aboutsummaryrefslogtreecommitdiff
path: root/kernel/sched/core.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched/core.c')
-rw-r--r--kernel/sched/core.c192
1 files changed, 119 insertions, 73 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index a708d225c28e..1a914388144a 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -57,6 +57,7 @@
#include <linux/profile.h>
#include <linux/psi.h>
#include <linux/rcuwait_api.h>
+#include <linux/rseq.h>
#include <linux/sched/wake_q.h>
#include <linux/scs.h>
#include <linux/slab.h>
@@ -107,7 +108,7 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
-EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
+EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
@@ -1131,6 +1132,28 @@ static void wake_up_idle_cpu(int cpu)
if (cpu == smp_processor_id())
return;
+ /*
+ * Set TIF_NEED_RESCHED and send an IPI if in the non-polling
+ * part of the idle loop. This forces an exit from the idle loop
+ * and a round trip to schedule(). Now this could be optimized
+ * because a simple new idle loop iteration is enough to
+ * re-evaluate the next tick. Provided some re-ordering of tick
+ * nohz functions that would need to follow TIF_NR_POLLING
+ * clearing:
+ *
+ * - On most archs, a simple fetch_or on ti::flags with a
+ * "0" value would be enough to know if an IPI needs to be sent.
+ *
+ * - x86 needs to perform a last need_resched() check between
+ * monitor and mwait which doesn't take timers into account.
+ * There a dedicated TIF_TIMER flag would be required to
+ * fetch_or here and be checked along with TIF_NEED_RESCHED
+ * before mwait().
+ *
+ * However, remote timer enqueue is not such a frequent event
+ * and testing of the above solutions didn't appear to report
+ * much benefits.
+ */
if (set_nr_and_not_polling(rq->idle))
smp_send_reschedule(cpu);
else
@@ -1769,7 +1792,6 @@ static void cpu_util_update_eff(struct cgroup_subsys_state *css);
#endif
#ifdef CONFIG_SYSCTL
-#ifdef CONFIG_UCLAMP_TASK
#ifdef CONFIG_UCLAMP_TASK_GROUP
static void uclamp_update_root_tg(void)
{
@@ -1875,7 +1897,6 @@ undo:
return result;
}
#endif
-#endif
static int uclamp_validate(struct task_struct *p,
const struct sched_attr *attr)
@@ -2042,7 +2063,7 @@ static void __init init_uclamp(void)
}
}
-#else /* CONFIG_UCLAMP_TASK */
+#else /* !CONFIG_UCLAMP_TASK */
static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
static inline int uclamp_validate(struct task_struct *p,
@@ -2124,12 +2145,14 @@ void activate_task(struct rq *rq, struct task_struct *p, int flags)
enqueue_task(rq, p, flags);
- p->on_rq = TASK_ON_RQ_QUEUED;
+ WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED);
+ ASSERT_EXCLUSIVE_WRITER(p->on_rq);
}
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
{
- p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
+ WRITE_ONCE(p->on_rq, (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING);
+ ASSERT_EXCLUSIVE_WRITER(p->on_rq);
dequeue_task(rq, p, flags);
}
@@ -3795,6 +3818,8 @@ ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
rq->idle_stamp = 0;
}
#endif
+
+ p->dl_server = NULL;
}
/*
@@ -3928,6 +3953,17 @@ void wake_up_if_idle(int cpu)
}
}
+bool cpus_equal_capacity(int this_cpu, int that_cpu)
+{
+ if (!sched_asym_cpucap_active())
+ return true;
+
+ if (this_cpu == that_cpu)
+ return true;
+
+ return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu);
+}
+
bool cpus_share_cache(int this_cpu, int that_cpu)
{
if (this_cpu == that_cpu)
@@ -4509,10 +4545,7 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
memset(&p->stats, 0, sizeof(p->stats));
#endif
- RB_CLEAR_NODE(&p->dl.rb_node);
- init_dl_task_timer(&p->dl);
- init_dl_inactive_task_timer(&p->dl);
- __dl_clear_params(p);
+ init_dl_entity(&p->dl);
INIT_LIST_HEAD(&p->rt.run_list);
p->rt.timeout = 0;
