diff options
Diffstat (limited to 'kernel/rcu/tree.c')
| -rw-r--r-- | kernel/rcu/tree.c | 3416 | 
1 files changed, 3416 insertions, 0 deletions
| diff --git a/kernel/rcu/tree.c b/kernel/rcu/tree.c new file mode 100644 index 000000000000..4c06ddfea7cd --- /dev/null +++ b/kernel/rcu/tree.c @@ -0,0 +1,3416 @@ +/* + * Read-Copy Update mechanism for mutual exclusion + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + * Copyright IBM Corporation, 2008 + * + * Authors: Dipankar Sarma <[email protected]> + *	    Manfred Spraul <[email protected]> + *	    Paul E. McKenney <[email protected]> Hierarchical version + * + * Based on the original work by Paul McKenney <[email protected]> + * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. + * + * For detailed explanation of Read-Copy Update mechanism see - + *	Documentation/RCU + */ +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/spinlock.h> +#include <linux/smp.h> +#include <linux/rcupdate.h> +#include <linux/interrupt.h> +#include <linux/sched.h> +#include <linux/nmi.h> +#include <linux/atomic.h> +#include <linux/bitops.h> +#include <linux/export.h> +#include <linux/completion.h> +#include <linux/moduleparam.h> +#include <linux/module.h> +#include <linux/percpu.h> +#include <linux/notifier.h> +#include <linux/cpu.h> +#include <linux/mutex.h> +#include <linux/time.h> +#include <linux/kernel_stat.h> +#include <linux/wait.h> +#include <linux/kthread.h> +#include <linux/prefetch.h> +#include <linux/delay.h> +#include <linux/stop_machine.h> +#include <linux/random.h> +#include <linux/ftrace_event.h> +#include <linux/suspend.h> + +#include "tree.h" +#include <trace/events/rcu.h> + +#include "rcu.h" + +MODULE_ALIAS("rcutree"); +#ifdef MODULE_PARAM_PREFIX +#undef MODULE_PARAM_PREFIX +#endif +#define MODULE_PARAM_PREFIX "rcutree." + +/* Data structures. */ + +static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; +static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; + +/* + * In order to export the rcu_state name to the tracing tools, it + * needs to be added in the __tracepoint_string section. + * This requires defining a separate variable tp_<sname>_varname + * that points to the string being used, and this will allow + * the tracing userspace tools to be able to decipher the string + * address to the matching string. + */ +#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ +static char sname##_varname[] = #sname; \ +static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \ +struct rcu_state sname##_state = { \ +	.level = { &sname##_state.node[0] }, \ +	.call = cr, \ +	.fqs_state = RCU_GP_IDLE, \ +	.gpnum = 0UL - 300UL, \ +	.completed = 0UL - 300UL, \ +	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ +	.orphan_nxttail = &sname##_state.orphan_nxtlist, \ +	.orphan_donetail = &sname##_state.orphan_donelist, \ +	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ +	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ +	.name = sname##_varname, \ +	.abbr = sabbr, \ +}; \ +DEFINE_PER_CPU(struct rcu_data, sname##_data) + +RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); +RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); + +static struct rcu_state *rcu_state; +LIST_HEAD(rcu_struct_flavors); + +/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ +static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; +module_param(rcu_fanout_leaf, int, 0444); +int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; +static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */ +	NUM_RCU_LVL_0, +	NUM_RCU_LVL_1, +	NUM_RCU_LVL_2, +	NUM_RCU_LVL_3, +	NUM_RCU_LVL_4, +}; +int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ + +/* + * The rcu_scheduler_active variable transitions from zero to one just + * before the first task is spawned.  So when this variable is zero, RCU + * can assume that there is but one task, allowing RCU to (for example) + * optimize synchronize_sched() to a simple barrier().  When this variable + * is one, RCU must actually do all the hard work required to detect real + * grace periods.  This variable is also used to suppress boot-time false + * positives from lockdep-RCU error checking. + */ +int rcu_scheduler_active __read_mostly; +EXPORT_SYMBOL_GPL(rcu_scheduler_active); + +/* + * The rcu_scheduler_fully_active variable transitions from zero to one + * during the early_initcall() processing, which is after the scheduler + * is capable of creating new tasks.  So RCU processing (for example, + * creating tasks for RCU priority boosting) must be delayed until after + * rcu_scheduler_fully_active transitions from zero to one.  We also + * currently delay invocation of any RCU callbacks until after this point. + * + * It might later prove better for people registering RCU callbacks during + * early boot to take responsibility for these callbacks, but one step at + * a time. + */ +static int rcu_scheduler_fully_active __read_mostly; + +#ifdef CONFIG_RCU_BOOST + +/* + * Control variables for per-CPU and per-rcu_node kthreads.  These + * handle all flavors of RCU. + */ +static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task); +DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status); +DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops); +DEFINE_PER_CPU(char, rcu_cpu_has_work); + +#endif /* #ifdef CONFIG_RCU_BOOST */ + +static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); +static void invoke_rcu_core(void); +static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); + +/* + * Track the rcutorture test sequence number and the update version + * number within a given test.  The rcutorture_testseq is incremented + * on every rcutorture module load and unload, so has an odd value + * when a test is running.  The rcutorture_vernum is set to zero + * when rcutorture starts and is incremented on each rcutorture update. + * These variables enable correlating rcutorture output with the + * RCU tracing information. + */ +unsigned long rcutorture_testseq; +unsigned long rcutorture_vernum; + +/* + * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s + * permit this function to be invoked without holding the root rcu_node + * structure's ->lock, but of course results can be subject to change. + */ +static int rcu_gp_in_progress(struct rcu_state *rsp) +{ +	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); +} + +/* + * Note a quiescent state.  Because we do not need to know + * how many quiescent states passed, just if there was at least + * one since the start of the grace period, this just sets a flag. + * The caller must have disabled preemption. + */ +void rcu_sched_qs(int cpu) +{ +	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu); + +	if (rdp->passed_quiesce == 0) +		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs")); +	rdp->passed_quiesce = 1; +} + +void rcu_bh_qs(int cpu) +{ +	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu); + +	if (rdp->passed_quiesce == 0) +		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs")); +	rdp->passed_quiesce = 1; +} + +/* + * Note a context switch.  This is a quiescent state for RCU-sched, + * and requires special handling for preemptible RCU. + * The caller must have disabled preemption. + */ +void rcu_note_context_switch(int cpu) +{ +	trace_rcu_utilization(TPS("Start context switch")); +	rcu_sched_qs(cpu); +	rcu_preempt_note_context_switch(cpu); +	trace_rcu_utilization(TPS("End context switch")); +} +EXPORT_SYMBOL_GPL(rcu_note_context_switch); + +static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { +	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, +	.dynticks = ATOMIC_INIT(1), +#ifdef CONFIG_NO_HZ_FULL_SYSIDLE +	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, +	.dynticks_idle = ATOMIC_INIT(1), +#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ +}; + +static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */ +static long qhimark = 10000;	/* If this many pending, ignore blimit. */ +static long qlowmark = 100;	/* Once only this many pending, use blimit. */ + +module_param(blimit, long, 0444); +module_param(qhimark, long, 0444); +module_param(qlowmark, long, 0444); + +static ulong jiffies_till_first_fqs = ULONG_MAX; +static ulong jiffies_till_next_fqs = ULONG_MAX; + +module_param(jiffies_till_first_fqs, ulong, 0644); +module_param(jiffies_till_next_fqs, ulong, 0644); + +static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, +				  struct rcu_data *rdp); +static void force_qs_rnp(struct rcu_state *rsp, +			 int (*f)(struct rcu_data *rsp, bool *isidle, +				  unsigned long *maxj), +			 bool *isidle, unsigned long *maxj); +static void force_quiescent_state(struct rcu_state *rsp); +static int rcu_pending(int cpu); + +/* + * Return the number of RCU-sched batches processed thus far for debug & stats. + */ +long rcu_batches_completed_sched(void) +{ +	return rcu_sched_state.completed; +} +EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); + +/* + * Return the number of RCU BH batches processed thus far for debug & stats. + */ +long rcu_batches_completed_bh(void) +{ +	return rcu_bh_state.completed; +} +EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); + +/* + * Force a quiescent state for RCU BH. + */ +void rcu_bh_force_quiescent_state(void) +{ +	force_quiescent_state(&rcu_bh_state); +} +EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); + +/* + * Record the number of times rcutorture tests have been initiated and + * terminated.  This information allows the debugfs tracing stats to be + * correlated to the rcutorture messages, even when the rcutorture module + * is being repeatedly loaded and unloaded.  In other words, we cannot + * store this state in rcutorture itself. + */ +void rcutorture_record_test_transition(void) +{ +	rcutorture_testseq++; +	rcutorture_vernum = 0; +} +EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); + +/* + * Record the number of writer passes through the current rcutorture test. + * This is also used to correlate debugfs tracing stats with the rcutorture + * messages. + */ +void rcutorture_record_progress(unsigned long vernum) +{ +	rcutorture_vernum++; +} +EXPORT_SYMBOL_GPL(rcutorture_record_progress); + +/* + * Force a quiescent state for RCU-sched. + */ +void rcu_sched_force_quiescent_state(void) +{ +	force_quiescent_state(&rcu_sched_state); +} +EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); + +/* + * Does the CPU have callbacks ready to be invoked? + */ +static int +cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) +{ +	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && +	       rdp->nxttail[RCU_DONE_TAIL] != NULL; +} + +/* + * Does the current CPU require a not-yet-started grace period? + * The caller must have disabled interrupts to prevent races with + * normal callback registry. + */ +static int +cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) +{ +	int i; + +	if (rcu_gp_in_progress(rsp)) +		return 0;  /* No, a grace period is already in progress. */ +	if (rcu_nocb_needs_gp(rsp)) +		return 1;  /* Yes, a no-CBs CPU needs one. */ +	if (!rdp->nxttail[RCU_NEXT_TAIL]) +		return 0;  /* No, this is a no-CBs (or offline) CPU. */ +	if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) +		return 1;  /* Yes, this CPU has newly registered callbacks. */ +	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) +		if (rdp->nxttail[i - 1] != rdp->nxttail[i] && +		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), +				 rdp->nxtcompleted[i])) +			return 1;  /* Yes, CBs for future grace period. */ +	return 0; /* No grace period needed. */ +} + +/* + * Return the root node of the specified rcu_state structure. + */ +static struct rcu_node *rcu_get_root(struct rcu_state *rsp) +{ +	return &rsp->node[0]; +} + +/* + * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state + * + * If the new value of the ->dynticks_nesting counter now is zero, + * we really have entered idle, and must do the appropriate accounting. + * The caller must have disabled interrupts. + */ +static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval, +				bool user) +{ +	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); +	if (!user && !is_idle_task(current)) { +		struct task_struct *idle __maybe_unused = +			idle_task(smp_processor_id()); + +		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); +		ftrace_dump(DUMP_ORIG); +		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", +			  current->pid, current->comm, +			  idle->pid, idle->comm); /* must be idle task! */ +	} +	rcu_prepare_for_idle(smp_processor_id()); +	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ +	smp_mb__before_atomic_inc();  /* See above. */ +	atomic_inc(&rdtp->dynticks); +	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */ +	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); + +	/* +	 * It is illegal to enter an extended quiescent state while +	 * in an RCU read-side critical section. +	 */ +	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), +			   "Illegal idle entry in RCU read-side critical section."); +	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), +			   "Illegal idle entry in RCU-bh read-side critical section."); +	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), +			   "Illegal idle entry in RCU-sched read-side critical section."); +} + +/* + * Enter an RCU extended quiescent state, which can be either the + * idle loop or adaptive-tickless usermode execution. + */ +static void rcu_eqs_enter(bool user) +{ +	long long oldval; +	struct rcu_dynticks *rdtp; + +	rdtp = this_cpu_ptr(&rcu_dynticks); +	oldval = rdtp->dynticks_nesting; +	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); +	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) +		rdtp->dynticks_nesting = 0; +	else +		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; +	rcu_eqs_enter_common(rdtp, oldval, user); +} + +/** + * rcu_idle_enter - inform RCU that current CPU is entering idle + * + * Enter idle mode, in other words, -leave- the mode in which RCU + * read-side critical sections can occur.  (Though RCU read-side + * critical sections can occur in irq handlers in idle, a possibility + * handled by irq_enter() and irq_exit().) + * + * We crowbar the ->dynticks_nesting field to zero to allow for + * the possibility of usermode upcalls having messed up our count + * of interrupt nesting level during the prior busy period. + */ +void rcu_idle_enter(void) +{ +	unsigned long flags; + +	local_irq_save(flags); +	rcu_eqs_enter(false); +	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0); +	local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(rcu_idle_enter); + +#ifdef CONFIG_RCU_USER_QS +/** + * rcu_user_enter - inform RCU that we are resuming userspace. + * + * Enter RCU idle mode right before resuming userspace.  No use of RCU + * is permitted between this call and rcu_user_exit(). This way the + * CPU doesn't need to maintain the tick for RCU maintenance purposes + * when the CPU runs in userspace. + */ +void rcu_user_enter(void) +{ +	rcu_eqs_enter(1); +} +#endif /* CONFIG_RCU_USER_QS */ + +/** + * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle + * + * Exit from an interrupt handler, which might possibly result in entering + * idle mode, in other words, leaving the mode in which read-side critical + * sections can occur. + * + * This code assumes that the idle loop never does anything that might + * result in unbalanced calls to irq_enter() and irq_exit().  If your + * architecture violates this assumption, RCU will give you what you + * deserve, good and hard.  But very infrequently and irreproducibly. + * + * Use things like work queues to work around this limitation. + * + * You have been warned. + */ +void rcu_irq_exit(void) +{ +	unsigned long flags; +	long long oldval; +	struct rcu_dynticks *rdtp; + +	local_irq_save(flags); +	rdtp = this_cpu_ptr(&rcu_dynticks); +	oldval = rdtp->dynticks_nesting; +	rdtp->dynticks_nesting--; +	WARN_ON_ONCE(rdtp->dynticks_nesting < 0); +	if (rdtp->dynticks_nesting) +		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); +	else +		rcu_eqs_enter_common(rdtp, oldval, true); +	rcu_sysidle_enter(rdtp, 1); +	local_irq_restore(flags); +} + +/* + * rcu_eqs_exit_common - current CPU moving away from extended quiescent state + * + * If the new value of the ->dynticks_nesting counter was previously zero, + * we really have exited idle, and must do the appropriate accounting. + * The caller must have disabled interrupts. + */ +static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval, +			       int user) +{ +	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */ +	atomic_inc(&rdtp->dynticks); +	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ +	smp_mb__after_atomic_inc();  /* See above. */ +	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); +	rcu_cleanup_after_idle(smp_processor_id()); +	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); +	if (!user && !is_idle_task(current)) { +		struct task_struct *idle __maybe_unused = +			idle_task(smp_processor_id()); + +		trace_rcu_dyntick(TPS("Error on exit: not idle task"), +				  oldval, rdtp->dynticks_nesting); +		ftrace_dump(DUMP_ORIG); +		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", +			  current->pid, current->comm, +			  idle->pid, idle->comm); /* must be idle task! */ +	} +} + +/* + * Exit an RCU extended quiescent state, which can be either the + * idle loop or adaptive-tickless usermode execution. + */ +static void rcu_eqs_exit(bool user) +{ +	struct rcu_dynticks *rdtp; +	long long oldval; + +	rdtp = this_cpu_ptr(&rcu_dynticks); +	oldval = rdtp->dynticks_nesting; +	WARN_ON_ONCE(oldval < 0); +	if (oldval & DYNTICK_TASK_NEST_MASK) +		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; +	else +		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; +	rcu_eqs_exit_common(rdtp, oldval, user); +} + +/** + * rcu_idle_exit - inform RCU that current CPU is leaving idle + * + * Exit idle mode, in other words, -enter- the mode in which RCU + * read-side critical sections can occur. + * + * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to + * allow for the possibility of usermode upcalls messing up our count + * of interrupt nesting level during the busy period that is just + * now starting. + */ +void rcu_idle_exit(void) +{ +	unsigned long flags; + +	local_irq_save(flags); +	rcu_eqs_exit(false); +	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0); +	local_irq_restore(flags); +} +EXPORT_SYMBOL_GPL(rcu_idle_exit); + +#ifdef CONFIG_RCU_USER_QS +/** + * rcu_user_exit - inform RCU that we are exiting userspace. + * + * Exit RCU idle mode while entering the kernel because it can + * run a RCU read side critical section anytime. + */ +void rcu_user_exit(void) +{ +	rcu_eqs_exit(1); +} +#endif /* CONFIG_RCU_USER_QS */ + +/** + * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle + * + * Enter an interrupt handler, which might possibly result in exiting + * idle mode, in other words, entering the mode in which read-side critical + * sections can occur. + * + * Note that the Linux kernel is fully capable of entering an interrupt + * handler that it never exits, for example when doing upcalls to + * user mode!  This code assumes that the idle loop never does upcalls to + * user mode.  If your architecture does do upcalls from the idle loop (or + * does anything else that results in unbalanced calls to the irq_enter() + * and irq_exit() functions), RCU will give you what you deserve, good + * and hard.  But very infrequently and irreproducibly. + * + * Use things like work queues to work around this limitation. + * + * You have been warned. + */ +void rcu_irq_enter(void) +{ +	unsigned long flags; +	struct rcu_dynticks *rdtp; +	long long oldval; + +	local_irq_save(flags); +	rdtp = this_cpu_ptr(&rcu_dynticks); +	oldval = rdtp->dynticks_nesting; +	rdtp->dynticks_nesting++; +	WARN_ON_ONCE(rdtp->dynticks_nesting == 0); +	if (oldval) +		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); +	else +		rcu_eqs_exit_common(rdtp, oldval, true); +	rcu_sysidle_exit(rdtp, 1); +	local_irq_restore(flags); +} + +/** + * rcu_nmi_enter - inform RCU of entry to NMI context + * + * If the CPU was idle with dynamic ticks active, and there is no + * irq handler running, this updates rdtp->dynticks_nmi to let the + * RCU grace-period handling know that the CPU is active. + */ +void rcu_nmi_enter(void) +{ +	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); + +	if (rdtp->dynticks_nmi_nesting == 0 && +	    (atomic_read(&rdtp->dynticks) & 0x1)) +		return; +	rdtp->dynticks_nmi_nesting++; +	smp_mb__before_atomic_inc();  /* Force delay from prior write. */ +	atomic_inc(&rdtp->dynticks); +	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ +	smp_mb__after_atomic_inc();  /* See above. */ +	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); +} + +/** + * rcu_nmi_exit - inform RCU of exit from NMI context + * + * If the CPU was idle with dynamic ticks active, and there is no + * irq handler running, this updates rdtp->dynticks_nmi to let the + * RCU grace-period handling know that the CPU is no longer active. + */ +void rcu_nmi_exit(void) +{ +	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); + +	if (rdtp->dynticks_nmi_nesting == 0 || +	    --rdtp->dynticks_nmi_nesting != 0) +		return; +	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ +	smp_mb__before_atomic_inc();  /* See above. */ +	atomic_inc(&rdtp->dynticks); +	smp_mb__after_atomic_inc();  /* Force delay to next write. */ +	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); +} + +/** + * __rcu_is_watching - are RCU read-side critical sections safe? + * + * Return true if RCU is watching the running CPU, which means that + * this CPU can safely enter RCU read-side critical sections.  Unlike + * rcu_is_watching(), the caller of __rcu_is_watching() must have at + * least disabled preemption. + */ +bool __rcu_is_watching(void) +{ +	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; +} + +/** + * rcu_is_watching - see if RCU thinks that the current CPU is idle + * + * If the current CPU is in its idle loop and is neither in an interrupt + * or NMI handler, return true. + */ +bool rcu_is_watching(void) +{ +	int ret; + +	preempt_disable(); +	ret = __rcu_is_watching(); +	preempt_enable(); +	return ret; +} +EXPORT_SYMBOL_GPL(rcu_is_watching); + +#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) + +/* + * Is the current CPU online?  Disable preemption to avoid false positives + * that could otherwise happen due to the current CPU number being sampled, + * this task being preempted, its old CPU being taken offline, resuming + * on some other CPU, then determining that its old CPU is now offline. + * It is OK to use RCU on an offline processor during initial boot, hence + * the check for rcu_scheduler_fully_active.  Note also that it is OK + * for a CPU coming online to use RCU for one jiffy prior to marking itself + * online in the cpu_online_mask.  Similarly, it is OK for a CPU going + * offline to continue to use RCU for one jiffy after marking itself + * offline in the cpu_online_mask.  This leniency is necessary given the + * non-atomic nature of the online and offline processing, for example, + * the fact that a CPU enters the scheduler after completing the CPU_DYING + * notifiers. + * + * This is also why RCU internally marks CPUs online during the + * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. + * + * Disable checking if in an NMI handler because we cannot safely report + * errors from NMI handlers anyway. + */ +bool rcu_lockdep_current_cpu_online(void) +{ +	struct rcu_data *rdp; +	struct rcu_node *rnp; +	bool ret; + +	if (in_nmi()) +		return 1; +	preempt_disable(); +	rdp = this_cpu_ptr(&rcu_sched_data); +	rnp = rdp->mynode; +	ret = (rdp->grpmask & rnp->qsmaskinit) || +	      !rcu_scheduler_fully_active; +	preempt_enable(); +	return ret; +} +EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); + +#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ + +/** + * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle + * + * If the current CPU is idle or running at a first-level (not nested) + * interrupt from idle, return true.  The caller must have at least + * disabled preemption. + */ +static int rcu_is_cpu_rrupt_from_idle(void) +{ +	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; +} + +/* + * Snapshot the specified CPU's dynticks counter so that we can later + * credit them with an implicit quiescent state.  Return 1 if this CPU + * is in dynticks idle mode, which is an extended quiescent state. + */ +static int dyntick_save_progress_counter(struct rcu_data *rdp, +					 bool *isidle, unsigned long *maxj) +{ +	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); +	rcu_sysidle_check_cpu(rdp, isidle, maxj); +	return (rdp->dynticks_snap & 0x1) == 0; +} + +/* + * Return true if the specified CPU has passed through a quiescent + * state by virtue of being in or having passed through an dynticks + * idle state since the last call to dyntick_save_progress_counter() + * for this same CPU, or by virtue of having been offline. + */ +static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, +				    bool *isidle, unsigned long *maxj) +{ +	unsigned int curr; +	unsigned int snap; + +	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); +	snap = (unsigned int)rdp->dynticks_snap; + +	/* +	 * If the CPU passed through or entered a dynticks idle phase with +	 * no active irq/NMI handlers, then we can safely pretend that the CPU +	 * already acknowledged the request to pass through a quiescent +	 * state.  Either way, that CPU cannot possibly be in an RCU +	 * read-side critical section that started before the beginning +	 * of the current RCU grace period. +	 */ +	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { +		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); +		rdp->dynticks_fqs++; +		return 1; +	} + +	/* +	 * Check for the CPU being offline, but only if the grace period +	 * is old enough.  We don't need to worry about the CPU changing +	 * state: If we see it offline even once, it has been through a +	 * quiescent state. +	 * +	 * The reason for insisting that the grace period be at least +	 * one jiffy old is that CPUs that are not quite online and that +	 * have just gone offline can still execute RCU read-side critical +	 * sections. +	 */ +	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) +		return 0;  /* Grace period is not old enough. */ +	barrier(); +	if (cpu_is_offline(rdp->cpu)) { +		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); +		rdp->offline_fqs++; +		return 1; +	} + +	/* +	 * There is a possibility that a CPU in adaptive-ticks state +	 * might run in the kernel with the scheduling-clock tick disabled +	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to +	 * force the CPU to restart the scheduling-clock tick in this +	 * CPU is in this state. +	 */ +	rcu_kick_nohz_cpu(rdp->cpu); + +	return 0; +} + +static void record_gp_stall_check_time(struct rcu_state *rsp) +{ +	unsigned long j = ACCESS_ONCE(jiffies); + +	rsp->gp_start = j; +	smp_wmb(); /* Record start time before stall time. */ +	rsp->jiffies_stall = j + rcu_jiffies_till_stall_check(); +} + +/* + * Dump stacks of all tasks running on stalled CPUs.  