diff options
Diffstat (limited to 'kernel/sched/core.c')
| -rw-r--r-- | kernel/sched/core.c | 1894 | 
1 files changed, 66 insertions, 1828 deletions
| diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 59ce0841eb1f..a9f655025607 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2,9 +2,10 @@  /*   *  kernel/sched/core.c   * - *  Core kernel scheduler code and related syscalls + *  Core kernel CPU scheduler code   *   *  Copyright (C) 1991-2002  Linus Torvalds + *  Copyright (C) 1998-2024  Ingo Molnar, Red Hat   */  #include <linux/highmem.h>  #include <linux/hrtimer_api.h> @@ -706,14 +707,14 @@ static void update_rq_clock_task(struct rq *rq, s64 delta)  	/*  	 * Since irq_time is only updated on {soft,}irq_exit, we might run into  	 * this case when a previous update_rq_clock() happened inside a -	 * {soft,}irq region. +	 * {soft,}IRQ region.  	 *  	 * When this happens, we stop ->clock_task and only update the  	 * prev_irq_time stamp to account for the part that fit, so that a next  	 * update will consume the rest. This ensures ->clock_task is  	 * monotonic.  	 * -	 * It does however cause some slight miss-attribution of {soft,}irq +	 * It does however cause some slight miss-attribution of {soft,}IRQ  	 * time, a more accurate solution would be to update the irq_time using  	 * the current rq->clock timestamp, except that would require using  	 * atomic ops. @@ -825,7 +826,7 @@ static void __hrtick_start(void *arg)  /*   * Called to set the hrtick timer state.   * - * called with rq->lock held and irqs disabled + * called with rq->lock held and IRQs disabled   */  void hrtick_start(struct rq *rq, u64 delay)  { @@ -849,7 +850,7 @@ void hrtick_start(struct rq *rq, u64 delay)  /*   * Called to set the hrtick timer state.   * - * called with rq->lock held and irqs disabled + * called with rq->lock held and IRQs disabled   */  void hrtick_start(struct rq *rq, u64 delay)  { @@ -883,7 +884,7 @@ static inline void hrtick_rq_init(struct rq *rq)  #endif	/* CONFIG_SCHED_HRTICK */  /* - * cmpxchg based fetch_or, macro so it works for different integer types + * try_cmpxchg based fetch_or() macro so it works for different integer types:   */  #define fetch_or(ptr, mask)						\  	({								\ @@ -1080,7 +1081,7 @@ void resched_cpu(int cpu)   *   * We don't do similar optimization for completely idle system, as   * selecting an idle CPU will add more delays to the timers than intended - * (as that CPU's timer base may not be uptodate wrt jiffies etc). + * (as that CPU's timer base may not be up to date wrt jiffies etc).   */  int get_nohz_timer_target(void)  { @@ -1140,7 +1141,7 @@ static void wake_up_idle_cpu(int cpu)  	 * nohz functions that would need to follow TIF_NR_POLLING  	 * clearing:  	 * -	 * - On most archs, a simple fetch_or on ti::flags with a +	 * - On most architectures, a simple fetch_or on ti::flags with a  	 *   "0" value would be enough to know if an IPI needs to be sent.  	 *  	 * - x86 needs to perform a last need_resched() check between @@ -1323,30 +1324,27 @@ int tg_nop(struct task_group *tg, void *data)  }  #endif -static void set_load_weight(struct task_struct *p, bool update_load) +void set_load_weight(struct task_struct *p, bool update_load)  {  	int prio = p->static_prio - MAX_RT_PRIO; -	struct load_weight *load = &p->se.load; +	struct load_weight lw; -	/* -	 * SCHED_IDLE tasks get minimal weight: -	 */  	if (task_has_idle_policy(p)) { -		load->weight = scale_load(WEIGHT_IDLEPRIO); -		load->inv_weight = WMULT_IDLEPRIO; -		return; +		lw.weight = scale_load(WEIGHT_IDLEPRIO); +		lw.inv_weight = WMULT_IDLEPRIO; +	} else { +		lw.weight = scale_load(sched_prio_to_weight[prio]); +		lw.inv_weight = sched_prio_to_wmult[prio];  	}  	/*  	 * SCHED_OTHER tasks have to update their load when changing their  	 * weight  	 */ -	if (update_load && p->sched_class == &fair_sched_class) { -		reweight_task(p, prio); -	} else { -		load->weight = scale_load(sched_prio_to_weight[prio]); -		load->inv_weight = sched_prio_to_wmult[prio]; -	} +	if (update_load && p->sched_class == &fair_sched_class) +		reweight_task(p, &lw); +	else +		p->se.load = lw;  }  #ifdef CONFIG_UCLAMP_TASK @@ -1383,7 +1381,7 @@ static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY   * This knob will not override the system default sched_util_clamp_min defined   * above.   */ -static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; +unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;  /* All clamps are required to be less or equal than these values */  static struct uclamp_se uclamp_default[UCLAMP_CNT]; @@ -1408,32 +1406,6 @@ static struct uclamp_se uclamp_default[UCLAMP_CNT];   */  DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); -/* Integer rounded range for each bucket */ -#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) - -#define for_each_clamp_id(clamp_id) \ -	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) - -static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) -{ -	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); -} - -static inline unsigned int uclamp_none(enum uclamp_id clamp_id) -{ -	if (clamp_id == UCLAMP_MIN) -		return 0; -	return SCHED_CAPACITY_SCALE; -} - -static inline void uclamp_se_set(struct uclamp_se *uc_se, -				 unsigned int value, bool user_defined) -{ -	uc_se->value = value; -	uc_se->bucket_id = uclamp_bucket_id(value); -	uc_se->user_defined = user_defined; -} -  static inline unsigned int  uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,  		  unsigned int clamp_value) @@ -1675,7 +1647,7 @@ static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,  	rq_clamp = uclamp_rq_get(rq, clamp_id);  	/*  	 * Defensive programming: this should never happen. If it happens, -	 * e.g. due to future modification, warn and fixup the expected value. +	 * e.g. due to future modification, warn and fix up the expected value.  	 */  	SCHED_WARN_ON(bucket->value > rq_clamp);  	if (bucket->value >= rq_clamp) { @@ -1834,7 +1806,7 @@ static void uclamp_sync_util_min_rt_default(void)  		uclamp_update_util_min_rt_default(p);  } -static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write, +static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write,  				void *buffer, size_t *lenp, loff_t *ppos)  {  	bool update_root_tg = false; @@ -1897,107 +1869,6 @@ undo:  }  #endif -static int uclamp_validate(struct task_struct *p, -			   const struct sched_attr *attr) -{ -	int util_min = p->uclamp_req[UCLAMP_MIN].value; -	int util_max = p->uclamp_req[UCLAMP_MAX].value; - -	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) { -		util_min = attr->sched_util_min; - -		if (util_min + 1 > SCHED_CAPACITY_SCALE + 1) -			return -EINVAL; -	} - -	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) { -		util_max = attr->sched_util_max; - -		if (util_max + 1 > SCHED_CAPACITY_SCALE + 1) -			return -EINVAL; -	} - -	if (util_min != -1 && util_max != -1 && util_min > util_max) -		return -EINVAL; - -	/* -	 * We have valid uclamp attributes; make sure uclamp is enabled. -	 * -	 * We need to do that here, because enabling static branches is a -	 * blocking operation which obviously cannot be done while holding -	 * scheduler locks. -	 */ -	static_branch_enable(&sched_uclamp_used); - -	return 0; -} - -static bool uclamp_reset(const struct sched_attr *attr, -			 enum uclamp_id clamp_id, -			 struct uclamp_se *uc_se) -{ -	/* Reset on sched class change for a non user-defined clamp value. */ -	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) && -	    !uc_se->user_defined) -		return true; - -	/* Reset on sched_util_{min,max} == -1. */ -	if (clamp_id == UCLAMP_MIN && -	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && -	    attr->sched_util_min == -1) { -		return true; -	} - -	if (clamp_id == UCLAMP_MAX && -	    attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && -	    attr->sched_util_max == -1) { -		return true; -	} - -	return false; -} - -static void __setscheduler_uclamp(struct task_struct *p, -				  const struct sched_attr *attr) -{ -	enum uclamp_id clamp_id; - -	for_each_clamp_id(clamp_id) { -		struct uclamp_se *uc_se = &p->uclamp_req[clamp_id]; -		unsigned int value; - -		if (!uclamp_reset(attr, clamp_id, uc_se)) -			continue; - -		/* -		 * RT by default have a 100% boost value that could be modified -		 * at runtime. -		 */ -		if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN)) -			value = sysctl_sched_uclamp_util_min_rt_default; -		else -			value = uclamp_none(clamp_id); - -		uclamp_se_set(uc_se, value, false); - -	} - -	if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP))) -		return; - -	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN && -	    attr->sched_util_min != -1) { -		uclamp_se_set(&p->uclamp_req[UCLAMP_MIN], -			      attr->sched_util_min, true); -	} - -	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX && -	    attr->sched_util_max != -1) { -		uclamp_se_set(&p->uclamp_req[UCLAMP_MAX], -			      attr->sched_util_max, true); -	} -} -  static void uclamp_fork(struct task_struct *p)  {  	enum uclamp_id clamp_id; @@ -2065,13 +1936,6 @@ static void __init init_uclamp(void)  #else /* !CONFIG_UCLAMP_TASK */  static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }  static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } -static inline int uclamp_validate(struct task_struct *p, -				  const struct sched_attr *attr) -{ -	return -EOPNOTSUPP; -} -static void __setscheduler_uclamp(struct task_struct *p, -				  const struct sched_attr *attr) { }  static inline void uclamp_fork(struct task_struct *p) { }  static inline void uclamp_post_fork(struct task_struct *p) { }  static inline void init_uclamp(void) { } @@ -2101,7 +1965,7 @@ unsigned long get_wchan(struct task_struct *p)  	return ip;  } -static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags) +void enqueue_task(struct rq *rq, struct task_struct *p, int flags)  {  	if (!(flags & ENQUEUE_NOCLOCK))  		update_rq_clock(rq); @@ -2118,7 +1982,7 @@ static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)  		sched_core_enqueue(rq, p);  } -static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags) +void dequeue_task(struct rq *rq, struct task_struct *p, int flags)  {  	if (sched_core_enabled(rq))  		sched_core_dequeue(rq, p, flags); @@ -2156,52 +2020,6 @@ void deactivate_task(struct rq *rq, struct task_struct *p, int flags)  	dequeue_task(rq, p, flags);  } -static inline int __normal_prio(int policy, int rt_prio, int nice) -{ -	int prio; - -	if (dl_policy(policy)) -		prio = MAX_DL_PRIO - 1; -	else if (rt_policy(policy)) -		prio = MAX_RT_PRIO - 1 - rt_prio; -	else -		prio = NICE_TO_PRIO(nice); - -	return prio; -} - -/* - * Calculate the expected normal priority: i.e. priority - * without taking RT-inheritance into account. Might be - * boosted by interactivity modifiers. Changes upon fork, - * setprio syscalls, and whenever the interactivity - * estimator recalculates. - */ -static inline int normal_prio(struct task_struct *p) -{ -	return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio)); -} - -/* - * Calculate the current priority, i.e. the priority - * taken into account by the scheduler. This value might - * be boosted by RT tasks, or might be boosted by - * interactivity modifiers. Will be RT if the task got - * RT-boosted. If not then it returns p->normal_prio. - */ -static int effective_prio(struct task_struct *p) -{ -	p->normal_prio = normal_prio(p); -	/* -	 * If we are RT tasks or we were boosted to RT priority, -	 * keep the priority unchanged. Otherwise, update priority -	 * to the normal priority: -	 */ -	if (!rt_prio(p->prio)) -		return p->normal_prio; -	return p->prio; -} -  /**   * task_curr - is this task currently executing on a CPU?   * @p: the task in question. @@ -2220,9 +2038,9 @@ inline int task_curr(const struct task_struct *p)   * this means any call to check_class_changed() must be followed by a call to   * balance_callback().   */ -static inline void check_class_changed(struct rq *rq, struct task_struct *p, -				       const struct sched_class *prev_class, -				       int oldprio) +void check_class_changed(struct rq *rq, struct task_struct *p, +			 const struct sched_class *prev_class, +			 int oldprio)  {  	if (prev_class != p->sched_class) {  		if (prev_class->switched_from) @@ -2391,9 +2209,6 @@ unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state  static void  __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); -static int __set_cpus_allowed_ptr(struct task_struct *p, -				  struct affinity_context *ctx); -  static void migrate_disable_switch(struct rq *rq, struct task_struct *p)  {  	struct affinity_context ac = { @@ -2408,7 +2223,7 @@ static void migrate_disable_switch(struct rq *rq, struct task_struct *p)  		return;  	/* -	 * Violates locking rules! see comment in __do_set_cpus_allowed(). +	 * Violates locking rules! See comment in __do_set_cpus_allowed().  	 */  	__do_set_cpus_allowed(p, &ac);  } @@ -2575,7 +2390,7 @@ static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,  }  /* - * migration_cpu_stop - this will be executed by a highprio stopper thread + * migration_cpu_stop - this will be executed by a high-prio stopper thread   * and performs thread migration by bumping thread off CPU then   * 'pushing' onto another runqueue.   */ @@ -2820,16 +2635,6 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)  	kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);  } -static cpumask_t *alloc_user_cpus_ptr(int node) -{ -	/* -	 * See do_set_cpus_allowed() above for the rcu_head usage. -	 */ -	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); - -	return kmalloc_node(size, GFP_KERNEL, node); -} -  int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,  		      int node)  { @@ -3198,8 +3003,7 @@ out:   * task must not exit() & deallocate itself prematurely. The   * call is not atomic; no spinlocks may be held.   */ -static int __set_cpus_allowed_ptr(struct task_struct *p, -				  struct affinity_context *ctx) +int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx)  {  	struct rq_flags rf;  	struct rq *rq; @@ -3318,9 +3122,6 @@ out_free_mask:  	free_cpumask_var(new_mask);  } -static int -__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); -  /*   * Restore the affinity of a task @p which was previously restricted by a   * call to force_compatible_cpus_allowed_ptr(). @@ -3700,12 +3501,6 @@ void sched_set_stop_task(int cpu, struct task_struct *stop)  #else /* CONFIG_SMP */ -static inline int __set_cpus_allowed_ptr(struct task_struct *p, -					 struct affinity_context *ctx) -{ -	return set_cpus_allowed_ptr(p, ctx->new_mask); -} -  static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }  static inline bool rq_has_pinned_tasks(struct rq *rq) @@ -3713,11 +3508,6 @@ static inline bool rq_has_pinned_tasks(struct rq *rq)  	return false;  } -static inline cpumask_t *alloc_user_cpus_ptr(int node) -{ -	return NULL; -} -  #endif /* !CONFIG_SMP */  static void @@ -3900,8 +3690,8 @@ void sched_ttwu_pending(void *arg)  	 * it is possible for select_idle_siblings() to stack a number  	 * of tasks on this CPU during that window.  	 * -	 * It is ok to clear ttwu_pending when another task pending. -	 * We will receive IPI after local irq enabled and then enqueue it. +	 * It is OK to clear ttwu_pending when another task pending. +	 * We will receive IPI after local IRQ enabled and then enqueue it.  	 * Since now nr_running > 0, idle_cpu() will always get correct result.  	 */  	WRITE_ONCE(rq->ttwu_pending, 0); @@ -4466,12 +4256,7 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg)   * @cpu: The CPU on which to snapshot the task.   *   * Returns the task_struct pointer of the task "currently" running on - * the specified CPU.  If the same task is running on that CPU throughout, - * the return value will be a pointer to that task's task_struct structure. - * If the CPU did any context switches even vaguely concurrently with the - * execution of this function, the return value will be a pointer to the - * task_struct structure of a randomly chosen task that was running on - * that CPU somewhere around the time that this function was executing. + * the specified CPU.   *   * If the specified CPU was offline, the return value is whatever it   * is, perhaps a pointer to the task_struct structure of that CPU's idle @@ -4485,11 +4270,16 @@ int task_call_func(struct task_struct *p, task_call_f func, void *arg)   */  struct task_struct *cpu_curr_snapshot(int cpu)  { +	struct rq *rq = cpu_rq(cpu);  	struct task_struct *t; +	struct rq_flags rf; -	smp_mb(); /* Pairing determined by caller's synchronization design. */ +	rq_lock_irqsave(rq, &rf); +	smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */  	t = rcu_dereference(cpu_curr(cpu)); +	rq_unlock_irqrestore(rq, &rf);  	smp_mb(); /* Pairing determined by caller's synchronization design. */ +  	return t;  } @@ -4602,7 +4392,7 @@ static void reset_memory_tiering(void)  	}  } -static int sysctl_numa_balancing(struct ctl_table *table, int write, +static int sysctl_numa_balancing(const struct ctl_table *table, int write,  			  void *buffer, size_t *lenp, loff_t *ppos)  {  	struct ctl_table t; @@ -4671,7 +4461,7 @@ out:  __setup("schedstats=", setup_schedstats);  #ifdef CONFIG_PROC_SYSCTL -static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer, +static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer,  		size_t *lenp, loff_t *ppos)  {  	struct ctl_table t; @@ -5094,7 +4884,7 @@ __splice_balance_callbacks(struct rq *rq, bool split)  	return head;  } -static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) +struct balance_callback *splice_balance_callbacks(struct rq *rq)  {  	return __splice_balance_callbacks(rq, true);  } @@ -5104,7 +4894,7 @@ static void __balance_callbacks(struct rq *rq)  	do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));  } -static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) +void balance_callbacks(struct rq *rq, struct balance_callback *head)  {  	unsigned long flags; @@ -5121,15 +4911,6 @@ static inline void __balance_callbacks(struct rq *rq)  {  } -static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) -{ -	return NULL; -} - -static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) -{ -} -  #endif  static inline void @@ -5232,7 +5013,7 @@ prepare_task_switch(struct rq *rq, struct task_struct *prev,   *   * The context switch have flipped the stack from under us and restored the   * local variables which were saved when this task called schedule() in the - * past. prev == current is still correct but we need to recalculate this_rq + * past. 'prev == current' is still correct but we need to recalculate this_rq   * because prev may have moved to another CPU.   */  static struct rq *finish_task_switch(struct task_struct *prev) @@ -5555,9 +5336,9 @@ EXPORT_PER_CPU_SYMBOL(kernel_cpustat);  static inline void prefetch_curr_exec_start(struct task_struct *p)  {  #ifdef CONFIG_FAIR_GROUP_SCHED -	struct sched_entity *curr = (&p->se)->cfs_rq->curr; +	struct sched_entity *curr = p->se.cfs_rq->curr;  #else -	struct sched_entity *curr = (&task_rq(p)->cfs)->curr; +	struct sched_entity *curr = task_rq(p)->cfs.curr;  #endif  	prefetch(curr);  	prefetch(&curr->exec_start); @@ -5578,7 +5359,7 @@ unsigned long long task_sched_runtime(struct task_struct *p)  	/*  	 * 64-bit doesn't need locks to atomically read a 64-bit value.  	 * So we have a optimization chance when the task's delta_exec is 0. -	 * Reading ->on_cpu is racy, but this is ok. +	 * Reading ->on_cpu is racy, but this is OK.  	 *  	 * If we race with it leaving CPU, we'll take a lock. So we're correct.  	 * If we race with it entering CPU, unaccounted time is 0. This is @@ -6856,7 +6637,7 @@ void __sched schedule_idle(void)  {  	/*  	 * As this skips calling sched_submit_work(), which the idle task does -	 * regardless because that function is a nop when the task is in a +	 * regardless because that function is a NOP when the task is in a  	 * TASK_RUNNING state, make sure this isn't used someplace that the  	 * current task can be in any other state. Note, idle is always in the  	 * TASK_RUNNING state. @@ -7051,9 +6832,9 @@ EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);  /*   * This is the entry point to schedule() from kernel preemption - * off of irq context. - * Note, that this is called and return with irqs disabled. This will - * protect us against recursive calling from irq. + * off of IRQ context. + * Note, that this is called and return with IRQs disabled. This will + * protect us against recursive calling from IRQ contexts.   */  asmlinkage __visible void __sched preempt_schedule_irq(void)  { @@ -7083,7 +6864,7 @@ int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flag  }  EXPORT_SYMBOL(default_wake_function); -static void __setscheduler_prio(struct task_struct *p, int prio) +void __setscheduler_prio(struct task_struct *p, int prio)  {  	if (dl_prio(prio))  		p->sched_class = &dl_sched_class; @@ -7123,21 +6904,6 @@ void rt_mutex_post_schedule(void)  	lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));  } -static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) -{ -	if (pi_task) -		prio = min(prio, pi_task->prio); - -	return prio; -} - -static inline int rt_effective_prio(struct task_struct *p, int prio) -{ -	struct task_struct *pi_task = rt_mutex_get_top_task(p); - -	return __rt_effective_prio(pi_task, prio); -} -  /*   * rt_mutex_setprio - set the current priority of a task   * @p: task to boost @@ -7187,7 +6953,7 @@ void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)  		goto out_unlock;  	/* -	 * Idle task boosting is a nono in general. There is one +	 * Idle task boosting is a no-no in general. There is one  	 * exception, when PREEMPT_RT and NOHZ is active:  	 *  	 * The idle task calls get_next_timer_interrupt() and holds @@ -7266,1324 +7032,7 @@ out_unlock:  	preempt_enable();  } -#else -static inline int rt_effective_prio(struct task_struct *p, int prio) -{ -	return prio; -} -#endif - -void set_user_nice(struct task_struct *p, long nice) -{ -	bool queued, running; -	struct rq *rq; -	int old_prio; - -	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE) -		return; -	/* -	 * We have to be careful, if called from sys_setpriority(), -	 * the task might be in the middle of scheduling on another CPU. -	 */ -	CLASS(task_rq_lock, rq_guard)(p); -	rq = rq_guard.rq; - -	update_rq_clock(rq); - -	/* -	 * The RT priorities are set via sched_setscheduler(), but we still -	 * allow the 'normal' nice value to be set - but as expected -	 * it won't have any effect on scheduling until the task is -	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: -	 */ -	if (task_has_dl_policy(p) || task_has_rt_policy(p)) { -		p->static_prio = NICE_TO_PRIO(nice); -		return; -	} - -	queued = task_on_rq_queued(p); -	running = task_current(rq, p); -	if (queued) -		dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); -	if (running) -		put_prev_task(rq, p); - -	p->static_prio = NICE_TO_PRIO(nice); -	set_load_weight(p, true); -	old_prio = p->prio; -	p->prio = effective_prio(p); - -	if (queued) -		enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); -	if (running) -		set_next_task(rq, p); - -	/* -	 * If the task increased its priority or is running and -	 * lowered its priority, then reschedule its CPU: -	 */ -	p->sched_class->prio_changed(rq, p, old_prio); -} -EXPORT_SYMBOL(set_user_nice); - -/* - * is_nice_reduction - check if nice value is an actual reduction - * - * Similar to can_nice() but does not perform a capability check. - * - * @p: task - * @nice: nice value - */ -static bool is_nice_reduction(const struct task_struct *p, const int nice) -{ -	/* Convert nice value [19,-20] to rlimit style value [1,40]: */ -	int nice_rlim = nice_to_rlimit(nice); - -	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE)); -} - -/* - * can_nice - check if a task can reduce its nice value - * @p: task - * @nice: nice value - */ -int can_nice(const struct task_struct *p, const int nice) -{ -	return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE); -} - -#ifdef __ARCH_WANT_SYS_NICE - -/* - * sys_nice - change the priority of the current process. - * @increment: priority increment - * - * sys_setpriority is a more generic, but much slower function that - * does similar things. - */ -SYSCALL_DEFINE1(nice, int, increment) -{ -	long nice, retval; - -	/* -	 * Setpriority might change our priority at the same moment. -	 * We don't have to worry. Conceptually one call occurs first -	 * and we have a single winner. -	 */ -	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH); -	nice = task_nice(current) + increment; - -	nice = clamp_val(nice, MIN_NICE, MAX_NICE); -	if (increment < 0 && !can_nice(current, nice)) -		return -EPERM; - -	retval = security_task_setnice(current, nice); -	if (retval) -		return retval; - -	set_user_nice(current, nice); -	return 0; -} - -#endif - -/** - * task_prio - return the priority value of a given task. - * @p: the task in question. - * - * Return: The priority value as seen by users in /proc. - * - * sched policy         return value   kernel prio    user prio/nice - * - * normal, batch, idle     [0 ... 