@@ -5629,13 +5662,13 @@ static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*/
-void scheduler_tick(void)
+void sched_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
struct rq_flags rf;
- unsigned long thermal_pressure;
+ unsigned long hw_pressure;
u64 resched_latency;
if (housekeeping_cpu(cpu, HK_TYPE_TICK))
@@ -5646,8 +5679,8 @@ void scheduler_tick(void)
rq_lock(rq, &rf);
update_rq_clock(rq);
- thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
- update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
+ hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
+ update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
curr->sched_class->task_tick(rq, curr, 0);
if (sched_feat(LATENCY_WARN))
resched_latency = cpu_resched_latency(rq);
@@ -5667,7 +5700,7 @@ void scheduler_tick(void)
#ifdef CONFIG_SMP
rq->idle_balance = idle_cpu(cpu);
- trigger_load_balance(rq);
+ sched_balance_trigger(rq);
#endif
}
@@ -6004,12 +6037,27 @@ __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
p = pick_next_task_idle(rq);
}
+ /*
+ * This is the fast path; it cannot be a DL server pick;
+ * therefore even if @p == @prev, ->dl_server must be NULL.
+ */
+ if (p->dl_server)
+ p->dl_server = NULL;
+
return p;
}
restart:
put_prev_task_balance(rq, prev, rf);
+ /*
+ * We've updated @prev and no longer need the server link, clear it.
+ * Must be done before ->pick_next_task() because that can (re)set
+ * ->dl_server.
+ */
+ if (prev->dl_server)
+ prev->dl_server = NULL;
+
for_each_class(class) {
p = class->pick_next_task(rq);
if (p)
@@ -6537,7 +6585,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* paths. For example, see arch/x86/entry_64.S.
*
* To drive preemption between tasks, the scheduler sets the flag in timer
- * interrupt handler scheduler_tick().
+ * interrupt handler sched_tick().
*
* 3. Wakeups don't really cause entry into schedule(). They add a
* task to the run-queue and that's it.
@@ -6599,7 +6647,9 @@ static void __sched notrace __schedule(unsigned int sched_mode)
* if (signal_pending_state()) if (p->state & @state)
*
* Also, the membarrier system call requires a full memory barrier
- * after coming from user-space, before storing to rq->curr.
+ * after coming from user-space, before storing to rq->curr; this
+ * barrier matches a full barrier in the proximity of the membarrier
+ * system call exit.
*/
rq_lock(rq, &rf);
smp_mb__after_spinlock();
@@ -6670,12 +6720,20 @@ static void __sched notrace __schedule(unsigned int sched_mode)
*
* Here are the schemes providing that barrier on the
* various architectures:
- * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
- * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
+ * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
+ * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
+ * on PowerPC and on RISC-V.
* - finish_lock_switch() for weakly-ordered
* architectures where spin_unlock is a full barrier,
* - switch_to() for arm64 (weakly-ordered, spin_unlock
* is a RELEASE barrier),
+ *
+ * The barrier matches a full barrier in the proximity of
+ * the membarrier system call entry.
+ *
+ * On RISC-V, this barrier pairing is also needed for the
+ * SYNC_CORE command when switching between processes, cf.
+ * the inline comments in membarrier_arch_switch_mm().
*/
++*switch_count;
@@ -6748,10 +6806,12 @@ static inline void sched_submit_work(struct task_struct *tsk)
static void sched_update_worker(struct task_struct *tsk)
{
- if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
+ if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) {
+ if (tsk->flags & PF_BLOCK_TS)
+ blk_plug_invalidate_ts(tsk);
if (tsk->flags & PF_WQ_WORKER)
wq_worker_running(tsk);
- else
+ else if (tsk->flags & PF_IO_WORKER)
io_wq_worker_running(tsk);
}
}
@@ -7429,18 +7489,13 @@ int sched_core_idle_cpu(int cpu)
* required to meet deadlines.