This is a fallback + * for architectures that do not implement trigger_all_cpu_backtrace(). + * The NMI-triggered stack traces are more accurate because they are + * printed by the target CPU. + */ +static void rcu_dump_cpu_stacks(struct rcu_state *rsp) +{ +	int cpu; +	unsigned long flags; +	struct rcu_node *rnp; + +	rcu_for_each_leaf_node(rsp, rnp) { +		raw_spin_lock_irqsave(&rnp->lock, flags); +		if (rnp->qsmask != 0) { +			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) +				if (rnp->qsmask & (1UL << cpu)) +					dump_cpu_task(rnp->grplo + cpu); +		} +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +	} +} + +static void print_other_cpu_stall(struct rcu_state *rsp) +{ +	int cpu; +	long delta; +	unsigned long flags; +	int ndetected = 0; +	struct rcu_node *rnp = rcu_get_root(rsp); +	long totqlen = 0; + +	/* Only let one CPU complain about others per time interval. */ + +	raw_spin_lock_irqsave(&rnp->lock, flags); +	delta = jiffies - rsp->jiffies_stall; +	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +		return; +	} +	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; +	raw_spin_unlock_irqrestore(&rnp->lock, flags); + +	/* +	 * OK, time to rat on our buddy... +	 * See Documentation/RCU/stallwarn.txt for info on how to debug +	 * RCU CPU stall warnings. +	 */ +	pr_err("INFO: %s detected stalls on CPUs/tasks:", +	       rsp->name); +	print_cpu_stall_info_begin(); +	rcu_for_each_leaf_node(rsp, rnp) { +		raw_spin_lock_irqsave(&rnp->lock, flags); +		ndetected += rcu_print_task_stall(rnp); +		if (rnp->qsmask != 0) { +			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) +				if (rnp->qsmask & (1UL << cpu)) { +					print_cpu_stall_info(rsp, +							     rnp->grplo + cpu); +					ndetected++; +				} +		} +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +	} + +	/* +	 * Now rat on any tasks that got kicked up to the root rcu_node +	 * due to CPU offlining. +	 */ +	rnp = rcu_get_root(rsp); +	raw_spin_lock_irqsave(&rnp->lock, flags); +	ndetected += rcu_print_task_stall(rnp); +	raw_spin_unlock_irqrestore(&rnp->lock, flags); + +	print_cpu_stall_info_end(); +	for_each_possible_cpu(cpu) +		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; +	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n", +	       smp_processor_id(), (long)(jiffies - rsp->gp_start), +	       rsp->gpnum, rsp->completed, totqlen); +	if (ndetected == 0) +		pr_err("INFO: Stall ended before state dump start\n"); +	else if (!trigger_all_cpu_backtrace()) +		rcu_dump_cpu_stacks(rsp); + +	/* Complain about tasks blocking the grace period. */ + +	rcu_print_detail_task_stall(rsp); + +	force_quiescent_state(rsp);  /* Kick them all. */ +} + +/* + * This function really isn't for public consumption, but RCU is special in + * that context switches can allow the state machine to make progress. + */ +extern void resched_cpu(int cpu); + +static void print_cpu_stall(struct rcu_state *rsp) +{ +	int cpu; +	unsigned long flags; +	struct rcu_node *rnp = rcu_get_root(rsp); +	long totqlen = 0; + +	/* +	 * OK, time to rat on ourselves... +	 * See Documentation/RCU/stallwarn.txt for info on how to debug +	 * RCU CPU stall warnings. +	 */ +	pr_err("INFO: %s self-detected stall on CPU", rsp->name); +	print_cpu_stall_info_begin(); +	print_cpu_stall_info(rsp, smp_processor_id()); +	print_cpu_stall_info_end(); +	for_each_possible_cpu(cpu) +		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; +	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n", +		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen); +	if (!trigger_all_cpu_backtrace()) +		dump_stack(); + +	raw_spin_lock_irqsave(&rnp->lock, flags); +	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall)) +		rsp->jiffies_stall = jiffies + +				     3 * rcu_jiffies_till_stall_check() + 3; +	raw_spin_unlock_irqrestore(&rnp->lock, flags); + +	/* +	 * Attempt to revive the RCU machinery by forcing a context switch. +	 * +	 * A context switch would normally allow the RCU state machine to make +	 * progress and it could be we're stuck in kernel space without context +	 * switches for an entirely unreasonable amount of time. +	 */ +	resched_cpu(smp_processor_id()); +} + +static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) +{ +	unsigned long completed; +	unsigned long gpnum; +	unsigned long gps; +	unsigned long j; +	unsigned long js; +	struct rcu_node *rnp; + +	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) +		return; +	j = ACCESS_ONCE(jiffies); + +	/* +	 * Lots of memory barriers to reject false positives. +	 * +	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, +	 * then rsp->gp_start, and finally rsp->completed.  These values +	 * are updated in the opposite order with memory barriers (or +	 * equivalent) during grace-period initialization and cleanup. +	 * Now, a false positive can occur if we get an new value of +	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given +	 * the memory barriers, the only way that this can happen is if one +	 * grace period ends and another starts between these two fetches. +	 * Detect this by comparing rsp->completed with the previous fetch +	 * from rsp->gpnum. +	 * +	 * Given this check, comparisons of jiffies, rsp->jiffies_stall, +	 * and rsp->gp_start suffice to forestall false positives. +	 */ +	gpnum = ACCESS_ONCE(rsp->gpnum); +	smp_rmb(); /* Pick up ->gpnum first... */ +	js = ACCESS_ONCE(rsp->jiffies_stall); +	smp_rmb(); /* ...then ->jiffies_stall before the rest... */ +	gps = ACCESS_ONCE(rsp->gp_start); +	smp_rmb(); /* ...and finally ->gp_start before ->completed. */ +	completed = ACCESS_ONCE(rsp->completed); +	if (ULONG_CMP_GE(completed, gpnum) || +	    ULONG_CMP_LT(j, js) || +	    ULONG_CMP_GE(gps, js)) +		return; /* No stall or GP completed since entering function. */ +	rnp = rdp->mynode; +	if (rcu_gp_in_progress(rsp) && +	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { + +		/* We haven't checked in, so go dump stack. */ +		print_cpu_stall(rsp); + +	} else if (rcu_gp_in_progress(rsp) && +		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { + +		/* They had a few time units to dump stack, so complain. */ +		print_other_cpu_stall(rsp); +	} +} + +/** + * rcu_cpu_stall_reset - prevent further stall warnings in current grace period + * + * Set the stall-warning timeout way off into the future, thus preventing + * any RCU CPU stall-warning messages from appearing in the current set of + * RCU grace periods. + * + * The caller must disable hard irqs. + */ +void rcu_cpu_stall_reset(void) +{ +	struct rcu_state *rsp; + +	for_each_rcu_flavor(rsp) +		rsp->jiffies_stall = jiffies + ULONG_MAX / 2; +} + +/* + * Initialize the specified rcu_data structure's callback list to empty. + */ +static void init_callback_list(struct rcu_data *rdp) +{ +	int i; + +	if (init_nocb_callback_list(rdp)) +		return; +	rdp->nxtlist = NULL; +	for (i = 0; i < RCU_NEXT_SIZE; i++) +		rdp->nxttail[i] = &rdp->nxtlist; +} + +/* + * Determine the value that ->completed will have at the end of the + * next subsequent grace period.  This is used to tag callbacks so that + * a CPU can invoke callbacks in a timely fashion even if that CPU has + * been dyntick-idle for an extended period with callbacks under the + * influence of RCU_FAST_NO_HZ. + * + * The caller must hold rnp->lock with interrupts disabled. + */ +static unsigned long rcu_cbs_completed(struct rcu_state *rsp, +				       struct rcu_node *rnp) +{ +	/* +	 * If RCU is idle, we just wait for the next grace period. +	 * But we can only be sure that RCU is idle if we are looking +	 * at the root rcu_node structure -- otherwise, a new grace +	 * period might have started, but just not yet gotten around +	 * to initializing the current non-root rcu_node structure. +	 */ +	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) +		return rnp->completed + 1; + +	/* +	 * Otherwise, wait for a possible partial grace period and +	 * then the subsequent full grace period. +	 */ +	return rnp->completed + 2; +} + +/* + * Trace-event helper function for rcu_start_future_gp() and + * rcu_nocb_wait_gp(). + */ +static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, +				unsigned long c, const char *s) +{ +	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, +				      rnp->completed, c, rnp->level, +				      rnp->grplo, rnp->grphi, s); +} + +/* + * Start some future grace period, as needed to handle newly arrived + * callbacks.  The required future grace periods are recorded in each + * rcu_node structure's ->need_future_gp field. + * + * The caller must hold the specified rcu_node structure's ->lock. + */ +static unsigned long __maybe_unused +rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp) +{ +	unsigned long c; +	int i; +	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); + +	/* +	 * Pick up grace-period number for new callbacks.  If this +	 * grace period is already marked as needed, return to the caller. +	 */ +	c = rcu_cbs_completed(rdp->rsp, rnp); +	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); +	if (rnp->need_future_gp[c & 0x1]) { +		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); +		return c; +	} + +	/* +	 * If either this rcu_node structure or the root rcu_node structure +	 * believe that a grace period is in progress, then we must wait +	 * for the one following, which is in "c".  Because our request +	 * will be noticed at the end of the current grace period, we don't +	 * need to explicitly start one. +	 */ +	if (rnp->gpnum != rnp->completed || +	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) { +		rnp->need_future_gp[c & 0x1]++; +		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); +		return c; +	} + +	/* +	 * There might be no grace period in progress.  If we don't already +	 * hold it, acquire the root rcu_node structure's lock in order to +	 * start one (if needed). +	 */ +	if (rnp != rnp_root) +		raw_spin_lock(&rnp_root->lock); + +	/* +	 * Get a new grace-period number.  If there really is no grace +	 * period in progress, it will be smaller than the one we obtained +	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs +	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. +	 */ +	c = rcu_cbs_completed(rdp->rsp, rnp_root); +	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) +		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) +			rdp->nxtcompleted[i] = c; + +	/* +	 * If the needed for the required grace period is already +	 * recorded, trace and leave. +	 */ +	if (rnp_root->need_future_gp[c & 0x1]) { +		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); +		goto unlock_out; +	} + +	/* Record the need for the future grace period. */ +	rnp_root->need_future_gp[c & 0x1]++; + +	/* If a grace period is not already in progress, start one. */ +	if (rnp_root->gpnum != rnp_root->completed) { +		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); +	} else { +		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); +		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); +	} +unlock_out: +	if (rnp != rnp_root) +		raw_spin_unlock(&rnp_root->lock); +	return c; +} + +/* + * Clean up any old requests for the just-ended grace period.  Also return + * whether any additional grace periods have been requested.  Also invoke + * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads + * waiting for this grace period to complete. + */ +static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) +{ +	int c = rnp->completed; +	int needmore; +	struct rcu_data *rdp = this_cpu_ptr(rsp->rda); + +	rcu_nocb_gp_cleanup(rsp, rnp); +	rnp->need_future_gp[c & 0x1] = 0; +	needmore = rnp->need_future_gp[(c + 1) & 0x1]; +	trace_rcu_future_gp(rnp, rdp, c, +			    needmore ? TPS("CleanupMore") : TPS("Cleanup")); +	return needmore; +} + +/* + * If there is room, assign a ->completed number to any callbacks on + * this CPU that have not already been assigned.  Also accelerate any + * callbacks that were previously assigned a ->completed number that has + * since proven to be too conservative, which can happen if callbacks get + * assigned a ->completed number while RCU is idle, but with reference to + * a non-root rcu_node structure.  This function is idempotent, so it does + * not hurt to call it repeatedly. + * + * The caller must hold rnp->lock with interrupts disabled. + */ +static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, +			       struct rcu_data *rdp) +{ +	unsigned long c; +	int i; + +	/* If the CPU has no callbacks, nothing to do. */ +	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) +		return; + +	/* +	 * Starting from the sublist containing the callbacks most +	 * recently assigned a ->completed number and working down, find the +	 * first sublist that is not assignable to an upcoming grace period. +	 * Such a sublist has something in it (first two tests) and has +	 * a ->completed number assigned that will complete sooner than +	 * the ->completed number for newly arrived callbacks (last test). +	 * +	 * The key point is that any later sublist can be assigned the +	 * same ->completed number as the newly arrived callbacks, which +	 * means that the callbacks in any of these later sublist can be +	 * grouped into a single sublist, whether or not they have already +	 * been assigned a ->completed number. +	 */ +	c = rcu_cbs_completed(rsp, rnp); +	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) +		if (rdp->nxttail[i] != rdp->nxttail[i - 1] && +		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) +			break; + +	/* +	 * If there are no sublist for unassigned callbacks, leave. +	 * At the same time, advance "i" one sublist, so that "i" will +	 * index into the sublist where all the remaining callbacks should +	 * be grouped into. +	 */ +	if (++i >= RCU_NEXT_TAIL) +		return; + +	/* +	 * Assign all subsequent callbacks' ->completed number to the next +	 * full grace period and group them all in the sublist initially +	 * indexed by "i". +	 */ +	for (; i <= RCU_NEXT_TAIL; i++) { +		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; +		rdp->nxtcompleted[i] = c; +	} +	/* Record any needed additional grace periods. */ +	rcu_start_future_gp(rnp, rdp); + +	/* Trace depending on how much we were able to accelerate. */ +	if (!