39]  [100 ... 139]          0/[-20 ... 19] - * fifo, rr             [-2 ... -100]     [98 ... 0]  [1 ... 99] - * deadline                     -101             -1           0 - */ -int task_prio(const struct task_struct *p) -{ -	return p->prio - MAX_RT_PRIO; -} - -/** - * idle_cpu - is a given CPU idle currently? - * @cpu: the processor in question. - * - * Return: 1 if the CPU is currently idle. 0 otherwise. - */ -int idle_cpu(int cpu) -{ -	struct rq *rq = cpu_rq(cpu); - -	if (rq->curr != rq->idle) -		return 0; - -	if (rq->nr_running) -		return 0; - -#ifdef CONFIG_SMP -	if (rq->ttwu_pending) -		return 0; -#endif - -	return 1; -} - -/** - * available_idle_cpu - is a given CPU idle for enqueuing work. - * @cpu: the CPU in question. - * - * Return: 1 if the CPU is currently idle. 0 otherwise. - */ -int available_idle_cpu(int cpu) -{ -	if (!idle_cpu(cpu)) -		return 0; - -	if (vcpu_is_preempted(cpu)) -		return 0; - -	return 1; -} - -/** - * idle_task - return the idle task for a given CPU. - * @cpu: the processor in question. - * - * Return: The idle task for the CPU @cpu. - */ -struct task_struct *idle_task(int cpu) -{ -	return cpu_rq(cpu)->idle; -} - -#ifdef CONFIG_SCHED_CORE -int sched_core_idle_cpu(int cpu) -{ -	struct rq *rq = cpu_rq(cpu); - -	if (sched_core_enabled(rq) && rq->curr == rq->idle) -		return 1; - -	return idle_cpu(cpu); -} - -#endif - -#ifdef CONFIG_SMP -/* - * This function computes an effective utilization for the given CPU, to be - * used for frequency selection given the linear relation: f = u * f_max. - * - * The scheduler tracks the following metrics: - * - *   cpu_util_{cfs,rt,dl,irq}() - *   cpu_bw_dl() - * - * Where the cfs,rt and dl util numbers are tracked with the same metric and - * synchronized windows and are thus directly comparable. - * - * The cfs,rt,dl utilization are the running times measured with rq->clock_task - * which excludes things like IRQ and steal-time. These latter are then accrued - * in the irq utilization. - * - * The DL bandwidth number otoh is not a measured metric but a value computed - * based on the task model parameters and gives the minimal utilization - * required to meet deadlines. - */ -unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, -				 unsigned long *min, -				 unsigned long *max) -{ -	unsigned long util, irq, scale; -	struct rq *rq = cpu_rq(cpu); - -	scale = arch_scale_cpu_capacity(cpu); - -	/* -	 * Early check to see if IRQ/steal time saturates the CPU, can be -	 * because of inaccuracies in how we track these -- see -	 * update_irq_load_avg(). -	 */ -	irq = cpu_util_irq(rq); -	if (unlikely(irq >= scale)) { -		if (min) -			*min = scale; -		if (max) -			*max = scale; -		return scale; -	} - -	if (min) { -		/* -		 * The minimum utilization returns the highest level between: -		 * - the computed DL bandwidth needed with the IRQ pressure which -		 *   steals time to the deadline task. -		 * - The minimum performance requirement for CFS and/or RT. -		 */ -		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); - -		/* -		 * When an RT task is runnable and uclamp is not used, we must -		 * ensure that the task will run at maximum compute capacity. -		 */ -		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) -			*min = max(*min, scale); -	} - -	/* -	 * Because the time spend on RT/DL tasks is visible as 'lost' time to -	 * CFS tasks and we use the same metric to track the effective -	 * utilization (PELT windows are synchronized) we can directly add them -	 * to obtain the CPU's actual utilization. -	 */ -	util = util_cfs + cpu_util_rt(rq); -	util += cpu_util_dl(rq); - -	/* -	 * The maximum hint is a soft bandwidth requirement, which can be lower -	 * than the actual utilization because of uclamp_max requirements. -	 */ -	if (max) -		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); - -	if (util >= scale) -		return scale; - -	/* -	 * There is still idle time; further improve the number by using the -	 * irq metric. Because IRQ/steal time is hidden from the task clock we -	 * need to scale the task numbers: -	 * -	 *              max - irq -	 *   U' = irq + --------- * U -	 *                 max -	 */ -	util = scale_irq_capacity(util, irq, scale); -	util += irq; - -	return min(scale, util); -} - -unsigned long sched_cpu_util(int cpu) -{ -	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); -} -#endif /* CONFIG_SMP */ - -/** - * find_process_by_pid - find a process with a matching PID value. - * @pid: the pid in question. - * - * The task of @pid, if found. %NULL otherwise. - */ -static struct task_struct *find_process_by_pid(pid_t pid) -{ -	return pid ? find_task_by_vpid(pid) : current; -} - -static struct task_struct *find_get_task(pid_t pid) -{ -	struct task_struct *p; -	guard(rcu)(); - -	p = find_process_by_pid(pid); -	if (likely(p)) -		get_task_struct(p); - -	return p; -} - -DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T), -	     find_get_task(pid), pid_t pid) - -/* - * sched_setparam() passes in -1 for its policy, to let the functions - * it calls know not to change it. - */ -#define SETPARAM_POLICY	-1 - -static void __setscheduler_params(struct task_struct *p, -		const struct sched_attr *attr) -{ -	int policy = attr->sched_policy; - -	if (policy == SETPARAM_POLICY) -		policy = p->policy; - -	p->policy = policy; - -	if (dl_policy(policy)) -		__setparam_dl(p, attr); -	else if (fair_policy(policy)) -		p->static_prio = NICE_TO_PRIO(attr->sched_nice); - -	/* -	 * __sched_setscheduler() ensures attr->sched_priority == 0 when -	 * !rt_policy. Always setting this ensures that things like -	 * getparam()/getattr() don't report silly values for !rt tasks. -	 */ -	p->rt_priority = attr->sched_priority; -	p->normal_prio = normal_prio(p); -	set_load_weight(p, true); -} - -/* - * Check the target process has a UID that matches the current process's: - */ -static bool check_same_owner(struct task_struct *p) -{ -	const struct cred *cred = current_cred(), *pcred; -	guard(rcu)(); - -	pcred = __task_cred(p); -	return (uid_eq(cred->euid, pcred->euid) || -		uid_eq(cred->euid, pcred->uid)); -} - -/* - * Allow unprivileged RT tasks to decrease priority. - * Only issue a capable test if needed and only once to avoid an audit - * event on permitted non-privileged operations: - */ -static int user_check_sched_setscheduler(struct task_struct *p, -					 const struct sched_attr *attr, -					 int policy, int reset_on_fork) -{ -	if (fair_policy(policy)) { -		if (attr->sched_nice < task_nice(p) && -		    !is_nice_reduction(p, attr->sched_nice)) -			goto req_priv; -	} - -	if (rt_policy(policy)) { -		unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); - -		/* Can't set/change the rt policy: */ -		if (policy != p->policy && !rlim_rtprio) -			goto req_priv; - -		/* Can't increase priority: */ -		if (attr->sched_priority > p->rt_priority && -		    attr->sched_priority > rlim_rtprio) -			goto req_priv; -	} - -	/* -	 * Can't set/change SCHED_DEADLINE policy at all for now -	 * (safest behavior); in the future we would like to allow -	 * unprivileged DL tasks to increase their relative deadline -	 * or reduce their runtime (both ways reducing utilization) -	 */ -	if (dl_policy(policy)) -		goto req_priv; - -	/* -	 * Treat SCHED_IDLE as nice 20. Only allow a switch to -	 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it. -	 */ -	if (task_has_idle_policy(p) && !idle_policy(policy)) { -		if (!is_nice_reduction(p, task_nice(p))) -			goto req_priv; -	} - -	/* Can't change other user's priorities: */ -	if (!check_same_owner(p)) -		goto req_priv; - -	/* Normal users shall not reset the sched_reset_on_fork flag: */ -	if (p->sched_reset_on_fork && !reset_on_fork) -		goto req_priv; - -	return 0; - -req_priv: -	if (!capable(CAP_SYS_NICE)) -		return -EPERM; - -	return 0; -} - -static int __sched_setscheduler(struct task_struct *p, -				const struct sched_attr *attr, -				bool user, bool pi) -{ -	int oldpolicy = -1, policy = attr->sched_policy; -	int retval, oldprio, newprio, queued, running; -	const struct sched_class *prev_class; -	struct balance_callback *head; -	struct rq_flags rf; -	int reset_on_fork; -	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; -	struct rq *rq; -	bool cpuset_locked = false; - -	/* The pi code expects interrupts enabled */ -	BUG_ON(pi && in_interrupt()); -recheck: -	/* Double check policy once rq lock held: */ -	if (policy < 0) { -		reset_on_fork = p->sched_reset_on_fork; -		policy = oldpolicy = p->policy; -	} else { -		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); - -		if (!valid_policy(policy)) -			return -EINVAL; -	} - -	if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV)) -		return -EINVAL; - -	/* -	 * Valid priorities for SCHED_FIFO and SCHED_RR are -	 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL, -	 * SCHED_BATCH and SCHED_IDLE is 0. -	 */ -	if (attr->sched_priority > MAX_RT_PRIO-1) -		return -EINVAL; -	if ((dl_policy(policy) && !__checkparam_dl(attr)) || -	    (rt_policy(policy) != (attr->sched_priority != 0))) -		return -EINVAL; - -	if (user) { -		retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork); -		if (retval) -			return retval; - -		if (attr->sched_flags & SCHED_FLAG_SUGOV) -			return -EINVAL; - -		retval = security_task_setscheduler(p); -		if (retval) -			return retval; -	} - -	/* Update task specific "requested" clamps */ -	if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) { -		retval = uclamp_validate(p, attr); -		if (retval) -			return retval; -	} - -	/* -	 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets -	 * information. -	 */ -	if (dl_policy(policy) || dl_policy(p->policy)) { -		cpuset_locked = true; -		cpuset_lock(); -	} - -	/* -	 * Make sure no PI-waiters arrive (or leave) while we are -	 * changing the priority of the task: -	 * -	 * To be able to change p->policy safely, the appropriate -	 * runqueue lock must be held. -	 */ -	rq = task_rq_lock(p, &rf); -	update_rq_clock(rq); - -	/* -	 * Changing the policy of the stop threads its a very bad idea: -	 */ -	if (p == rq->stop) { -		retval = -EINVAL; -		goto unlock; -	} - -	/* -	 * If not changing anything there's no need to proceed further, -	 * but store a possible modification of reset_on_fork. -	 */ -	if (unlikely(policy == p->policy)) { -		if (fair_policy(policy) && attr->sched_nice != task_nice(p)) -			goto change; -		if (rt_policy(policy) && attr->sched_priority != p->rt_priority) -			goto change; -		if (dl_policy(policy) && dl_param_changed(p, attr)) -			goto change; -		if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) -			goto change; - -		p->sched_reset_on_fork = reset_on_fork; -		retval = 0; -		goto unlock; -	} -change: - -	if (user) { -#ifdef CONFIG_RT_GROUP_SCHED -		/* -		 * Do not allow realtime tasks into groups that have no runtime -		 * assigned. -		 */ -		if (rt_bandwidth_enabled() && rt_policy(policy) && -				task_group(p)->rt_bandwidth.rt_runtime == 0 && -				!task_group_is_autogroup(task_group(p))) { -			retval = -EPERM; -			goto unlock; -		} -#endif -#ifdef CONFIG_SMP -		if (dl_bandwidth_enabled() && dl_policy(policy) && -				!(attr->sched_flags & SCHED_FLAG_SUGOV)) { -			cpumask_t *span = rq->rd->span; - -			/* -			 * Don't allow tasks with an affinity mask smaller than -			 * the entire root_domain to become SCHED_DEADLINE. We -			 * will also fail if there's no bandwidth available. -			 */ -			if (!cpumask_subset(span, p->cpus_ptr) || -			    rq->rd->dl_bw.bw == 0) { -				retval = -EPERM; -				goto unlock; -			} -		} -#endif -	} - -	/* Re-check policy now with rq lock held: */ -	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { -		policy = oldpolicy = -1; -		task_rq_unlock(rq, p, &rf); -		if (cpuset_locked) -			cpuset_unlock(); -		goto recheck; -	} - -	/* -	 * If setscheduling to SCHED_DEADLINE (or changing the parameters -	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth -	 * is available. -	 */ -	if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) { -		retval = -EBUSY; -		goto unlock; -	} - -	p->sched_reset_on_fork = reset_on_fork; -	oldprio = p->prio; - -	newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice); -	if (pi) { -		/* -		 * Take priority boosted tasks into account. If the new -		 * effective priority is unchanged, we just store the new -		 * normal parameters and do not touch the scheduler class and -		 * the runqueue. This will be done when the task deboost -		 * itself. -		 */ -		newprio = rt_effective_prio(p, newprio); -		if (newprio == oldprio) -			queue_flags &= ~DEQUEUE_MOVE; -	} - -	queued = task_on_rq_queued(p); -	running = task_current(rq, p); -	if (queued) -		dequeue_task(rq, p, queue_flags); -	if (running) -		put_prev_task(rq, p); - -	prev_class = p->sched_class; - -	if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) { -		__setscheduler_params(p, attr); -		__setscheduler_prio(p, newprio); -	} -	__setscheduler_uclamp(p, attr); - -	if (queued) { -		/* -		 * We enqueue to tail when the priority of a task is -		 * increased (user space view). -		 */ -		if (oldprio < p->prio) -			queue_flags |= ENQUEUE_HEAD; - -		enqueue_task(rq, p, queue_flags); -	} -	if (running) -		set_next_task(rq, p); - -	check_class_changed(rq, p, prev_class, oldprio); - -	/* Avoid rq from going away on us: */ -	preempt_disable(); -	head = splice_balance_callbacks(rq); -	task_rq_unlock(rq, p, &rf); - -	if (pi) { -		if (cpuset_locked) -			cpuset_unlock(); -		rt_mutex_adjust_pi(p); -	} - -	/* Run balance callbacks after we've adjusted the PI chain: */ -	balance_callbacks(rq, head); -	preempt_enable(); - -	return 0; - -unlock: -	task_rq_unlock(rq, p, &rf); -	if (cpuset_locked) -		cpuset_unlock(); -	return retval; -} - -static int _sched_setscheduler(struct task_struct *p, int policy, -			       const struct sched_param *param, bool check) -{ -	struct sched_attr attr = { -		.sched_policy   = policy, -		.sched_priority = param->sched_priority, -		.sched_nice	= PRIO_TO_NICE(p->static_prio), -	}; - -	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */ -	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) { -		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; -		policy &= ~SCHED_RESET_ON_FORK; -		attr.sched_policy = policy; -	} - -	return __sched_setscheduler(p, &attr, check, true); -} -/** - * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Use sched_set_fifo(), read its comment. - * - * Return: 0 on success. An error code otherwise. - * - * NOTE that the task may be already dead. - */ -int sched_setscheduler(struct task_struct *p, int policy, -		       const struct sched_param *param) -{ -	return _sched_setscheduler(p, policy, param, true); -} - -int sched_setattr(struct task_struct *p, const struct sched_attr *attr) -{ -	return __sched_setscheduler(p, attr, true, true); -} - -int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr) -{ -	return __sched_setscheduler(p, attr, false, true); -} -EXPORT_SYMBOL_GPL(sched_setattr_nocheck); - -/** - * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. - * @p: the task in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Just like sched_setscheduler, only don't bother checking if the - * current context has permission.  