capacity() for that). * - * See cpu_util(). + * See cpu_util_cfs(). */ cpufreq_update_util(rq, flags); } @@ -3382,7 +3383,6 @@ void set_task_rq_fair(struct sched_entity *se, se->avg.last_update_time = n_last_update_time; } - /* * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to * propagate its contribution. The key to this propagation is the invariant @@ -3450,15 +3450,14 @@ void set_task_rq_fair(struct sched_entity *se, * XXX: only do this for the part of runnable > running ? * */ - static inline void update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) { - long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; - u32 divider; + long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; + u32 new_sum, divider; /* Nothing to update */ - if (!delta) + if (!delta_avg) return; /* @@ -3467,23 +3466,30 @@ update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq */ divider = get_pelt_divider(&cfs_rq->avg); + /* Set new sched_entity's utilization */ se->avg.util_avg = gcfs_rq->avg.util_avg; - se->avg.util_sum = se->avg.util_avg * divider; + new_sum = se->avg.util_avg * divider; + delta_sum = (long)new_sum - (long)se->avg.util_sum; + se->avg.util_sum = new_sum; /* Update parent cfs_rq utilization */ - add_positive(&cfs_rq->avg.util_avg, delta); - cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; + add_positive(&cfs_rq->avg.util_avg, delta_avg); + add_positive(&cfs_rq->avg.util_sum, delta_sum); + + /* See update_cfs_rq_load_avg() */ + cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, + cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); } static inline void update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) { - long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; - u32 divider; + long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; + u32 new_sum, divider; /* Nothing to update */ - if (!delta) + if (!delta_avg) return; /* @@ -3494,19 +3500,25 @@ update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cf /* Set new sched_entity's runnable */ se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; - se->avg.runnable_sum = se->avg.runnable_avg * divider; + new_sum = se->avg.runnable_avg * divider; + delta_sum = (long)new_sum - (long)se->avg.runnable_sum; + se->avg.runnable_sum = new_sum; /* Update parent cfs_rq runnable */ - add_positive(&cfs_rq->avg.runnable_avg, delta); - cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; + add_positive(&cfs_rq->avg.runnable_avg, delta_avg); + add_positive(&cfs_rq->avg.runnable_sum, delta_sum); + /* See update_cfs_rq_load_avg() */ + cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, + cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); } static inline void update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) { - long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; + long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; unsigned long load_avg; u64 load_sum = 0; + s64 delta_sum; u32 divider; if (!runnable_sum) @@ -3533,7 +3545,7 @@ update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq * assuming all tasks are equally runnable. */ if (scale_load_down(gcfs_rq->load.weight)) { - load_sum = div_s64(gcfs_rq->avg.load_sum, + load_sum = div_u64(gcfs_rq->avg.load_sum, scale_load_down(gcfs_rq->load.weight)); } @@ -3550,19 +3562,22 @@ update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; runnable_sum = max(runnable_sum, running_sum); - load_sum = (s64)se_weight(se) * runnable_sum; - load_avg = div_s64(load_sum, divider); + load_sum = se_weight(se) * runnable_sum; + load_avg = div_u64(load_sum, divider); - se->avg.load_sum = runnable_sum; - - delta = load_avg - se->avg.load_avg; - if (!delta) + delta_avg = load_avg - se->avg.load_avg; + if (!delta_avg) return; - se->avg.load_avg = load_avg; + delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; - add_positive(&cfs_rq->avg.load_avg, delta); - cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider; + se->avg.load_sum = runnable_sum; + se->avg.load_avg = load_avg; + add_positive(&cfs_rq->avg.load_avg, delta_avg); + add_positive(&cfs_rq->avg.load_sum, delta_sum); + /* See update_cfs_rq_load_avg() */ + cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, + cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); } static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) @@ -3653,7 +3668,7 @@ static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum * * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. * - * Returns true if the load decayed or we removed load. + * Return: true if the load decayed or we removed load. * * Since both these conditions indicate a changed cfs_rq->avg.load we should * call update_tg_load_avg() when this function returns true. @@ -3678,15 +3693,32 @@ update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) r = removed_load; sub_positive(&sa->load_avg, r); - sa->load_sum = sa->load_avg * divider; + sub_positive(&sa->load_sum, r * divider); + /* See sa->util_sum below */ + sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); r = removed_util; sub_positive(&sa->util_avg, r); - sa->util_sum = sa->util_avg * divider; + sub_positive(&sa->util_sum, r * divider); + /* + * Because of rounding, se->util_sum might ends up being +1 more than + * cfs->util_sum. Although this is not a problem by itself, detaching + * a lot of tasks with the rounding problem between 2 updates of + * util_avg (~1ms) can make cfs->util_sum becoming null whereas + * cfs_util_avg is not. + * Check that util_sum is still above its lower bound for the new + * util_avg. Given that period_contrib might have moved since the last + * sync, we are only sure that util_sum must be above or equal to + * util_avg * minimum possible divider + */ + sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); r = removed_runnable; sub_positive(&sa->runnable_avg, r); - sa->runnable_sum = sa->runnable_avg * divider; + sub_positive(&sa->runnable_sum, r * divider); + /* See sa->util_sum above */ + sa->runnable_sum = max_t(u32, sa->runnable_sum, + sa->runnable_avg * PELT_MIN_DIVIDER); /* * removed_runnable is the unweighted version of removed_load so we @@ -3773,17 +3805,18 @@ static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s */ static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { - /* - * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. - * See ___update_load_avg() for details. - */ - u32 divider = get_pelt_divider(&cfs_rq->avg); - dequeue_load_avg(cfs_rq, se); sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); - cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider; + sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); + /* See update_cfs_rq_load_avg() */ + cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, + cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); + sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); - cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider; + sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); + /* See update_cfs_rq_load_avg() */ + cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, + cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); @@ -4070,7 +4103,8 @@ done: trace_sched_util_est_se_tp(&p->se); } -static inline int task_fits_capacity(struct task_struct *p, long capacity) +static inline int task_fits_capacity(struct task_struct *p, + unsigned long capacity) { return fits_capacity(uclamp_task_util(p), capacity); } @@ -5509,11 +5543,9 @@ static inline void hrtick_update(struct rq *rq) #endif #ifdef CONFIG_SMP -static inline unsigned long cpu_util(int cpu); - static inline bool cpu_overutilized(int cpu) { - return !fits_capacity(cpu_util(cpu), capacity_of(cpu)); + return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); } static inline void update_overutilized_status(struct rq *rq) @@ -6345,7 +6377,7 @@ select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) return best_cpu; } -static inline bool asym_fits_capacity(int task_util, int cpu) +static inline bool asym_fits_capacity(unsigned long task_util, int cpu) { if (static_branch_unlikely(&sched_asym_cpucapacity)) return fits_capacity(task_util, capacity_of(cpu)); @@ -6398,8 +6430,10 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target) * pattern is IO completions. */ if (is_per_cpu_kthread(current) && + in_task() && prev == smp_processor_id() && - this_rq()->nr_running <= 1) { + this_rq()->nr_running <= 1 && + asym_fits_capacity(task_util, prev)) { return prev; } @@ -6456,58 +6490,6 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target) return target; } -/** - * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. - * @cpu: the CPU to get the utilization of - * - * The unit of the return value must be the one of capacity so we can compare - * the utilization with the capacity of the CPU that is available for CFS task - * (ie cpu_capacity). - * - * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the - * recent utilization of currently non-runnable tasks on a CPU. It represents - * the amount of utilization of a CPU in the range [0..capacity_orig] where - * capacity_orig is the cpu_capacity available at the highest frequency - * (arch_scale_freq_capacity()). - * The utilization of a CPU converges towards a sum equal to or less than the - * current capacity (capacity_curr <= capacity_orig) of the CPU because it is - * the running time on this CPU scaled by capacity_curr. - * - * The estimated utilization of a CPU is defined to be the maximum between its - * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks - * currently RUNNABLE on that CPU. - * This allows to properly represent the expected utilization of a CPU which - * has just got a big task