*rdp->nxttail[RCU_WAIT_TAIL]) +		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); +	else +		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); +} + +/* + * Move any callbacks whose grace period has completed to the + * RCU_DONE_TAIL sublist, then compact the remaining sublists and + * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL + * sublist.  This function is idempotent, so it does not hurt to + * invoke it repeatedly.  As long as it is not invoked -too- often... + * + * The caller must hold rnp->lock with interrupts disabled. + */ +static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, +			    struct rcu_data *rdp) +{ +	int i, j; + +	/* If the CPU has no callbacks, nothing to do. */ +	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) +		return; + +	/* +	 * Find all callbacks whose ->completed numbers indicate that they +	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. +	 */ +	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { +		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) +			break; +		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; +	} +	/* Clean up any sublist tail pointers that were misordered above. */ +	for (j = RCU_WAIT_TAIL; j < i; j++) +		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; + +	/* Copy down callbacks to fill in empty sublists. */ +	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { +		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) +			break; +		rdp->nxttail[j] = rdp->nxttail[i]; +		rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; +	} + +	/* Classify any remaining callbacks. */ +	rcu_accelerate_cbs(rsp, rnp, rdp); +} + +/* + * Update CPU-local rcu_data state to record the beginnings and ends of + * grace periods.  The caller must hold the ->lock of the leaf rcu_node + * structure corresponding to the current CPU, and must have irqs disabled. + */ +static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) +{ +	/* Handle the ends of any preceding grace periods first. */ +	if (rdp->completed == rnp->completed) { + +		/* No grace period end, so just accelerate recent callbacks. */ +		rcu_accelerate_cbs(rsp, rnp, rdp); + +	} else { + +		/* Advance callbacks. */ +		rcu_advance_cbs(rsp, rnp, rdp); + +		/* Remember that we saw this grace-period completion. */ +		rdp->completed = rnp->completed; +		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); +	} + +	if (rdp->gpnum != rnp->gpnum) { +		/* +		 * If the current grace period is waiting for this CPU, +		 * set up to detect a quiescent state, otherwise don't +		 * go looking for one. +		 */ +		rdp->gpnum = rnp->gpnum; +		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); +		rdp->passed_quiesce = 0; +		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); +		zero_cpu_stall_ticks(rdp); +	} +} + +static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) +{ +	unsigned long flags; +	struct rcu_node *rnp; + +	local_irq_save(flags); +	rnp = rdp->mynode; +	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && +	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */ +	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ +		local_irq_restore(flags); +		return; +	} +	__note_gp_changes(rsp, rnp, rdp); +	raw_spin_unlock_irqrestore(&rnp->lock, flags); +} + +/* + * Initialize a new grace period.  Return 0 if no grace period required. + */ +static int rcu_gp_init(struct rcu_state *rsp) +{ +	struct rcu_data *rdp; +	struct rcu_node *rnp = rcu_get_root(rsp); + +	rcu_bind_gp_kthread(); +	raw_spin_lock_irq(&rnp->lock); +	if (rsp->gp_flags == 0) { +		/* Spurious wakeup, tell caller to go back to sleep.  */ +		raw_spin_unlock_irq(&rnp->lock); +		return 0; +	} +	rsp->gp_flags = 0; /* Clear all flags: New grace period. */ + +	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { +		/* +		 * Grace period already in progress, don't start another. +		 * Not supposed to be able to happen. +		 */ +		raw_spin_unlock_irq(&rnp->lock); +		return 0; +	} + +	/* Advance to a new grace period and initialize state. */ +	record_gp_stall_check_time(rsp); +	smp_wmb(); /* Record GP times before starting GP. */ +	rsp->gpnum++; +	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); +	raw_spin_unlock_irq(&rnp->lock); + +	/* Exclude any concurrent CPU-hotplug operations. */ +	mutex_lock(&rsp->onoff_mutex); + +	/* +	 * Set the quiescent-state-needed bits in all the rcu_node +	 * structures for all currently online CPUs in breadth-first order, +	 * starting from the root rcu_node structure, relying on the layout +	 * of the tree within the rsp->node[] array.  Note that other CPUs +	 * will access only the leaves of the hierarchy, thus seeing that no +	 * grace period is in progress, at least until the corresponding +	 * leaf node has been initialized.  In addition, we have excluded +	 * CPU-hotplug operations. +	 * +	 * The grace period cannot complete until the initialization +	 * process finishes, because this kthread handles both. +	 */ +	rcu_for_each_node_breadth_first(rsp, rnp) { +		raw_spin_lock_irq(&rnp->lock); +		rdp = this_cpu_ptr(rsp->rda); +		rcu_preempt_check_blocked_tasks(rnp); +		rnp->qsmask = rnp->qsmaskinit; +		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; +		WARN_ON_ONCE(rnp->completed != rsp->completed); +		ACCESS_ONCE(rnp->completed) = rsp->completed; +		if (rnp == rdp->mynode) +			__note_gp_changes(rsp, rnp, rdp); +		rcu_preempt_boost_start_gp(rnp); +		trace_rcu_grace_period_init(rsp->name, rnp->gpnum, +					    rnp->level, rnp->grplo, +					    rnp->grphi, rnp->qsmask); +		raw_spin_unlock_irq(&rnp->lock); +#ifdef CONFIG_PROVE_RCU_DELAY +		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 && +		    system_state == SYSTEM_RUNNING) +			udelay(200); +#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */ +		cond_resched(); +	} + +	mutex_unlock(&rsp->onoff_mutex); +	return 1; +} + +/* + * Do one round of quiescent-state forcing. + */ +static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) +{ +	int fqs_state = fqs_state_in; +	bool isidle = false; +	unsigned long maxj; +	struct rcu_node *rnp = rcu_get_root(rsp); + +	rsp->n_force_qs++; +	if (fqs_state == RCU_SAVE_DYNTICK) { +		/* Collect dyntick-idle snapshots. */ +		if (is_sysidle_rcu_state(rsp)) { +			isidle = 1; +			maxj = jiffies - ULONG_MAX / 4; +		} +		force_qs_rnp(rsp, dyntick_save_progress_counter, +			     &isidle, &maxj); +		rcu_sysidle_report_gp(rsp, isidle, maxj); +		fqs_state = RCU_FORCE_QS; +	} else { +		/* Handle dyntick-idle and offline CPUs. */ +		isidle = 0; +		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); +	} +	/* Clear flag to prevent immediate re-entry. */ +	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { +		raw_spin_lock_irq(&rnp->lock); +		rsp->gp_flags &= ~RCU_GP_FLAG_FQS; +		raw_spin_unlock_irq(&rnp->lock); +	} +	return fqs_state; +} + +/* + * Clean up after the old grace period. + */ +static void rcu_gp_cleanup(struct rcu_state *rsp) +{ +	unsigned long gp_duration; +	int nocb = 0; +	struct rcu_data *rdp; +	struct rcu_node *rnp = rcu_get_root(rsp); + +	raw_spin_lock_irq(&rnp->lock); +	gp_duration = jiffies - rsp->gp_start; +	if (gp_duration > rsp->gp_max) +		rsp->gp_max = gp_duration; + +	/* +	 * We know the grace period is complete, but to everyone else +	 * it appears to still be ongoing.  But it is also the case +	 * that to everyone else it looks like there is nothing that +	 * they can do to advance the grace period.  It is therefore +	 * safe for us to drop the lock in order to mark the grace +	 * period as completed in all of the rcu_node structures. +	 */ +	raw_spin_unlock_irq(&rnp->lock); + +	/* +	 * Propagate new ->completed value to rcu_node structures so +	 * that other CPUs don't have to wait until the start of the next +	 * grace period to process their callbacks.  This also avoids +	 * some nasty RCU grace-period initialization races by forcing +	 * the end of the current grace period to be completely recorded in +	 * all of the rcu_node structures before the beginning of the next +	 * grace period is recorded in any of the rcu_node structures. +	 */ +	rcu_for_each_node_breadth_first(rsp, rnp) { +		raw_spin_lock_irq(&rnp->lock); +		ACCESS_ONCE(rnp->completed) = rsp->gpnum; +		rdp = this_cpu_ptr(rsp->rda); +		if (rnp == rdp->mynode) +			__note_gp_changes(rsp, rnp, rdp); +		nocb += rcu_future_gp_cleanup(rsp, rnp); +		raw_spin_unlock_irq(&rnp->lock); +		cond_resched(); +	} +	rnp = rcu_get_root(rsp); +	raw_spin_lock_irq(&rnp->lock); +	rcu_nocb_gp_set(rnp, nocb); + +	rsp->completed = rsp->gpnum; /* Declare grace period done. */ +	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); +	rsp->fqs_state = RCU_GP_IDLE; +	rdp = this_cpu_ptr(rsp->rda); +	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */ +	if (cpu_needs_another_gp(rsp, rdp)) { +		rsp->gp_flags = RCU_GP_FLAG_INIT; +		trace_rcu_grace_period(rsp->name, +				       ACCESS_ONCE(rsp->gpnum), +				       TPS("newreq")); +	} +	raw_spin_unlock_irq(&rnp->lock); +} + +/* + * Body of kthread that handles grace periods. + */ +static int __noreturn rcu_gp_kthread(void *arg) +{ +	int fqs_state; +	int gf; +	unsigned long j; +	int ret; +	struct rcu_state *rsp = arg; +	struct rcu_node *rnp = rcu_get_root(rsp); + +	for (;;) { + +		/* Handle grace-period start. */ +		for (;;) { +			trace_rcu_grace_period(rsp->name, +					       ACCESS_ONCE(rsp->gpnum), +					       TPS("reqwait")); +			wait_event_interruptible(rsp->gp_wq, +						 ACCESS_ONCE(rsp->gp_flags) & +						 RCU_GP_FLAG_INIT); +			if (rcu_gp_init(rsp)) +				break; +			cond_resched(); +			flush_signals(current); +			trace_rcu_grace_period(rsp->name, +					       ACCESS_ONCE(rsp->gpnum), +					       TPS("reqwaitsig")); +		} + +		/* Handle quiescent-state forcing. */ +		fqs_state = RCU_SAVE_DYNTICK; +		j = jiffies_till_first_fqs; +		if (j > HZ) { +			j = HZ; +			jiffies_till_first_fqs = HZ; +		} +		ret = 0; +		for (;;) { +			if (!ret) +				rsp->jiffies_force_qs = jiffies + j; +			trace_rcu_grace_period(rsp->name, +					       ACCESS_ONCE(rsp->gpnum), +					       TPS("fqswait")); +			ret = wait_event_interruptible_timeout(rsp->gp_wq, +					((gf = ACCESS_ONCE(rsp->gp_flags)) & +					 RCU_GP_FLAG_FQS) || +					(!ACCESS_ONCE(rnp->qsmask) && +					 !rcu_preempt_blocked_readers_cgp(rnp)), +					j); +			/* If grace period done, leave loop. */ +			if (!ACCESS_ONCE(rnp->qsmask) && +			    !rcu_preempt_blocked_readers_cgp(rnp)) +				break; +			/* If time for quiescent-state forcing, do it. */ +			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || +			    (gf & RCU_GP_FLAG_FQS)) { +				trace_rcu_grace_period(rsp->name, +						       ACCESS_ONCE(rsp->gpnum), +						       TPS("fqsstart")); +				fqs_state = rcu_gp_fqs(rsp, fqs_state); +				trace_rcu_grace_period(rsp->name, +						       ACCESS_ONCE(rsp->gpnum), +						       TPS("fqsend")); +				cond_resched(); +			} else { +				/* Deal with stray signal. */ +				cond_resched(); +				flush_signals(current); +				trace_rcu_grace_period(rsp->name, +						       ACCESS_ONCE(rsp->gpnum), +						       TPS("fqswaitsig")); +			} +			j = jiffies_till_next_fqs; +			if (j > HZ) { +				j = HZ; +				jiffies_till_next_fqs = HZ; +			} else if (j < 1) { +				j = 1; +				jiffies_till_next_fqs = 1; +			} +		} + +		/* Handle grace-period end. */ +		rcu_gp_cleanup(rsp); +	} +} + +static void rsp_wakeup(struct irq_work *work) +{ +	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work); + +	/* Wake up rcu_gp_kthread() to start the grace period. */ +	wake_up(&rsp->gp_wq); +} + +/* + * Start a new RCU grace period if warranted, re-initializing the hierarchy + * in preparation for detecting the next grace period.  The caller must hold + * the root node's ->lock and hard irqs must be disabled. + * + * Note that it is legal for a dying CPU (which is marked as offline) to + * invoke this function.  This can happen when the dying CPU reports its + * quiescent state. + */ +static void +rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, +		      struct rcu_data *rdp) +{ +	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { +		/* +		 * Either we have not yet spawned the grace-period +		 * task, this CPU does not need another grace period, +		 * or a grace period is already in progress. +		 * Either way, don't start a new grace period. +		 */ +		return; +	} +	rsp->gp_flags = RCU_GP_FLAG_INIT; +	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), +			       TPS("newreq")); + +	/* +	 * We can't do wakeups while holding the rnp->lock, as that +	 * could cause possible deadlocks with the rq->lock. Defer +	 * the wakeup to interrupt context.  And don't bother waking +	 * up the running kthread. +	 */ +	if (current != rsp->gp_kthread) +		irq_work_queue(&rsp->wakeup_work); +} + +/* + * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's + * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it + * is invoked indirectly from rcu_advance_cbs(), which would result in + * endless recursion -- or would do so if it wasn't for the self-deadlock + * that is encountered beforehand. + */ +static void +rcu_start_gp(struct rcu_state *rsp) +{ +	struct rcu_data *rdp = this_cpu_ptr(rsp->rda); +	struct rcu_node *rnp = rcu_get_root(rsp); + +	/* +	 * If there is no grace period in progress right now, any +	 * callbacks we have up to this point will be satisfied by the +	 * next grace period.  Also, advancing the callbacks reduces the +	 * probability of false positives from cpu_needs_another_gp() +	 * resulting in pointless grace periods.  So, advance callbacks +	 * then start the grace period! +	 */ +	rcu_advance_cbs(rsp, rnp, rdp); +	rcu_start_gp_advanced(rsp, rnp, rdp); +} + +/* + * Report a full set of quiescent states to the specified rcu_state + * data structure.  