For example, this is needed in - * stop_machine(): we create temporary high priority worker threads, - * but our caller might not have that capability. - * - * Return: 0 on success. An error code otherwise. - */ -int sched_setscheduler_nocheck(struct task_struct *p, int policy, -			       const struct sched_param *param) -{ -	return _sched_setscheduler(p, policy, param, false); -} - -/* - * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally - * incapable of resource management, which is the one thing an OS really should - * be doing. - * - * This is of course the reason it is limited to privileged users only. - * - * Worse still; it is fundamentally impossible to compose static priority - * workloads. You cannot take two correctly working static prio workloads - * and smash them together and still expect them to work. - * - * For this reason 'all' FIFO tasks the kernel creates are basically at: - * - *   MAX_RT_PRIO / 2 - * - * The administrator _MUST_ configure the system, the kernel simply doesn't - * know enough information to make a sensible choice. - */ -void sched_set_fifo(struct task_struct *p) -{ -	struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 }; -	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); -} -EXPORT_SYMBOL_GPL(sched_set_fifo); - -/* - * For when you don't much care about FIFO, but want to be above SCHED_NORMAL. - */ -void sched_set_fifo_low(struct task_struct *p) -{ -	struct sched_param sp = { .sched_priority = 1 }; -	WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0); -} -EXPORT_SYMBOL_GPL(sched_set_fifo_low); - -void sched_set_normal(struct task_struct *p, int nice) -{ -	struct sched_attr attr = { -		.sched_policy = SCHED_NORMAL, -		.sched_nice = nice, -	}; -	WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0); -} -EXPORT_SYMBOL_GPL(sched_set_normal); - -static int -do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) -{ -	struct sched_param lparam; - -	if (!param || pid < 0) -		return -EINVAL; -	if (copy_from_user(&lparam, param, sizeof(struct sched_param))) -		return -EFAULT; - -	CLASS(find_get_task, p)(pid); -	if (!p) -		return -ESRCH; - -	return sched_setscheduler(p, policy, &lparam); -} - -/* - * Mimics kernel/events/core.c perf_copy_attr(). - */ -static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr) -{ -	u32 size; -	int ret; - -	/* Zero the full structure, so that a short copy will be nice: */ -	memset(attr, 0, sizeof(*attr)); - -	ret = get_user(size, &uattr->size); -	if (ret) -		return ret; - -	/* ABI compatibility quirk: */ -	if (!size) -		size = SCHED_ATTR_SIZE_VER0; -	if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE) -		goto err_size; - -	ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size); -	if (ret) { -		if (ret == -E2BIG) -			goto err_size; -		return ret; -	} - -	if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) && -	    size < SCHED_ATTR_SIZE_VER1) -		return -EINVAL; - -	/* -	 * XXX: Do we want to be lenient like existing syscalls; or do we want -	 * to be strict and return an error on out-of-bounds values? -	 */ -	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE); - -	return 0; - -err_size: -	put_user(sizeof(*attr), &uattr->size); -	return -E2BIG; -} - -static void get_params(struct task_struct *p, struct sched_attr *attr) -{ -	if (task_has_dl_policy(p)) -		__getparam_dl(p, attr); -	else if (task_has_rt_policy(p)) -		attr->sched_priority = p->rt_priority; -	else -		attr->sched_nice = task_nice(p); -} - -/** - * sys_sched_setscheduler - set/change the scheduler policy and RT priority - * @pid: the pid in question. - * @policy: new policy. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param) -{ -	if (policy < 0) -		return -EINVAL; - -	return do_sched_setscheduler(pid, policy, param); -} - -/** - * sys_sched_setparam - set/change the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the new RT priority. - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) -{ -	return do_sched_setscheduler(pid, SETPARAM_POLICY, param); -} - -/** - * sys_sched_setattr - same as above, but with extended sched_attr - * @pid: the pid in question. - * @uattr: structure containing the extended parameters. - * @flags: for future extension. - */ -SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr, -			       unsigned int, flags) -{ -	struct sched_attr attr; -	int retval; - -	if (!uattr || pid < 0 || flags) -		return -EINVAL; - -	retval = sched_copy_attr(uattr, &attr); -	if (retval) -		return retval; - -	if ((int)attr.sched_policy < 0) -		return -EINVAL; -	if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY) -		attr.sched_policy = SETPARAM_POLICY; - -	CLASS(find_get_task, p)(pid); -	if (!p) -		return -ESRCH; - -	if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS) -		get_params(p, &attr); - -	return sched_setattr(p, &attr); -} - -/** - * sys_sched_getscheduler - get the policy (scheduling class) of a thread - * @pid: the pid in question. - * - * Return: On success, the policy of the thread. Otherwise, a negative error - * code. - */ -SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid) -{ -	struct task_struct *p; -	int retval; - -	if (pid < 0) -		return -EINVAL; - -	guard(rcu)(); -	p = find_process_by_pid(pid); -	if (!p) -		return -ESRCH; - -	retval = security_task_getscheduler(p); -	if (!retval) { -		retval = p->policy; -		if (p->sched_reset_on_fork) -			retval |= SCHED_RESET_ON_FORK; -	} -	return retval; -} - -/** - * sys_sched_getparam - get the RT priority of a thread - * @pid: the pid in question. - * @param: structure containing the RT priority. - * - * Return: On success, 0 and the RT priority is in @param. Otherwise, an error - * code. - */ -SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) -{ -	struct sched_param lp = { .sched_priority = 0 }; -	struct task_struct *p; -	int retval; - -	if (!param || pid < 0) -		return -EINVAL; - -	scoped_guard (rcu) { -		p = find_process_by_pid(pid); -		if (!p) -			return -ESRCH; - -		retval = security_task_getscheduler(p); -		if (retval) -			return retval; - -		if (task_has_rt_policy(p)) -			lp.sched_priority = p->rt_priority; -	} - -	/* -	 * This one might sleep, we cannot do it with a spinlock held ... -	 */ -	return copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; -} - -/* - * Copy the kernel size attribute structure (which might be larger - * than what user-space knows about) to user-space. - * - * Note that all cases are valid: user-space buffer can be larger or - * smaller than the kernel-space buffer. The usual case is that both - * have the same size. - */ -static int -sched_attr_copy_to_user(struct sched_attr __user *uattr, -			struct sched_attr *kattr, -			unsigned int usize) -{ -	unsigned int ksize = sizeof(*kattr); - -	if (!access_ok(uattr, usize)) -		return -EFAULT; - -	/* -	 * sched_getattr() ABI forwards and backwards compatibility: -	 * -	 * If usize == ksize then we just copy everything to user-space and all is good. -	 * -	 * If usize < ksize then we only copy as much as user-space has space for, -	 * this keeps ABI compatibility as well. We skip the rest. -	 * -	 * If usize > ksize then user-space is using a newer version of the ABI, -	 * which part the kernel doesn't know about. Just ignore it - tooling can -	 * detect the kernel's knowledge of attributes from the attr->size value -	 * which is set to ksize in this case. -	 */ -	kattr->size = min(usize, ksize); - -	if (copy_to_user(uattr, kattr, kattr->size)) -		return -EFAULT; - -	return 0; -} - -/** - * sys_sched_getattr - similar to sched_getparam, but with sched_attr - * @pid: the pid in question. - * @uattr: structure containing the extended parameters. - * @usize: sizeof(attr) for fwd/bwd comp. - * @flags: for future extension. - */ -SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, -		unsigned int, usize, unsigned int, flags) -{ -	struct sched_attr kattr = { }; -	struct task_struct *p; -	int retval; - -	if (!uattr || pid < 0 || usize > PAGE_SIZE || -	    usize < SCHED_ATTR_SIZE_VER0 || flags) -		return -EINVAL; - -	scoped_guard (rcu) { -		p = find_process_by_pid(pid); -		if (!p) -			return -ESRCH; - -		retval = security_task_getscheduler(p); -		if (retval) -			return retval; - -		kattr.sched_policy = p->policy; -		if (p->sched_reset_on_fork) -			kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; -		get_params(p, &kattr); -		kattr.sched_flags &= SCHED_FLAG_ALL; - -#ifdef CONFIG_UCLAMP_TASK -		/* -		 * This could race with another potential updater, but this is fine -		 * because it'll correctly read the old or the new value. We don't need -		 * to guarantee who wins the race as long as it doesn't return garbage. -		 */ -		kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value; -		kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;  #endif -	} - -	return sched_attr_copy_to_user(uattr, &kattr, usize); -} - -#ifdef CONFIG_SMP -int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask) -{ -	/* -	 * If the task isn't a deadline task or admission control is -	 * disabled then we don't care about affinity changes. -	 */ -	if (!task_has_dl_policy(p) || !dl_bandwidth_enabled()) -		return 0; - -	/* -	 * Since bandwidth control happens on root_domain basis, -	 * if admission test is enabled, we only admit -deadline -	 * tasks allowed to run on all the CPUs in the task's -	 * root_domain. -	 */ -	guard(rcu)(); -	if (!cpumask_subset(task_rq(p)->rd->span, mask)) -		return -EBUSY; - -	return 0; -} -#endif - -static int -__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx) -{ -	int retval; -	cpumask_var_t cpus_allowed, new_mask; - -	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) -		return -ENOMEM; - -	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) { -		retval = -ENOMEM; -		goto out_free_cpus_allowed; -	} - -	cpuset_cpus_allowed(p, cpus_allowed); -	cpumask_and(new_mask, ctx->new_mask, cpus_allowed); - -	ctx->new_mask = new_mask; -	ctx->flags |= SCA_CHECK; - -	retval = dl_task_check_affinity(p, new_mask); -	if (retval) -		goto out_free_new_mask; - -	retval = __set_cpus_allowed_ptr(p, ctx); -	if (retval) -		goto out_free_new_mask; - -	cpuset_cpus_allowed(p, cpus_allowed); -	if (!cpumask_subset(new_mask, cpus_allowed)) { -		/* -		 * We must have raced with a concurrent cpuset update. -		 * Just reset the cpumask to the cpuset's cpus_allowed. -		 */ -		cpumask_copy(new_mask, cpus_allowed); - -		/* -		 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr() -		 * will restore the previous user_cpus_ptr value. -		 * -		 * In the unlikely event a previous user_cpus_ptr exists, -		 * we need to further restrict the mask to what is allowed -		 * by that old user_cpus_ptr. -		 */ -		if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) { -			bool empty = !cpumask_and(new_mask, new_mask, -						  ctx->user_mask); - -			if (WARN_ON_ONCE(empty)) -				cpumask_copy(new_mask, cpus_allowed); -		} -		__set_cpus_allowed_ptr(p, ctx); -		retval = -EINVAL; -	} - -out_free_new_mask: -	free_cpumask_var(new_mask); -out_free_cpus_allowed: -	free_cpumask_var(cpus_allowed); -	return retval; -} - -long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) -{ -	struct affinity_context ac; -	struct cpumask *user_mask; -	int retval; - -	CLASS(find_get_task, p)(pid); -	if (!p) -		return -ESRCH; - -	if (p->flags & PF_NO_SETAFFINITY) -		return -EINVAL; - -	if (!check_same_owner(p)) { -		guard(rcu)(); -		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) -			return -EPERM; -	} - -	retval = security_task_setscheduler(p); -	if (retval) -		return retval; - -	/* -	 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and -	 * alloc_user_cpus_ptr() returns NULL. -	 */ -	user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE); -	if (user_mask) { -		cpumask_copy(user_mask, in_mask); -	} else if (IS_ENABLED(CONFIG_SMP)) { -		return -ENOMEM; -	} - -	ac = (struct affinity_context){ -		.new_mask  = in_mask, -		.user_mask = user_mask, -		.flags     = SCA_USER, -	}; - -	retval = __sched_setaffinity(p, &ac); -	kfree(ac.user_mask); - -	return retval; -} - -static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, -			     struct cpumask *new_mask) -{ -	if (len < cpumask_size()) -		cpumask_clear(new_mask); -	else if (len > cpumask_size()) -		len = cpumask_size(); - -	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; -} - -/** - * sys_sched_setaffinity - set the CPU affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to the new CPU mask - * - * Return: 0 on success. An error code otherwise. - */ -SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len, -		unsigned long __user *, user_mask_ptr) -{ -	cpumask_var_t new_mask; -	int retval; - -	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) -		return -ENOMEM; - -	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask); -	if (retval == 0) -		retval = sched_setaffinity(pid, new_mask); -	free_cpumask_var(new_mask); -	return retval; -} - -long sched_getaffinity(pid_t pid, struct cpumask *mask) -{ -	struct task_struct *p; -	int retval; - -	guard(rcu)(); -	p = find_process_by_pid(pid); -	if (!p) -		return -ESRCH; - -	retval = security_task_getscheduler(p); -	if (retval) -		return retval; - -	guard(raw_spinlock_irqsave)(&p->pi_lock); -	cpumask_and(mask, &p->cpus_mask, cpu_active_mask); - -	return 0; -} - -/** - * sys_sched_getaffinity - get the CPU affinity of a process - * @pid: pid of the process - * @len: length in bytes of the bitmask pointed to by user_mask_ptr - * @user_mask_ptr: user-space pointer to hold the current CPU mask - * - * Return: size of CPU mask copied to user_mask_ptr on success. An - * error code otherwise. - */ -SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, -		unsigned long __user *, user_mask_ptr) -{ -	int ret; -	cpumask_var_t mask; - -	if ((len * BITS_PER_BYTE) < nr_cpu_ids) -		return -EINVAL; -	if (len & (sizeof(unsigned long)-1)) -		return -EINVAL; - -	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) -		return -ENOMEM; - -	ret = sched_getaffinity(pid, mask); -	if (ret == 0) { -		unsigned int retlen = min(len, cpumask_size()); - -		if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen)) -			ret = -EFAULT; -		else -			ret = retlen; -	} -	free_cpumask_var(mask); - -	return ret; -} - -static void do_sched_yield(void) -{ -	struct rq_flags rf; -	struct rq *rq; - -	rq = this_rq_lock_irq(&rf); - -	schedstat_inc(rq->yld_count); -	current->sched_class->yield_task(rq); - -	preempt_disable(); -	rq_unlock_irq(rq, &rf); -	sched_preempt_enable_no_resched(); - -	schedule(); -} - -/** - * sys_sched_yield - yield the current processor to other threads. - * - * This function yields the current CPU to other tasks. If there are no - * other threads running on this CPU then this function will return. - * - * Return: 0. - */ -SYSCALL_DEFINE0(sched_yield) -{ -	do_sched_yield(); -	return 0; -}  #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)  int __sched __cond_resched(void) @@ -8907,105 +7356,11 @@ PREEMPT_MODEL_ACCESSOR(none);  PREEMPT_MODEL_ACCESSOR(voluntary);  PREEMPT_MODEL_ACCESSOR(full); -#else /* !CONFIG_PREEMPT_DYNAMIC */ +#else /* !CONFIG_PREEMPT_DYNAMIC: */  static inline void preempt_dynamic_init(void) { } -#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */ - -/** - * yield - yield the current processor to other threads. - * - * Do not ever use this function, there's a 99% chance you're doing it wrong. - * - * The scheduler is at all times free to pick the calling task as the most - * eligible task to run, if removing the yield() call from your code breaks - * it, it's already broken. - * - * Typical broken usage is: - * - * while (!event) - *	yield(); - * - * where one assumes that yield() will let 'the other' process run that will - * make event true. If the current task is a SCHED_FIFO task that will never - * happen. Never use yield() as a progress guarantee!! - * - * If you want to use yield() to wait