running since a long sleep period. At the same time - * however it preserves the benefits of the "blocked utilization" in - * describing the potential for other tasks waking up on the same CPU. - * - * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even - * higher than capacity_orig because of unfortunate rounding in - * cfs.avg.util_avg or just after migrating tasks and new task wakeups until - * the average stabilizes with the new running time. We need to check that the - * utilization stays within the range of [0..capacity_orig] and cap it if - * necessary. Without utilization capping, a group could be seen as overloaded - * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of - * available capacity. We allow utilization to overshoot capacity_curr (but not - * capacity_orig) as it useful for predicting the capacity required after task - * migrations (scheduler-driven DVFS). - * - * Return: the (estimated) utilization for the specified CPU - */ -static inline unsigned long cpu_util(int cpu) -{ - struct cfs_rq *cfs_rq; - unsigned int util; - - cfs_rq = &cpu_rq(cpu)->cfs; - util = READ_ONCE(cfs_rq->avg.util_avg); - - if (sched_feat(UTIL_EST)) - util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); - - return min_t(unsigned long, util, capacity_orig_of(cpu)); -} - /* * cpu_util_without: compute cpu utilization without any contributions from *p * @cpu: the CPU which utilization is requested @@ -6528,7 +6510,7 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p) /* Task has no contribution or is new */ if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) - return cpu_util(cpu); + return cpu_util_cfs(cpu); cfs_rq = &cpu_rq(cpu)->cfs; util = READ_ONCE(cfs_rq->avg.util_avg); @@ -6592,7 +6574,7 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p) /* * Utilization (estimated) can exceed the CPU capacity, thus let's * clamp to the maximum CPU capacity to ensure consistency with - * the cpu_util call. + * cpu_util. */ return min_t(unsigned long, util, capacity_orig_of(cpu)); } @@ -6624,7 +6606,7 @@ static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) * During wake-up, the task isn't enqueued yet and doesn't * appear in the cfs_rq->avg.util_est.enqueued of any rq, * so just add it (if needed) to "simulate" what will be - * cpu_util() after the task has been enqueued. + * cpu_util after the task has been enqueued. */ if (dst_cpu == cpu) util_est += _task_util_est(p); @@ -6915,6 +6897,11 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) break; } + /* + * Usually only true for WF_EXEC and WF_FORK, as sched_domains + * usually do not have SD_BALANCE_WAKE set. That means wakeup + * will usually go to the fast path. + */ if (tmp->flags & sd_flag) sd = tmp; else if (!want_affine) @@ -8586,6 +8573,8 @@ group_type group_classify(unsigned int imbalance_pct, * * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings * of @dst_cpu are idle and @sg has lower priority. + * + * Return: true if @dst_cpu can pull tasks, false otherwise. */ static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, @@ -8661,6 +8650,7 @@ sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs /** * update_sg_lb_stats - Update sched_group's statistics for load balancing. * @env: The load balancing environment. + * @sds: Load-balancing data with statistics of the local group. * @group: sched_group whose statistics are to be updated. * @sgs: variable to hold the statistics for this group. * @sg_status: Holds flag indicating the status of the sched_group @@ -8681,7 +8671,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, struct rq *rq = cpu_rq(i); sgs->group_load += cpu_load(rq); - sgs->group_util += cpu_util(i); + sgs->group_util += cpu_util_cfs(i); sgs->group_runnable += cpu_runnable(rq); sgs->sum_h_nr_running += rq->cfs.h_nr_running; @@ -9468,12 +9458,11 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s /** * find_busiest_group - Returns the busiest group within the sched_domain * if there is an imbalance. + * @env: The load balancing environment. * * Also calculates the amount of runnable load which should be moved * to restore balance. * - * @env: The load balancing environment. - * * Return: - The busiest group if imbalance exists. */ static struct sched_group *find_busiest_group(struct lb_env *env) @@ -9699,7 +9688,7 @@ static struct rq *find_busiest_queue(struct lb_env *env, break; case migrate_util: - util = cpu_util(cpu_of(rq)); + util = cpu_util_cfs(i); /* * Don't try to pull utilization from a CPU with one @@ -11068,7 +11057,7 @@ static inline void task_tick_core(struct rq *rq, struct task_struct *curr) * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check * if we need to give up the CPU. */ - if (rq->core->core_forceidle && rq->cfs.nr_running == 1 && + if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) resched_curr(rq); } |