This involves cleaning up after the prior grace + * period and letting rcu_start_gp() start up the next grace period + * if one is needed.  Note that the caller must hold rnp->lock, which + * is released before return. + */ +static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) +	__releases(rcu_get_root(rsp)->lock) +{ +	WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); +	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); +	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */ +} + +/* + * Similar to rcu_report_qs_rdp(), for which it is a helper function. + * Allows quiescent states for a group of CPUs to be reported at one go + * to the specified rcu_node structure, though all the CPUs in the group + * must be represented by the same rcu_node structure (which need not be + * a leaf rcu_node structure, though it often will be).  That structure's + * lock must be held upon entry, and it is released before return. + */ +static void +rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, +		  struct rcu_node *rnp, unsigned long flags) +	__releases(rnp->lock) +{ +	struct rcu_node *rnp_c; + +	/* Walk up the rcu_node hierarchy. */ +	for (;;) { +		if (!(rnp->qsmask & mask)) { + +			/* Our bit has already been cleared, so done. */ +			raw_spin_unlock_irqrestore(&rnp->lock, flags); +			return; +		} +		rnp->qsmask &= ~mask; +		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, +						 mask, rnp->qsmask, rnp->level, +						 rnp->grplo, rnp->grphi, +						 !!rnp->gp_tasks); +		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { + +			/* Other bits still set at this level, so done. */ +			raw_spin_unlock_irqrestore(&rnp->lock, flags); +			return; +		} +		mask = rnp->grpmask; +		if (rnp->parent == NULL) { + +			/* No more levels.  Exit loop holding root lock. */ + +			break; +		} +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +		rnp_c = rnp; +		rnp = rnp->parent; +		raw_spin_lock_irqsave(&rnp->lock, flags); +		WARN_ON_ONCE(rnp_c->qsmask); +	} + +	/* +	 * Get here if we are the last CPU to pass through a quiescent +	 * state for this grace period.  Invoke rcu_report_qs_rsp() +	 * to clean up and start the next grace period if one is needed. +	 */ +	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ +} + +/* + * Record a quiescent state for the specified CPU to that CPU's rcu_data + * structure.  This must be either called from the specified CPU, or + * called when the specified CPU is known to be offline (and when it is + * also known that no other CPU is concurrently trying to help the offline + * CPU).  The lastcomp argument is used to make sure we are still in the + * grace period of interest.  We don't want to end the current grace period + * based on quiescent states detected in an earlier grace period! + */ +static void +rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) +{ +	unsigned long flags; +	unsigned long mask; +	struct rcu_node *rnp; + +	rnp = rdp->mynode; +	raw_spin_lock_irqsave(&rnp->lock, flags); +	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum || +	    rnp->completed == rnp->gpnum) { + +		/* +		 * The grace period in which this quiescent state was +		 * recorded has ended, so don't report it upwards. +		 * We will instead need a new quiescent state that lies +		 * within the current grace period. +		 */ +		rdp->passed_quiesce = 0;	/* need qs for new gp. */ +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +		return; +	} +	mask = rdp->grpmask; +	if ((rnp->qsmask & mask) == 0) { +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +	} else { +		rdp->qs_pending = 0; + +		/* +		 * This GP can't end until cpu checks in, so all of our +		 * callbacks can be processed during the next GP. +		 */ +		rcu_accelerate_cbs(rsp, rnp, rdp); + +		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ +	} +} + +/* + * Check to see if there is a new grace period of which this CPU + * is not yet aware, and if so, set up local rcu_data state for it. + * Otherwise, see if this CPU has just passed through its first + * quiescent state for this grace period, and record that fact if so. + */ +static void +rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) +{ +	/* Check for grace-period ends and beginnings. */ +	note_gp_changes(rsp, rdp); + +	/* +	 * Does this CPU still need to do its part for current grace period? +	 * If no, return and let the other CPUs do their part as well. +	 */ +	if (!rdp->qs_pending) +		return; + +	/* +	 * Was there a quiescent state since the beginning of the grace +	 * period? If no, then exit and wait for the next call. +	 */ +	if (!rdp->passed_quiesce) +		return; + +	/* +	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the +	 * judge of that). +	 */ +	rcu_report_qs_rdp(rdp->cpu, rsp, rdp); +} + +#ifdef CONFIG_HOTPLUG_CPU + +/* + * Send the specified CPU's RCU callbacks to the orphanage.  The + * specified CPU must be offline, and the caller must hold the + * ->orphan_lock. + */ +static void +rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, +			  struct rcu_node *rnp, struct rcu_data *rdp) +{ +	/* No-CBs CPUs do not have orphanable callbacks. */ +	if (rcu_is_nocb_cpu(rdp->cpu)) +		return; + +	/* +	 * Orphan the callbacks.  First adjust the counts.  This is safe +	 * because _rcu_barrier() excludes CPU-hotplug operations, so it +	 * cannot be running now.  Thus no memory barrier is required. +	 */ +	if (rdp->nxtlist != NULL) { +		rsp->qlen_lazy += rdp->qlen_lazy; +		rsp->qlen += rdp->qlen; +		rdp->n_cbs_orphaned += rdp->qlen; +		rdp->qlen_lazy = 0; +		ACCESS_ONCE(rdp->qlen) = 0; +	} + +	/* +	 * Next, move those callbacks still needing a grace period to +	 * the orphanage, where some other CPU will pick them up. +	 * Some of the callbacks might have gone partway through a grace +	 * period, but that is too bad.  They get to start over because we +	 * cannot assume that grace periods are synchronized across CPUs. +	 * We don't bother updating the ->nxttail[] array yet, instead +	 * we just reset the whole thing later on. +	 */ +	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { +		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; +		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; +		*rdp->nxttail[RCU_DONE_TAIL] = NULL; +	} + +	/* +	 * Then move the ready-to-invoke callbacks to the orphanage, +	 * where some other CPU will pick them up.  These will not be +	 * required to pass though another grace period: They are done. +	 */ +	if (rdp->nxtlist != NULL) { +		*rsp->orphan_donetail = rdp->nxtlist; +		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; +	} + +	/* Finally, initialize the rcu_data structure's list to empty.  */ +	init_callback_list(rdp); +} + +/* + * Adopt the RCU callbacks from the specified rcu_state structure's + * orphanage.  The caller must hold the ->orphan_lock. + */ +static void rcu_adopt_orphan_cbs(struct rcu_state *rsp) +{ +	int i; +	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); + +	/* No-CBs CPUs are handled specially. */ +	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp)) +		return; + +	/* Do the accounting first. */ +	rdp->qlen_lazy += rsp->qlen_lazy; +	rdp->qlen += rsp->qlen; +	rdp->n_cbs_adopted += rsp->qlen; +	if (rsp->qlen_lazy != rsp->qlen) +		rcu_idle_count_callbacks_posted(); +	rsp->qlen_lazy = 0; +	rsp->qlen = 0; + +	/* +	 * We do not need a memory barrier here because the only way we +	 * can get here if there is an rcu_barrier() in flight is if +	 * we are the task doing the rcu_barrier(). +	 */ + +	/* First adopt the ready-to-invoke callbacks. */ +	if (rsp->orphan_donelist != NULL) { +		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; +		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; +		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) +			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) +				rdp->nxttail[i] = rsp->orphan_donetail; +		rsp->orphan_donelist = NULL; +		rsp->orphan_donetail = &rsp->orphan_donelist; +	} + +	/* And then adopt the callbacks that still need a grace period. */ +	if (rsp->orphan_nxtlist != NULL) { +		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; +		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; +		rsp->orphan_nxtlist = NULL; +		rsp->orphan_nxttail = &rsp->orphan_nxtlist; +	} +} + +/* + * Trace the fact that this CPU is going offline. + */ +static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) +{ +	RCU_TRACE(unsigned long mask); +	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); +	RCU_TRACE(struct rcu_node *rnp = rdp->mynode); + +	RCU_TRACE(mask = rdp->grpmask); +	trace_rcu_grace_period(rsp->name, +			       rnp->gpnum + 1 - !!(rnp->qsmask & mask), +			       TPS("cpuofl")); +} + +/* + * The CPU has been completely removed, and some other CPU is reporting + * this fact from process context.  Do the remainder of the cleanup, + * including orphaning the outgoing CPU's RCU callbacks, and also + * adopting them.  There can only be one CPU hotplug operation at a time, + * so no other CPU can be attempting to update rcu_cpu_kthread_task. + */ +static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) +{ +	unsigned long flags; +	unsigned long mask; +	int need_report = 0; +	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); +	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */ + +	/* Adjust any no-longer-needed kthreads. */ +	rcu_boost_kthread_setaffinity(rnp, -1); + +	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */ + +	/* Exclude any attempts to start a new grace period. */ +	mutex_lock(&rsp->onoff_mutex); +	raw_spin_lock_irqsave(&rsp->orphan_lock, flags); + +	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ +	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); +	rcu_adopt_orphan_cbs(rsp); + +	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */ +	mask = rdp->grpmask;	/* rnp->grplo is constant. */ +	do { +		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */ +		rnp->qsmaskinit &= ~mask; +		if (rnp->qsmaskinit != 0) { +			if (rnp != rdp->mynode) +				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ +			break; +		} +		if (rnp == rdp->mynode) +			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp); +		else +			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ +		mask = rnp->grpmask; +		rnp = rnp->parent; +	} while (rnp != NULL); + +	/* +	 * We still hold the leaf rcu_node structure lock here, and +	 * irqs are still disabled.  The reason for this subterfuge is +	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock +	 * held leads to deadlock. +	 */ +	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */ +	rnp = rdp->mynode; +	if (need_report & RCU_OFL_TASKS_NORM_GP) +		rcu_report_unblock_qs_rnp(rnp, flags); +	else +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +	if (need_report & RCU_OFL_TASKS_EXP_GP) +		rcu_report_exp_rnp(rsp, rnp, true); +	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, +		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", +		  cpu, rdp->qlen, rdp->nxtlist); +	init_callback_list(rdp); +	/* Disallow further callbacks on this CPU. */ +	rdp->nxttail[RCU_NEXT_TAIL] = NULL; +	mutex_unlock(&rsp->onoff_mutex); +} + +#else /* #ifdef CONFIG_HOTPLUG_CPU */ + +static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) +{ +} + +static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) +{ +} + +#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ + +/* + * Invoke any RCU callbacks that have made it to the end of their grace + * period.  Thottle as specified by rdp->blimit. + */ +static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) +{ +	unsigned long flags; +	struct rcu_head *next, *list, **tail; +	long bl, count, count_lazy; +	int i; + +	/* If no callbacks are ready, just return. */ +	if (!cpu_has_callbacks_ready_to_invoke(rdp)) { +		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); +		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), +				    need_resched(), is_idle_task(current), +				    rcu_is_callbacks_kthread()); +		return; +	} + +	/* +	 * Extract the list of ready callbacks, disabling to prevent +	 * races with call_rcu() from interrupt handlers. +	 */ +	local_irq_save(flags); +	WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); +	bl = rdp->blimit; +	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); +	list = rdp->nxtlist; +	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; +	*rdp->nxttail[RCU_DONE_TAIL] = NULL; +	tail = rdp->nxttail[RCU_DONE_TAIL]; +	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) +		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) +			rdp->nxttail[i] = &rdp->nxtlist; +	local_irq_restore(flags); + +	/* Invoke callbacks. */ +	count = count_lazy = 0; +	while (list) { +		next = list->next; +		prefetch(next); +		debug_rcu_head_unqueue(list); +		if (__rcu_reclaim(rsp->name, list)) +			count_lazy++; +		list = next; +		/* Stop only if limit reached and CPU has something to do. */ +		if (++count >= bl && +		    (need_resched() || +		     (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) +			break; +	} + +	local_irq_save(flags); +	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), +			    is_idle_task(current), +			    rcu_is_callbacks_kthread()); + +	/* Update count, and requeue any remaining callbacks. */ +	if (list != NULL) { +		*tail = rdp->nxtlist; +		rdp->nxtlist = list; +		for (i = 0; i < RCU_NEXT_SIZE; i++) +			if (&rdp->nxtlist == rdp->nxttail[i]) +				rdp->nxttail[i] = tail; +			else +				break; +	} +	smp_mb(); /* List handling before counting for rcu_barrier(). */ +	rdp->qlen_lazy -= count_lazy; +	ACCESS_ONCE(rdp->qlen) -= count; +	rdp->n_cbs_invoked += count; + +	/* Reinstate batch limit if we have worked down the excess. */ +	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) +		rdp->blimit = blimit; + +	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ +	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { +		rdp->qlen_last_fqs_check = 0; +		rdp->n_force_qs_snap = rsp->n_force_qs; +	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) +		rdp->qlen_last_fqs_check = rdp->qlen; +	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); + +	local_irq_restore(flags); + +	/* Re-invoke RCU core processing if there are callbacks remaining. */ +	if (cpu_has_callbacks_ready_to_invoke(rdp)) +		invoke_rcu_core(); +} + +/* + * Check to see if this CPU is in a non-context-switch quiescent state + * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). + * Also schedule RCU core processing. + * + * This function must be called from hardirq context.  