*/
unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
- enum cpu_util_type type,
- struct task_struct *p)
+ unsigned long *min,
+ unsigned long *max)
{
- unsigned long dl_util, util, irq, max;
+ unsigned long util, irq, scale;
struct rq *rq = cpu_rq(cpu);
- max = arch_scale_cpu_capacity(cpu);
-
- if (!uclamp_is_used() &&
- type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
- return max;
- }
+ scale = arch_scale_cpu_capacity(cpu);
/*
* Early check to see if IRQ/steal time saturates the CPU, can be
@@ -7448,45 +7503,49 @@ unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
* update_irq_load_avg().
*/
irq = cpu_util_irq(rq);
- if (unlikely(irq >= max))
- return max;
+ if (unlikely(irq >= scale)) {
+ if (min)
+ *min = scale;
+ if (max)
+ *max = scale;
+ return scale;
+ }
+
+ if (min) {
+ /*
+ * The minimum utilization returns the highest level between:
+ * - the computed DL bandwidth needed with the IRQ pressure which
+ * steals time to the deadline task.
+ * - The minimum performance requirement for CFS and/or RT.
+ */
+ *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
+
+ /*
+ * When an RT task is runnable and uclamp is not used, we must
+ * ensure that the task will run at maximum compute capacity.
+ */
+ if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
+ *min = max(*min, scale);
+ }
/*
* Because the time spend on RT/DL tasks is visible as 'lost' time to
* CFS tasks and we use the same metric to track the effective
* utilization (PELT windows are synchronized) we can directly add them
* to obtain the CPU's actual utilization.
- *
- * CFS and RT utilization can be boosted or capped, depending on
- * utilization clamp constraints requested by currently RUNNABLE
- * tasks.
- * When there are no CFS RUNNABLE tasks, clamps are released and
- * frequency will be gracefully reduced with the utilization decay.
*/
util = util_cfs + cpu_util_rt(rq);
- if (type == FREQUENCY_UTIL)
- util = uclamp_rq_util_with(rq, util, p);
-
- dl_util = cpu_util_dl(rq);
+ util += cpu_util_dl(rq);
/*
- * For frequency selection we do not make cpu_util_dl() a permanent part
- * of this sum because we want to use cpu_bw_dl() later on, but we need
- * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
- * that we select f_max when there is no idle time.
- *
- * NOTE: numerical errors or stop class might cause us to not quite hit
- * saturation when we should -- something for later.
+ * The maximum hint is a soft bandwidth requirement, which can be lower
+ * than the actual utilization because of uclamp_max requirements.
*/
- if (util + dl_util >= max)
- return max;
+ if (max)
+ *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
- /*
- * OTOH, for energy computation we need the estimated running time, so
- * include util_dl and ignore dl_bw.
- */
- if (type == ENERGY_UTIL)
- util += dl_util;
+ if (util >= scale)
+ return scale;
/*
* There is still idle time; further improve the number by using the
@@ -7497,28 +7556,15 @@ unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
* U' = irq + --------- * U
* max
*/
- util = scale_irq_capacity(util, irq, max);
+ util = scale_irq_capacity(util, irq, scale);
util += irq;
- /*
- * Bandwidth required by DEADLINE must always be granted while, for
- * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
- * to gracefully reduce the frequency when no tasks show up for longer
- * periods of time.
- *
- * Ideally we would like to set bw_dl as min/guaranteed freq and util +
- * bw_dl as requested freq. However, cpufreq is not yet ready for such
- * an interface. So, we only do the latter for now.
- */
- if (type == FREQUENCY_UTIL)
- util += cpu_bw_dl(rq);
-
- return min(max, util);
+ return min(scale, util);
}
unsigned long sched_cpu_util(int cpu)
{
- return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
+ return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
}
#endif /* CONFIG_SMP */