for something, use wait_event(). - * If you want to use yield() to be 'nice' for others, use cond_resched(). - * If you still want to use yield(), do not! - */ -void __sched yield(void) -{ -	set_current_state(TASK_RUNNING); -	do_sched_yield(); -} -EXPORT_SYMBOL(yield); - -/** - * yield_to - yield the current processor to another thread in - * your thread group, or accelerate that thread toward the - * processor it's on. - * @p: target task - * @preempt: whether task preemption is allowed or not - * - * It's the caller's job to ensure that the target task struct - * can't go away on us before we can do any checks. - * - * Return: - *	true (>0) if we indeed boosted the target task. - *	false (0) if we failed to boost the target. - *	-ESRCH if there's no task to yield to. - */ -int __sched yield_to(struct task_struct *p, bool preempt) -{ -	struct task_struct *curr = current; -	struct rq *rq, *p_rq; -	int yielded = 0; - -	scoped_guard (irqsave) { -		rq = this_rq(); - -again: -		p_rq = task_rq(p); -		/* -		 * If we're the only runnable task on the rq and target rq also -		 * has only one task, there's absolutely no point in yielding. -		 */ -		if (rq->nr_running == 1 && p_rq->nr_running == 1) -			return -ESRCH; - -		guard(double_rq_lock)(rq, p_rq); -		if (task_rq(p) != p_rq) -			goto again; - -		if (!curr->sched_class->yield_to_task) -			return 0; - -		if (curr->sched_class != p->sched_class) -			return 0; - -		if (task_on_cpu(p_rq, p) || !task_is_running(p)) -			return 0; - -		yielded = curr->sched_class->yield_to_task(rq, p); -		if (yielded) { -			schedstat_inc(rq->yld_count); -			/* -			 * Make p's CPU reschedule; pick_next_entity -			 * takes care of fairness. -			 */ -			if (preempt && rq != p_rq) -				resched_curr(p_rq); -		} -	} - -	if (yielded) -		schedule(); - -	return yielded; -} -EXPORT_SYMBOL_GPL(yield_to); +#endif /* CONFIG_PREEMPT_DYNAMIC */  int io_schedule_prepare(void)  { @@ -9048,123 +7403,6 @@ void __sched io_schedule(void)  }  EXPORT_SYMBOL(io_schedule); -/** - * sys_sched_get_priority_max - return maximum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the maximum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_max, int, policy) -{ -	int ret = -EINVAL; - -	switch (policy) { -	case SCHED_FIFO: -	case SCHED_RR: -		ret = MAX_RT_PRIO-1; -		break; -	case SCHED_DEADLINE: -	case SCHED_NORMAL: -	case SCHED_BATCH: -	case SCHED_IDLE: -		ret = 0; -		break; -	} -	return ret; -} - -/** - * sys_sched_get_priority_min - return minimum RT priority. - * @policy: scheduling class. - * - * Return: On success, this syscall returns the minimum - * rt_priority that can be used by a given scheduling class. - * On failure, a negative error code is returned. - */ -SYSCALL_DEFINE1(sched_get_priority_min, int, policy) -{ -	int ret = -EINVAL; - -	switch (policy) { -	case SCHED_FIFO: -	case SCHED_RR: -		ret = 1; -		break; -	case SCHED_DEADLINE: -	case SCHED_NORMAL: -	case SCHED_BATCH: -	case SCHED_IDLE: -		ret = 0; -	} -	return ret; -} - -static int sched_rr_get_interval(pid_t pid, struct timespec64 *t) -{ -	unsigned int time_slice = 0; -	int retval; - -	if (pid < 0) -		return -EINVAL; - -	scoped_guard (rcu) { -		struct task_struct *p = find_process_by_pid(pid); -		if (!p) -			return -ESRCH; - -		retval = security_task_getscheduler(p); -		if (retval) -			return retval; - -		scoped_guard (task_rq_lock, p) { -			struct rq *rq = scope.rq; -			if (p->sched_class->get_rr_interval) -				time_slice = p->sched_class->get_rr_interval(rq, p); -		} -	} - -	jiffies_to_timespec64(time_slice, t); -	return 0; -} - -/** - * sys_sched_rr_get_interval - return the default timeslice of a process. - * @pid: pid of the process. - * @interval: userspace pointer to the timeslice value. - * - * this syscall writes the default timeslice value of a given process - * into the user-space timespec buffer. A value of '0' means infinity. - * - * Return: On success, 0 and the timeslice is in @interval. Otherwise, - * an error code. - */ -SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid, -		struct __kernel_timespec __user *, interval) -{ -	struct timespec64 t; -	int retval = sched_rr_get_interval(pid, &t); - -	if (retval == 0) -		retval = put_timespec64(&t, interval); - -	return retval; -} - -#ifdef CONFIG_COMPAT_32BIT_TIME -SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid, -		struct old_timespec32 __user *, interval) -{ -	struct timespec64 t; -	int retval = sched_rr_get_interval(pid, &t); - -	if (retval == 0) -		retval = put_old_timespec32(&t, interval); -	return retval; -} -#endif -  void sched_show_task(struct task_struct *p)  {  	unsigned long free = 0; @@ -9732,7 +7970,7 @@ int sched_cpu_deactivate(unsigned int cpu)  	 * Specifically, we rely on ttwu to no longer target this CPU, see  	 * ttwu_queue_cond() and is_cpu_allowed().  	 * -	 * Do sync before park smpboot threads to take care the rcu boost case. +	 * Do sync before park smpboot threads to take care the RCU boost case.  	 */  	synchronize_rcu(); @@ -9807,7 +8045,7 @@ int sched_cpu_wait_empty(unsigned int cpu)   * Since this CPU is going 'away' for a while, fold any nr_active delta we   * might have. Called from the CPU stopper task after ensuring that the   * stopper is the last running task on the CPU, so nr_active count is - * stable. We need to take the teardown thread which is calling this into + * stable. We need to take the tear-down thread which is calling this into   * account, so we hand in adjust = 1 to the load calculation.   *   * Also see the comment "Global load-average calculations". @@ -10001,7 +8239,7 @@ void __init sched_init(void)  		/*  		 * How much CPU bandwidth does root_task_group get?  		 * -		 * In case of task-groups formed thr' the cgroup filesystem, it +		 * In case of task-groups formed through the cgroup filesystem, it  		 * gets 100% of the CPU resources in the system. This overall  		 * system CPU resource is divided among the tasks of  		 * root_task_group and its child task-groups in a fair manner, @@ -10303,7 +8541,7 @@ void normalize_rt_tasks(void)  #if defined(CONFIG_KGDB_KDB)  /* - * These functions are only useful for kdb. + * These functions are only useful for KDB.   *   * They can only be called when the whole system has been   * stopped - every CPU needs to be quiescent, and no scheduling @@ -10411,7 +8649,7 @@ void sched_online_group(struct task_group *tg, struct task_group *parent)  	online_fair_sched_group(tg);  } -/* rcu callback to free various structures associated with a task group */ +/* RCU callback to free various structures associated with a task group */  static void sched_unregister_group_rcu(struct rcu_head *rhp)  {  	/* Now it should be safe to free those cfs_rqs: */ @@ -11529,10 +9767,10 @@ const int sched_prio_to_weight[40] = {  };  /* - * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated. + * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated.   *   * In cases where the weight does not change often, we can use the - * precalculated inverse to speed up arithmetics by turning divisions + * pre-calculated inverse to speed up arithmetics by turning divisions   * into multiplications:   */  const u32 sched_prio_to_wmult[40] = { @@ -11788,16 +10026,16 @@ void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)  	/*  	 * Move the src cid if the dst cid is unset. This keeps id  	 * allocation closest to 0 in cases where few threads migrate around -	 * many cpus. +	 * many CPUs.  	 *  	 * If destination cid is already set, we may have to just clear  	 * the src cid to ensure compactness in frequent migrations  	 * scenarios.  	 *  	 * It is not useful to clear the src cid when the number of threads is -	 * greater or equal to the number of allowed cpus, because user-space +	 * greater or equal to the number of allowed CPUs, because user-space  	 * can expect that the number of allowed cids can reach the number of -	 * allowed cpus. +	 * allowed CPUs.  	 */  	dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));  	dst_cid = READ_ONCE(dst_pcpu_cid->cid); |