It is normally + * invoked from the scheduling-clock interrupt.  If rcu_pending returns + * false, there is no point in invoking rcu_check_callbacks(). + */ +void rcu_check_callbacks(int cpu, int user) +{ +	trace_rcu_utilization(TPS("Start scheduler-tick")); +	increment_cpu_stall_ticks(); +	if (user || rcu_is_cpu_rrupt_from_idle()) { + +		/* +		 * Get here if this CPU took its interrupt from user +		 * mode or from the idle loop, and if this is not a +		 * nested interrupt.  In this case, the CPU is in +		 * a quiescent state, so note it. +		 * +		 * No memory barrier is required here because both +		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local +		 * variables that other CPUs neither access nor modify, +		 * at least not while the corresponding CPU is online. +		 */ + +		rcu_sched_qs(cpu); +		rcu_bh_qs(cpu); + +	} else if (!in_softirq()) { + +		/* +		 * Get here if this CPU did not take its interrupt from +		 * softirq, in other words, if it is not interrupting +		 * a rcu_bh read-side critical section.  This is an _bh +		 * critical section, so note it. +		 */ + +		rcu_bh_qs(cpu); +	} +	rcu_preempt_check_callbacks(cpu); +	if (rcu_pending(cpu)) +		invoke_rcu_core(); +	trace_rcu_utilization(TPS("End scheduler-tick")); +} + +/* + * Scan the leaf rcu_node structures, processing dyntick state for any that + * have not yet encountered a quiescent state, using the function specified. + * Also initiate boosting for any threads blocked on the root rcu_node. + * + * The caller must have suppressed start of new grace periods. + */ +static void force_qs_rnp(struct rcu_state *rsp, +			 int (*f)(struct rcu_data *rsp, bool *isidle, +				  unsigned long *maxj), +			 bool *isidle, unsigned long *maxj) +{ +	unsigned long bit; +	int cpu; +	unsigned long flags; +	unsigned long mask; +	struct rcu_node *rnp; + +	rcu_for_each_leaf_node(rsp, rnp) { +		cond_resched(); +		mask = 0; +		raw_spin_lock_irqsave(&rnp->lock, flags); +		if (!rcu_gp_in_progress(rsp)) { +			raw_spin_unlock_irqrestore(&rnp->lock, flags); +			return; +		} +		if (rnp->qsmask == 0) { +			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ +			continue; +		} +		cpu = rnp->grplo; +		bit = 1; +		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { +			if ((rnp->qsmask & bit) != 0) { +				if ((rnp->qsmaskinit & bit) != 0) +					*isidle = 0; +				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) +					mask |= bit; +			} +		} +		if (mask != 0) { + +			/* rcu_report_qs_rnp() releases rnp->lock. */ +			rcu_report_qs_rnp(mask, rsp, rnp, flags); +			continue; +		} +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +	} +	rnp = rcu_get_root(rsp); +	if (rnp->qsmask == 0) { +		raw_spin_lock_irqsave(&rnp->lock, flags); +		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */ +	} +} + +/* + * Force quiescent states on reluctant CPUs, and also detect which + * CPUs are in dyntick-idle mode. + */ +static void force_quiescent_state(struct rcu_state *rsp) +{ +	unsigned long flags; +	bool ret; +	struct rcu_node *rnp; +	struct rcu_node *rnp_old = NULL; + +	/* Funnel through hierarchy to reduce memory contention. */ +	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode; +	for (; rnp != NULL; rnp = rnp->parent) { +		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || +		      !raw_spin_trylock(&rnp->fqslock); +		if (rnp_old != NULL) +			raw_spin_unlock(&rnp_old->fqslock); +		if (ret) { +			rsp->n_force_qs_lh++; +			return; +		} +		rnp_old = rnp; +	} +	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */ + +	/* Reached the root of the rcu_node tree, acquire lock. */ +	raw_spin_lock_irqsave(&rnp_old->lock, flags); +	raw_spin_unlock(&rnp_old->fqslock); +	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { +		rsp->n_force_qs_lh++; +		raw_spin_unlock_irqrestore(&rnp_old->lock, flags); +		return;  /* Someone beat us to it. */ +	} +	rsp->gp_flags |= RCU_GP_FLAG_FQS; +	raw_spin_unlock_irqrestore(&rnp_old->lock, flags); +	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */ +} + +/* + * This does the RCU core processing work for the specified rcu_state + * and rcu_data structures.  This may be called only from the CPU to + * whom the rdp belongs. + */ +static void +__rcu_process_callbacks(struct rcu_state *rsp) +{ +	unsigned long flags; +	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); + +	WARN_ON_ONCE(rdp->beenonline == 0); + +	/* Update RCU state based on any recent quiescent states. */ +	rcu_check_quiescent_state(rsp, rdp); + +	/* Does this CPU require a not-yet-started grace period? */ +	local_irq_save(flags); +	if (cpu_needs_another_gp(rsp, rdp)) { +		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ +		rcu_start_gp(rsp); +		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); +	} else { +		local_irq_restore(flags); +	} + +	/* If there are callbacks ready, invoke them. */ +	if (cpu_has_callbacks_ready_to_invoke(rdp)) +		invoke_rcu_callbacks(rsp, rdp); +} + +/* + * Do RCU core processing for the current CPU. + */ +static void rcu_process_callbacks(struct softirq_action *unused) +{ +	struct rcu_state *rsp; + +	if (cpu_is_offline(smp_processor_id())) +		return; +	trace_rcu_utilization(TPS("Start RCU core")); +	for_each_rcu_flavor(rsp) +		__rcu_process_callbacks(rsp); +	trace_rcu_utilization(TPS("End RCU core")); +} + +/* + * Schedule RCU callback invocation.  If the specified type of RCU + * does not support RCU priority boosting, just do a direct call, + * otherwise wake up the per-CPU kernel kthread.  Note that because we + * are running on the current CPU with interrupts disabled, the + * rcu_cpu_kthread_task cannot disappear out from under us. + */ +static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) +{ +	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) +		return; +	if (likely(!rsp->boost)) { +		rcu_do_batch(rsp, rdp); +		return; +	} +	invoke_rcu_callbacks_kthread(); +} + +static void invoke_rcu_core(void) +{ +	if (cpu_online(smp_processor_id())) +		raise_softirq(RCU_SOFTIRQ); +} + +/* + * Handle any core-RCU processing required by a call_rcu() invocation. + */ +static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, +			    struct rcu_head *head, unsigned long flags) +{ +	/* +	 * If called from an extended quiescent state, invoke the RCU +	 * core in order to force a re-evaluation of RCU's idleness. +	 */ +	if (!rcu_is_watching() && cpu_online(smp_processor_id())) +		invoke_rcu_core(); + +	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */ +	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) +		return; + +	/* +	 * Force the grace period if too many callbacks or too long waiting. +	 * Enforce hysteresis, and don't invoke force_quiescent_state() +	 * if some other CPU has recently done so.  Also, don't bother +	 * invoking force_quiescent_state() if the newly enqueued callback +	 * is the only one waiting for a grace period to complete. +	 */ +	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { + +		/* Are we ignoring a completed grace period? */ +		note_gp_changes(rsp, rdp); + +		/* Start a new grace period if one not already started. */ +		if (!rcu_gp_in_progress(rsp)) { +			struct rcu_node *rnp_root = rcu_get_root(rsp); + +			raw_spin_lock(&rnp_root->lock); +			rcu_start_gp(rsp); +			raw_spin_unlock(&rnp_root->lock); +		} else { +			/* Give the grace period a kick. */ +			rdp->blimit = LONG_MAX; +			if (rsp->n_force_qs == rdp->n_force_qs_snap && +			    *rdp->nxttail[RCU_DONE_TAIL] != head) +				force_quiescent_state(rsp); +			rdp->n_force_qs_snap = rsp->n_force_qs; +			rdp->qlen_last_fqs_check = rdp->qlen; +		} +	} +} + +/* + * RCU callback function to leak a callback. + */ +static void rcu_leak_callback(struct rcu_head *rhp) +{ +} + +/* + * Helper function for call_rcu() and friends.  The cpu argument will + * normally be -1, indicating "currently running CPU".  It may specify + * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier() + * is expected to specify a CPU. + */ +static void +__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), +	   struct rcu_state *rsp, int cpu, bool lazy) +{ +	unsigned long flags; +	struct rcu_data *rdp; + +	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */ +	if (debug_rcu_head_queue(head)) { +		/* Probable double call_rcu(), so leak the callback. */ +		ACCESS_ONCE(head->func) = rcu_leak_callback; +		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); +		return; +	} +	head->func = func; +	head->next = NULL; + +	/* +	 * Opportunistically note grace-period endings and beginnings. +	 * Note that we might see a beginning right after we see an +	 * end, but never vice versa, since this CPU has to pass through +	 * a quiescent state betweentimes. +	 */ +	local_irq_save(flags); +	rdp = this_cpu_ptr(rsp->rda); + +	/* Add the callback to our list. */ +	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { +		int offline; + +		if (cpu != -1) +			rdp = per_cpu_ptr(rsp->rda, cpu); +		offline = !__call_rcu_nocb(rdp, head, lazy); +		WARN_ON_ONCE(offline); +		/* _call_rcu() is illegal on offline CPU; leak the callback. */ +		local_irq_restore(flags); +		return; +	} +	ACCESS_ONCE(rdp->qlen)++; +	if (lazy) +		rdp->qlen_lazy++; +	else +		rcu_idle_count_callbacks_posted(); +	smp_mb();  /* Count before adding callback for rcu_barrier(). */ +	*rdp->nxttail[RCU_NEXT_TAIL] = head; +	rdp->nxttail[RCU_NEXT_TAIL] = &head->next; + +	if (__is_kfree_rcu_offset((unsigned long)func)) +		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, +					 rdp->qlen_lazy, rdp->qlen); +	else +		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); + +	/* Go handle any RCU core processing required. */ +	__call_rcu_core(rsp, rdp, head, flags); +	local_irq_restore(flags); +} + +/* + * Queue an RCU-sched callback for invocation after a grace period. + */ +void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) +{ +	__call_rcu(head, func, &rcu_sched_state, -1, 0); +} +EXPORT_SYMBOL_GPL(call_rcu_sched); + +/* + * Queue an RCU callback for invocation after a quicker grace period. + */ +void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) +{ +	__call_rcu(head, func, &rcu_bh_state, -1, 0); +} +EXPORT_SYMBOL_GPL(call_rcu_bh); + +/* + * Because a context switch is a grace period for RCU-sched and RCU-bh, + * any blocking grace-period wait automatically implies a grace period + * if there is only one CPU online at any point time during execution + * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to + * occasionally incorrectly indicate that there are multiple CPUs online + * when there was in fact only one the whole time, as this just adds + * some overhead: RCU still operates correctly. + */ +static inline int rcu_blocking_is_gp(void) +{ +	int ret; + +	might_sleep();  /* Check for RCU read-side critical section. */ +	preempt_disable(); +	ret = num_online_cpus() <= 1; +	preempt_enable(); +	return ret; +} + +/** + * synchronize_sched - wait until an rcu-sched grace period has elapsed. + * + * Control will return to the caller some time after a full rcu-sched + * grace period has elapsed, in other words after all currently executing + * rcu-sched read-side critical sections have completed.   These read-side + * critical sections are delimited by rcu_read_lock_sched() and + * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(), + * local_irq_disable(), and so on may be used in place of + * rcu_read_lock_sched(). + * + * This means that all preempt_disable code sequences, including NMI and + * non-threaded hardware-interrupt handlers, in progress on entry will + * have completed before this primitive returns.  However, this does not + * guarantee that softirq handlers will have completed, since in some + * kernels, these handlers can run in process context, and can block. + * + * Note that this guarantee implies further memory-ordering guarantees. + * On systems with more than one CPU, when synchronize_sched() returns, + * each CPU is guaranteed to have executed a full memory barrier since the + * end of its last RCU-sched read-side critical section whose beginning + * preceded the call to synchronize_sched().  In addition, each CPU having + * an RCU read-side critical section that extends beyond the return from + * synchronize_sched() is guaranteed to have executed a full memory barrier + * after the beginning of synchronize_sched() and before the beginning of + * that RCU read-side critical section.  Note that these guarantees include + * CPUs that are offline, idle, or executing in user mode, as well as CPUs + * that are executing in the kernel. + * + * Furthermore, if CPU A invoked synchronize_sched(), which returned + * to its caller on CPU B, then both CPU A and CPU B are guaranteed + * to have executed a full memory barrier during the execution of + * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but + * again only if the system has more than one CPU). + * + * This primitive provides the guarantees made by the (now removed) + * synchronize_kernel() API.  In contrast, synchronize_rcu() only + * guarantees that rcu_read_lock() sections will have completed. + * In "classic RCU", these two guarantees happen to be one and + * the same, but can differ in realtime RCU implementations. + */ +void synchronize_sched(void) +{ +	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && +			   !lock_is_held(&rcu_lock_map) && +			   !lock_is_held(&rcu_sched_lock_map), +			   "Illegal synchronize_sched() in RCU-sched read-side critical section"); +	if (rcu_blocking_is_gp()) +		return; +	if (rcu_expedited) +		synchronize_sched_expedited(); +	else +		wait_rcu_gp(call_rcu_sched); +} +EXPORT_SYMBOL_GPL(synchronize_sched); + +/** + * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. + * + * Control will return to the caller some time after a full rcu_bh grace + * period has elapsed, in other words after all currently executing rcu_bh + * read-side critical sections have completed.  RCU read-side critical + * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), + * and may be nested. + * + * See the description of synchronize_sched() for more detailed information + * on memory ordering guarantees. + */ +void synchronize_rcu_bh(void) +{ +	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && +			   !lock_is_held(&rcu_lock_map) && +			   !lock_is_held(&rcu_sched_lock_map), +			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); +	if (rcu_blocking_is_gp()) +		return; +	if (rcu_expedited) +		synchronize_rcu_bh_expedited(); +	else +		wait_rcu_gp(call_rcu_bh); +} +EXPORT_SYMBOL_GPL(synchronize_rcu_bh); + +static int synchronize_sched_expedited_cpu_stop(void *data) +{ +	/* +	 * There must be a full memory barrier on each affected CPU +	 * between the time that try_stop_cpus() is called and the +	 * time that it returns. +	 * +	 * In the current initial implementation of cpu_stop, the +	 * above condition is already met when the control reaches +	 * this point and the following smp_mb() is not strictly +	 * necessary.  Do smp_mb() anyway for documentation and +	 * robustness against future implementation changes. +	 */ +	smp_mb(); /* See above comment block. */ +	return 0; +} + +/** + * synchronize_sched_expedited - Brute-force RCU-sched grace period + * + * Wait for an RCU-sched grace period to elapse, but use a "big hammer" + * approach to force the grace period to end quickly.  This consumes + * significant time on all CPUs and is unfriendly to real-time workloads, + * so is thus not recommended for any sort of common-case code.  In fact, + * if you are using synchronize_sched_expedited() in a loop, please + * restructure your code to batch your updates, and then use a single + * synchronize_sched() instead. + * + * Note that it is illegal to call this function while holding any lock + * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal + * to call this function from a CPU-hotplug notifier.  Failing to observe + * these restriction will result in deadlock. + * + * This implementation can be thought of as an application of ticket + * locking to RCU, with sync_sched_expedited_started and + * sync_sched_expedited_done taking on the roles of the halves + * of the ticket-lock word.  Each task atomically increments + * sync_sched_expedited_started upon entry, snapshotting the old value, + * then attempts to stop all the CPUs.  If this succeeds, then each + * CPU will have executed a context switch, resulting in an RCU-sched + * grace period.  We are then done, so we use atomic_cmpxchg() to + * update sync_sched_expedited_done to match our snapshot -- but + * only if someone else has not already advanced past our snapshot. + * + * On the other hand, if try_stop_cpus() fails, we check the value + * of sync_sched_expedited_done.  If it has advanced past our + * initial snapshot, then someone else must have forced a grace period + * some time after we took our snapshot.  In this case, our work is + * done for us, and we can simply return.  Otherwise, we try again, + * but keep our initial snapshot for purposes of checking for someone + * doing our work for us. + * + * If we fail too many times in a row, we fall back to synchronize_sched(). + */ +void synchronize_sched_expedited(void) +{ +	long firstsnap, s, snap; +	int trycount = 0; +	struct rcu_state *rsp = &rcu_sched_state; + +	/* +	 * If we are in danger of counter wrap, just do synchronize_sched(). +	 * By allowing sync_sched_expedited_started to advance no more than +	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring +	 * that more than 3.5 billion CPUs would be required to force a +	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of +	 * course be required on a 64-bit system. +	 */ +	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), +			 (ulong)atomic_long_read(&rsp->expedited_done) + +			 ULONG_MAX / 8)) { +		synchronize_sched(); +		atomic_long_inc(&rsp->expedited_wrap); +		return; +	} + +	/* +	 * Take a ticket.  Note that atomic_inc_return() implies a +	 * full memory barrier. +	 */ +	snap = atomic_long_inc_return(&rsp->expedited_start); +	firstsnap = snap; +	get_online_cpus(); +	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); + +	/* +	 * Each pass through the following loop attempts to force a +	 * context switch on each CPU. +	 */ +	while (try_stop_cpus(cpu_online_mask, +			     synchronize_sched_expedited_cpu_stop, +			     NULL) == -EAGAIN) { +		put_online_cpus(); +		atomic_long_inc(&rsp->expedited_tryfail); + +		/* Check to see if someone else did our work for us. */ +		s = atomic_long_read(&rsp->expedited_done); +		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { +			/* ensure test happens before caller kfree */ +			smp_mb__before_atomic_inc(); /* ^^^ */ +			atomic_long_inc(&rsp->expedited_workdone1); +			return; +		} + +		/* No joy, try again later.  Or just synchronize_sched(). */ +		if (trycount++ < 10) { +			udelay(trycount * num_online_cpus()); +		} else { +			wait_rcu_gp(call_rcu_sched); +			atomic_long_inc(&rsp->expedited_normal); +			return; +		} + +		/* Recheck to see if someone else did our work for us. */ +		s = atomic_long_read(&rsp->expedited_done); +		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { +			/* ensure test happens before caller kfree */ +			smp_mb__before_atomic_inc(); /* ^^^ */ +			atomic_long_inc(&rsp->expedited_workdone2); +			return; +		} + +		/* +		 * Refetching sync_sched_expedited_started allows later +		 * callers to piggyback on our grace period.  We retry +		 * after they started, so our grace period works for them, +		 * and they started after our first try, so their grace +		 * period works for us. +		 */ +		get_online_cpus(); +		snap = atomic_long_read(&rsp->expedited_start); +		smp_mb(); /* ensure read is before try_stop_cpus(). */ +	} +	atomic_long_inc(&rsp->expedited_stoppedcpus); + +	/* +	 * Everyone up to our most recent fetch is covered by our grace +	 * period.  Update the counter, but only if our work is still +	 * relevant -- which it won't be if someone who started later +	 * than we did already did their update. +	 */ +	do { +		atomic_long_inc(&rsp->expedited_done_tries); +		s = atomic_long_read(&rsp->expedited_done); +		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { +			/* ensure test happens before caller kfree */ +			smp_mb__before_atomic_inc(); /* ^^^ */ +			atomic_long_inc(&rsp->expedited_done_lost); +			break; +		} +	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); +	atomic_long_inc(&rsp->expedited_done_exit); + +	put_online_cpus(); +} +EXPORT_SYMBOL_GPL(synchronize_sched_expedited); + +/* + * Check to see if there is any immediate RCU-related work to be done + * by the current CPU, for the specified type of RCU, returning 1 if so. + * The checks are in order of increasing expense: checks that can be + * carried out against CPU-local state are performed first.  However, + * we must check for CPU stalls first, else we might not get a chance. + */ +static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) +{ +	struct rcu_node *rnp = rdp->mynode; + +	rdp->n_rcu_pending++; + +	/* Check for CPU stalls, if enabled. */ +	check_cpu_stall(rsp, rdp); + +	/* Is the RCU core waiting for a quiescent state from this CPU? */ +	if (rcu_scheduler_fully_active && +	    rdp->qs_pending && !rdp->passed_quiesce) { +		rdp->n_rp_qs_pending++; +	} else if (rdp->qs_pending && rdp->passed_quiesce) { +		rdp->n_rp_report_qs++; +		return 1; +	} + +	/* Does this CPU have callbacks ready to invoke? */ +	if (cpu_has_callbacks_ready_to_invoke(rdp)) { +		rdp->n_rp_cb_ready++; +		return 1; +	} + +	/* Has RCU gone idle with this CPU needing another grace period? */ +	if (cpu_needs_another_gp(rsp, rdp)) { +		rdp->n_rp_cpu_needs_gp++; +		return 1; +	} + +	/* Has another RCU grace period completed?  */ +	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ +		rdp->n_rp_gp_completed++; +		return 1; +	} + +	/* Has a new RCU grace period started? */ +	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */ +		rdp->n_rp_gp_started++; +		return 1; +	} + +	/* nothing to do */ +	rdp->n_rp_need_nothing++; +	return 0; +} + +/* + * Check to see if there is any immediate RCU-related work to be done + * by the current CPU, returning 1 if so.  This function is part of the + * RCU implementation; it is -not- an exported member of the RCU API. + */ +static int rcu_pending(int cpu) +{ +	struct rcu_state *rsp; + +	for_each_rcu_flavor(rsp) +		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu))) +			return 1; +	return 0; +} + +/* + * Return true if the specified CPU has any callback.  If all_lazy is + * non-NULL, store an indication of whether all callbacks are lazy. + * (If there are no callbacks, all of them are deemed to be lazy.) + */ +static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy) +{ +	bool al = true; +	bool hc = false; +	struct rcu_data *rdp; +	struct rcu_state *rsp; + +	for_each_rcu_flavor(rsp) { +		rdp = per_cpu_ptr(rsp->rda, cpu); +		if (!rdp->nxtlist) +			continue; +		hc = true; +		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { +			al = false; +			break; +		} +	} +	if (all_lazy) +		*all_lazy = al; +	return hc; +} + +/* + * Helper function for _rcu_barrier() tracing.  If tracing is disabled, + * the compiler is expected to optimize this away. + */ +static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, +			       int cpu, unsigned long done) +{ +	trace_rcu_barrier(rsp->name, s, cpu, +			  atomic_read(&rsp->barrier_cpu_count), done); +} + +/* + * RCU callback function for _rcu_barrier().  If we are last, wake + * up the task executing _rcu_barrier(). + */ +static void rcu_barrier_callback(struct rcu_head *rhp) +{ +	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); +	struct rcu_state *rsp = rdp->rsp; + +	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { +		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); +		complete(&rsp->barrier_completion); +	} else { +		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); +	} +} + +/* + * Called with preemption disabled, and from cross-cpu IRQ context. + */ +static void rcu_barrier_func(void *type) +{ +	struct rcu_state *rsp = type; +	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda); + +	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); +	atomic_inc(&rsp->barrier_cpu_count); +	rsp->call(&rdp->barrier_head, rcu_barrier_callback); +} + +/* + * Orchestrate the specified type of RCU barrier, waiting for all + * RCU callbacks of the specified type to complete. + */ +static void _rcu_barrier(struct rcu_state *rsp) +{ +	int cpu; +	struct rcu_data *rdp; +	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); +	unsigned long snap_done; + +	_rcu_barrier_trace(rsp, "Begin", -1, snap); + +	/* Take mutex to serialize concurrent rcu_barrier() requests. */ +	mutex_lock(&rsp->barrier_mutex); + +	/* +	 * Ensure that all prior references, including to ->n_barrier_done, +	 * are ordered before the _rcu_barrier() machinery. +	 */ +	smp_mb();  /* See above block comment. */ + +	/* +	 * Recheck ->n_barrier_done to see if others did our work for us. +	 * This means checking ->n_barrier_done for an even-to-odd-to-even +	 * transition.  The "if" expression below therefore rounds the old +	 * value up to the next even number and adds two before comparing. +	 */ +	snap_done = rsp->n_barrier_done; +	_rcu_barrier_trace(rsp, "Check", -1, snap_done); + +	/* +	 * If the value in snap is odd, we needed to wait for the current +	 * rcu_barrier() to complete, then wait for the next one, in other +	 * words, we need the value of snap_done to be three larger than +	 * the value of snap.  On the other hand, if the value in snap is +	 * even, we only had to wait for the next rcu_barrier() to complete, +	 * in other words, we need the value of snap_done to be only two +	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes +	 * this for us (thank you, Linus!). +	 */ +	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { +		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); +		smp_mb(); /* caller's subsequent code after above check. */ +		mutex_unlock(&rsp->barrier_mutex); +		return; +	} + +	/* +	 * Increment ->n_barrier_done to avoid duplicate work.  Use +	 * ACCESS_ONCE() to prevent the compiler from speculating +	 * the increment to precede the early-exit check. +	 */ +	ACCESS_ONCE(rsp->n_barrier_done)++; +	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); +	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); +	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ + +	/* +	 * Initialize the count to one rather than to zero in order to +	 * avoid a too-soon return to zero in case of a short grace period +	 * (or preemption of this task).  Exclude CPU-hotplug operations +	 * to ensure that no offline CPU has callbacks queued. +	 */ +	init_completion(&rsp->barrier_completion); +	atomic_set(&rsp->barrier_cpu_count, 1); +	get_online_cpus(); + +	/* +	 * Force each CPU with callbacks to register a new callback. +	 * When that callback is invoked, we will know that all of the +	 * corresponding CPU's preceding callbacks have been invoked. +	 */ +	for_each_possible_cpu(cpu) { +		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) +			continue; +		rdp = per_cpu_ptr(rsp->rda, cpu); +		if (rcu_is_nocb_cpu(cpu)) { +			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu, +					   rsp->n_barrier_done); +			atomic_inc(&rsp->barrier_cpu_count); +			__call_rcu(&rdp->barrier_head, rcu_barrier_callback, +				   rsp, cpu, 0); +		} else if (ACCESS_ONCE(rdp->qlen)) { +			_rcu_barrier_trace(rsp, "OnlineQ", cpu, +					   rsp->n_barrier_done); +			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); +		} else { +			_rcu_barrier_trace(rsp, "OnlineNQ", cpu, +					   rsp->n_barrier_done); +		} +	} +	put_online_cpus(); + +	/* +	 * Now that we have an rcu_barrier_callback() callback on each +	 * CPU, and thus each counted, remove the initial count. +	 */ +	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) +		complete(&rsp->barrier_completion); + +	/* Increment ->n_barrier_done to prevent duplicate work. */ +	smp_mb(); /* Keep increment after above mechanism. */ +	ACCESS_ONCE(rsp->n_barrier_done)++; +	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); +	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); +	smp_mb(); /* Keep increment before caller's subsequent code. */ + +	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */ +	wait_for_completion(&rsp->barrier_completion); + +	/* Other rcu_barrier() invocations can now safely proceed. */ +	mutex_unlock(&rsp->barrier_mutex); +} + +/** + * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. + */ +void rcu_barrier_bh(void) +{ +	_rcu_barrier(&rcu_bh_state); +} +EXPORT_SYMBOL_GPL(rcu_barrier_bh); + +/** + * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. + */ +void rcu_barrier_sched(void) +{ +	_rcu_barrier(&rcu_sched_state); +} +EXPORT_SYMBOL_GPL(rcu_barrier_sched); + +/* + * Do boot-time initialization of a CPU's per-CPU RCU data. + */ +static void __init +rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) +{ +	unsigned long flags; +	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); +	struct rcu_node *rnp = rcu_get_root(rsp); + +	/* Set up local state, ensuring consistent view of global state. */ +	raw_spin_lock_irqsave(&rnp->lock, flags); +	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); +	init_callback_list(rdp); +	rdp->qlen_lazy = 0; +	ACCESS_ONCE(rdp->qlen) = 0; +	rdp->dynticks = &per_cpu(rcu_dynticks, cpu); +	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); +	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); +	rdp->cpu = cpu; +	rdp->rsp = rsp; +	rcu_boot_init_nocb_percpu_data(rdp); +	raw_spin_unlock_irqrestore(&rnp->lock, flags); +} + +/* + * Initialize a CPU's per-CPU RCU data.  Note that only one online or + * offline event can be happening at a given time.  Note also that we + * can accept some slop in the rsp->completed access due to the fact + * that this CPU cannot possibly have any RCU callbacks in flight yet. + */ +static void +rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible) +{ +	unsigned long flags; +	unsigned long mask; +	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); +	struct rcu_node *rnp = rcu_get_root(rsp); + +	/* Exclude new grace periods. */ +	mutex_lock(&rsp->onoff_mutex); + +	/* Set up local state, ensuring consistent view of global state. */ +	raw_spin_lock_irqsave(&rnp->lock, flags); +	rdp->beenonline = 1;	 /* We have now been online. */ +	rdp->preemptible = preemptible; +	rdp->qlen_last_fqs_check = 0; +	rdp->n_force_qs_snap = rsp->n_force_qs; +	rdp->blimit = blimit; +	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */ +	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; +	rcu_sysidle_init_percpu_data(rdp->dynticks); +	atomic_set(&rdp->dynticks->dynticks, +		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); +	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */ + +	/* Add CPU to rcu_node bitmasks. */ +	rnp = rdp->mynode; +	mask = rdp->grpmask; +	do { +		/* Exclude any attempts to start a new GP on small systems. */ +		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */ +		rnp->qsmaskinit |= mask; +		mask = rnp->grpmask; +		if (rnp == rdp->mynode) { +			/* +			 * If there is a grace period in progress, we will +			 * set up to wait for it next time we run the +			 * RCU core code. +			 */ +			rdp->gpnum = rnp->completed; +			rdp->completed = rnp->completed; +			rdp->passed_quiesce = 0; +			rdp->qs_pending = 0; +			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); +		} +		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ +		rnp = rnp->parent; +	} while (rnp != NULL && !(rnp->qsmaskinit & mask)); +	local_irq_restore(flags); + +	mutex_unlock(&rsp->onoff_mutex); +} + +static void rcu_prepare_cpu(int cpu) +{ +	struct rcu_state *rsp; + +	for_each_rcu_flavor(rsp) +		rcu_init_percpu_data(cpu, rsp, +				     strcmp(rsp->name, "rcu_preempt") == 0); +} + +/* + * Handle CPU online/offline notification events. + */ +static int rcu_cpu_notify(struct notifier_block *self, +				    unsigned long action, void *hcpu) +{ +	long cpu = (long)hcpu; +	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu); +	struct rcu_node *rnp = rdp->mynode; +	struct rcu_state *rsp; + +	trace_rcu_utilization(TPS("Start CPU hotplug")); +	switch (action) { +	case CPU_UP_PREPARE: +	case CPU_UP_PREPARE_FROZEN: +		rcu_prepare_cpu(cpu); +		rcu_prepare_kthreads(cpu); +		break; +	case CPU_ONLINE: +	case CPU_DOWN_FAILED: +		rcu_boost_kthread_setaffinity(rnp, -1); +		break; +	case CPU_DOWN_PREPARE: +		rcu_boost_kthread_setaffinity(rnp, cpu); +		break; +	case CPU_DYING: +	case CPU_DYING_FROZEN: +		for_each_rcu_flavor(rsp) +			rcu_cleanup_dying_cpu(rsp); +		break; +	case CPU_DEAD: +	case CPU_DEAD_FROZEN: +	case CPU_UP_CANCELED: +	case CPU_UP_CANCELED_FROZEN: +		for_each_rcu_flavor(rsp) +			rcu_cleanup_dead_cpu(cpu, rsp); +		break; +	default: +		break; +	} +	trace_rcu_utilization(TPS("End CPU hotplug")); +	return NOTIFY_OK; +} + +static int rcu_pm_notify(struct notifier_block *self, +			 unsigned long action, void *hcpu) +{ +	switch (action) { +	case PM_HIBERNATION_PREPARE: +	case PM_SUSPEND_PREPARE: +		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ +			rcu_expedited = 1; +		break; +	case PM_POST_HIBERNATION: +	case PM_POST_SUSPEND: +		rcu_expedited = 0; +		break; +	default: +		break; +	} +	return NOTIFY_OK; +} + +/* + * Spawn the kthread that handles this RCU flavor's grace periods. + */ +static int __init rcu_spawn_gp_kthread(void) +{ +	unsigned long flags; +	struct rcu_node *rnp; +	struct rcu_state *rsp; +	struct task_struct *t; + +	for_each_rcu_flavor(rsp) { +		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name); +		BUG_ON(IS_ERR(t)); +		rnp = rcu_get_root(rsp); +		raw_spin_lock_irqsave(&rnp->lock, flags); +		rsp->gp_kthread = t; +		raw_spin_unlock_irqrestore(&rnp->lock, flags); +		rcu_spawn_nocb_kthreads(rsp); +	} +	return 0; +} +early_initcall(rcu_spawn_gp_kthread); + +/* + * This function is invoked towards the end of the scheduler's initialization + * process.  Before this is called, the idle task might contain + * RCU read-side critical sections (during which time, this idle + * task is booting the system).  After this function is called, the + * idle tasks are prohibited from containing RCU read-side critical + * sections.  This function also enables RCU lockdep checking. + */ +void rcu_scheduler_starting(void) +{ +	WARN_ON(num_online_cpus() != 1); +	WARN_ON(nr_context_switches() > 0); +	rcu_scheduler_active = 1; +} + +/* + * Compute the per-level fanout, either using the exact fanout specified + * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. + */ +#ifdef CONFIG_RCU_FANOUT_EXACT +static void __init rcu_init_levelspread(struct rcu_state *rsp) +{ +	int i; + +	for (i = rcu_num_lvls - 1; i > 0; i--) +		rsp->levelspread[i] = CONFIG_RCU_FANOUT; +	rsp->levelspread[0] = rcu_fanout_leaf; +} +#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ +static void __init rcu_init_levelspread(struct rcu_state *rsp) +{ +	int ccur; +	int cprv; +	int i; + +	cprv = nr_cpu_ids; +	for (i = rcu_num_lvls - 1; i >= 0; i--) { +		ccur = rsp->levelcnt[i]; +		rsp->levelspread[i] = (cprv + ccur - 1) / ccur; +		cprv = ccur; +	} +} +#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ + +/* + * Helper function for rcu_init() that initializes one rcu_state structure. + */ +static void __init rcu_init_one(struct rcu_state *rsp, +		struct rcu_data __percpu *rda) +{ +	static char *buf[] = { "rcu_node_0", +			       "rcu_node_1", +			       "rcu_node_2", +			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */ +	static char *fqs[] = { "rcu_node_fqs_0", +			       "rcu_node_fqs_1", +			       "rcu_node_fqs_2", +			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */ +	int cpustride = 1; +	int i; +	int j; +	struct rcu_node *rnp; + +	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */ + +	/* Silence gcc 4.8 warning about array index out of range. */ +	if (rcu_num_lvls > RCU_NUM_LVLS) +		panic("rcu_init_one: rcu_num_lvls overflow"); + +	/* Initialize the level-tracking arrays. */ + +	for (i = 0; i < rcu_num_lvls; i++) +		rsp->levelcnt[i] = num_rcu_lvl[i]; +	for (i = 1; i < rcu_num_lvls; i++) +		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; +	rcu_init_levelspread(rsp); + +	/* Initialize the elements themselves, starting from the leaves. */ + +	for (i = rcu_num_lvls - 1; i >= 0; i--) { +		cpustride *= rsp->levelspread[i]; +		rnp = rsp->level[i]; +		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { +			raw_spin_lock_init(&rnp->lock); +			lockdep_set_class_and_name(&rnp->lock, +						   &rcu_node_class[i], buf[i]); +			raw_spin_lock_init(&rnp->fqslock); +			lockdep_set_class_and_name(&rnp->fqslock, +						   &rcu_fqs_class[i], fqs[i]); +			rnp->gpnum = rsp->gpnum; +			rnp->completed = rsp->completed; +			rnp->qsmask = 0; +			rnp->qsmaskinit = 0; +			rnp->grplo = j * cpustride; +			rnp->grphi = (j + 1) * cpustride - 1; +			if (rnp->grphi >= NR_CPUS) +				rnp->grphi = NR_CPUS - 1; +			if (i == 0) { +				rnp->grpnum = 0; +				rnp->grpmask = 0; +				rnp->parent = NULL; +			} else { +				rnp->grpnum = j % rsp->levelspread[i - 1]; +				rnp->grpmask = 1UL << rnp->grpnum; +				rnp->parent = rsp->level[i - 1] + +					      j / rsp->levelspread[i - 1]; +			} +			rnp->level = i; +			INIT_LIST_HEAD(&rnp->blkd_tasks); +			rcu_init_one_nocb(rnp); +		} +	} + +	rsp->rda = rda; +	init_waitqueue_head(&rsp->gp_wq); +	init_irq_work(&rsp->wakeup_work, rsp_wakeup); +	rnp = rsp->level[rcu_num_lvls - 1]; +	for_each_possible_cpu(i) { +		while (i > rnp->grphi) +			rnp++; +		per_cpu_ptr(rsp->rda, i)->mynode = rnp; +		rcu_boot_init_percpu_data(i, rsp); +	} +	list_add(&rsp->flavors, &rcu_struct_flavors); +} + +/* + * Compute the rcu_node tree geometry from kernel parameters.  This cannot + * replace the definitions in tree.h because those are needed to size + * the ->node array in the rcu_state structure. + */ +static void __init rcu_init_geometry(void) +{ +	ulong d; +	int i; +	int j; +	int n = nr_cpu_ids; +	int rcu_capacity[MAX_RCU_LVLS + 1]; + +	/* +	 * Initialize any unspecified boot parameters. +	 * The default values of jiffies_till_first_fqs and +	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS +	 * value, which is a function of HZ, then adding one for each +	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. +	 */ +	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; +	if (jiffies_till_first_fqs == ULONG_MAX) +		jiffies_till_first_fqs = d; +	if (jiffies_till_next_fqs == ULONG_MAX) +		jiffies_till_next_fqs = d; + +	/* If the compile-time values are accurate, just leave. */ +	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && +	    nr_cpu_ids == NR_CPUS) +		return; + +	/* +	 * Compute number of nodes that can be handled an rcu_node tree +	 * with the given number of levels.  Setting rcu_capacity[0] makes +	 * some of the arithmetic easier. +	 */ +	rcu_capacity[0] = 1; +	rcu_capacity[1] = rcu_fanout_leaf; +	for (i = 2; i <= MAX_RCU_LVLS; i++) +		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; + +	/* +	 * The boot-time rcu_fanout_leaf parameter is only permitted +	 * to increase the leaf-level fanout, not decrease it.  Of course, +	 * the leaf-level fanout cannot exceed the number of bits in +	 * the rcu_node masks.  Finally, the tree must be able to accommodate +	 * the configured number of CPUs.  Complain and fall back to the +	 * compile-time values if these limits are exceeded. +	 */ +	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || +	    rcu_fanout_leaf > sizeof(unsigned long) * 8 || +	    n > rcu_capacity[MAX_RCU_LVLS]) { +		WARN_ON(1); +		return; +	} + +	/* Calculate the number of rcu_nodes at each level of the tree. */ +	for (i = 1; i <= MAX_RCU_LVLS; i++) +		if (n <= rcu_capacity[i]) { +			for (j = 0; j <= i; j++) +				num_rcu_lvl[j] = +					DIV_ROUND_UP(n, rcu_capacity[i - j]); +			rcu_num_lvls = i; +			for (j = i + 1; j <= MAX_RCU_LVLS; j++) +				num_rcu_lvl[j] = 0; +			break; +		} + +	/* Calculate the total number of rcu_node structures. */ +	rcu_num_nodes = 0; +	for (i = 0; i <= MAX_RCU_LVLS; i++) +		rcu_num_nodes += num_rcu_lvl[i]; +	rcu_num_nodes -= n; +} + +void __init rcu_init(void) +{ +	int cpu; + +	rcu_bootup_announce(); +	rcu_init_geometry(); +	rcu_init_one(&rcu_bh_state, &rcu_bh_data); +	rcu_init_one(&rcu_sched_state, &rcu_sched_data); +	__rcu_init_preempt(); +	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); + +	/* +	 * We don't need protection against CPU-hotplug here because +	 * this is called early in boot, before either interrupts +	 * or the scheduler are operational. +	 */ +	cpu_notifier(rcu_cpu_notify, 0); +	pm_notifier(rcu_pm_notify, 0); +	for_each_online_cpu(cpu) +		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); +} + +#include "tree_plugin.h" |