diff options
Diffstat (limited to 'kernel/bpf/verifier.c')
| -rw-r--r-- | kernel/bpf/verifier.c | 1923 | 
1 files changed, 1923 insertions, 0 deletions
| diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c new file mode 100644 index 000000000000..801f5f3b9307 --- /dev/null +++ b/kernel/bpf/verifier.c @@ -0,0 +1,1923 @@ +/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of version 2 of the GNU General Public + * License as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + */ +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/slab.h> +#include <linux/bpf.h> +#include <linux/filter.h> +#include <net/netlink.h> +#include <linux/file.h> +#include <linux/vmalloc.h> + +/* bpf_check() is a static code analyzer that walks eBPF program + * instruction by instruction and updates register/stack state. + * All paths of conditional branches are analyzed until 'bpf_exit' insn. + * + * The first pass is depth-first-search to check that the program is a DAG. + * It rejects the following programs: + * - larger than BPF_MAXINSNS insns + * - if loop is present (detected via back-edge) + * - unreachable insns exist (shouldn't be a forest. program = one function) + * - out of bounds or malformed jumps + * The second pass is all possible path descent from the 1st insn. + * Since it's analyzing all pathes through the program, the length of the + * analysis is limited to 32k insn, which may be hit even if total number of + * insn is less then 4K, but there are too many branches that change stack/regs. + * Number of 'branches to be analyzed' is limited to 1k + * + * On entry to each instruction, each register has a type, and the instruction + * changes the types of the registers depending on instruction semantics. + * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is + * copied to R1. + * + * All registers are 64-bit. + * R0 - return register + * R1-R5 argument passing registers + * R6-R9 callee saved registers + * R10 - frame pointer read-only + * + * At the start of BPF program the register R1 contains a pointer to bpf_context + * and has type PTR_TO_CTX. + * + * Verifier tracks arithmetic operations on pointers in case: + *    BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), + *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20), + * 1st insn copies R10 (which has FRAME_PTR) type into R1 + * and 2nd arithmetic instruction is pattern matched to recognize + * that it wants to construct a pointer to some element within stack. + * So after 2nd insn, the register R1 has type PTR_TO_STACK + * (and -20 constant is saved for further stack bounds checking). + * Meaning that this reg is a pointer to stack plus known immediate constant. + * + * Most of the time the registers have UNKNOWN_VALUE type, which + * means the register has some value, but it's not a valid pointer. + * (like pointer plus pointer becomes UNKNOWN_VALUE type) + * + * When verifier sees load or store instructions the type of base register + * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer + * types recognized by check_mem_access() function. + * + * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value' + * and the range of [ptr, ptr + map's value_size) is accessible. + * + * registers used to pass values to function calls are checked against + * function argument constraints. + * + * ARG_PTR_TO_MAP_KEY is one of such argument constraints. + * It means that the register type passed to this function must be + * PTR_TO_STACK and it will be used inside the function as + * 'pointer to map element key' + * + * For example the argument constraints for bpf_map_lookup_elem(): + *   .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL, + *   .arg1_type = ARG_CONST_MAP_PTR, + *   .arg2_type = ARG_PTR_TO_MAP_KEY, + * + * ret_type says that this function returns 'pointer to map elem value or null' + * function expects 1st argument to be a const pointer to 'struct bpf_map' and + * 2nd argument should be a pointer to stack, which will be used inside + * the helper function as a pointer to map element key. + * + * On the kernel side the helper function looks like: + * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5) + * { + *    struct bpf_map *map = (struct bpf_map *) (unsigned long) r1; + *    void *key = (void *) (unsigned long) r2; + *    void *value; + * + *    here kernel can access 'key' and 'map' pointers safely, knowing that + *    [key, key + map->key_size) bytes are valid and were initialized on + *    the stack of eBPF program. + * } + * + * Corresponding eBPF program may look like: + *    BPF_MOV64_REG(BPF_REG_2, BPF_REG_10),  // after this insn R2 type is FRAME_PTR + *    BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK + *    BPF_LD_MAP_FD(BPF_REG_1, map_fd),      // after this insn R1 type is CONST_PTR_TO_MAP + *    BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem), + * here verifier looks at prototype of map_lookup_elem() and sees: + * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok, + * Now verifier knows that this map has key of R1->map_ptr->key_size bytes + * + * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far, + * Now verifier checks that [R2, R2 + map's key_size) are within stack limits + * and were initialized prior to this call. + * If it's ok, then verifier allows this BPF_CALL insn and looks at + * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets + * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function + * returns ether pointer to map value or NULL. + * + * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off' + * insn, the register holding that pointer in the true branch changes state to + * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false + * branch. See check_cond_jmp_op(). + * + * After the call R0 is set to return type of the function and registers R1-R5 + * are set to NOT_INIT to indicate that they are no longer readable. + */ + +/* types of values stored in eBPF registers */ +enum bpf_reg_type { +	NOT_INIT = 0,		 /* nothing was written into register */ +	UNKNOWN_VALUE,		 /* reg doesn't contain a valid pointer */ +	PTR_TO_CTX,		 /* reg points to bpf_context */ +	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */ +	PTR_TO_MAP_VALUE,	 /* reg points to map element value */ +	PTR_TO_MAP_VALUE_OR_NULL,/* points to map elem value or NULL */ +	FRAME_PTR,		 /* reg == frame_pointer */ +	PTR_TO_STACK,		 /* reg == frame_pointer + imm */ +	CONST_IMM,		 /* constant integer value */ +}; + +struct reg_state { +	enum bpf_reg_type type; +	union { +		/* valid when type == CONST_IMM | PTR_TO_STACK */ +		int imm; + +		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | +		 *   PTR_TO_MAP_VALUE_OR_NULL +		 */ +		struct bpf_map *map_ptr; +	}; +}; + +enum bpf_stack_slot_type { +	STACK_INVALID,    /* nothing was stored in this stack slot */ +	STACK_SPILL,      /* 1st byte of register spilled into stack */ +	STACK_SPILL_PART, /* other 7 bytes of register spill */ +	STACK_MISC	  /* BPF program wrote some data into this slot */ +}; + +struct bpf_stack_slot { +	enum bpf_stack_slot_type stype; +	struct reg_state reg_st; +}; + +/* state of the program: + * type of all registers and stack info + */ +struct verifier_state { +	struct reg_state regs[MAX_BPF_REG]; +	struct bpf_stack_slot stack[MAX_BPF_STACK]; +}; + +/* linked list of verifier states used to prune search */ +struct verifier_state_list { +	struct verifier_state state; +	struct verifier_state_list *next; +}; + +/* verifier_state + insn_idx are pushed to stack when branch is encountered */ +struct verifier_stack_elem { +	/* verifer state is 'st' +	 * before processing instruction 'insn_idx' +	 * and after processing instruction 'prev_insn_idx' +	 */ +	struct verifier_state st; +	int insn_idx; +	int prev_insn_idx; +	struct verifier_stack_elem *next; +}; + +#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ + +/* single container for all structs + * one verifier_env per bpf_check() call + */ +struct verifier_env { +	struct bpf_prog *prog;		/* eBPF program being verified */ +	struct verifier_stack_elem *head; /* stack of verifier states to be processed */ +	int stack_size;			/* number of states to be processed */ +	struct verifier_state cur_state; /* current verifier state */ +	struct verifier_state_list **explored_states; /* search pruning optimization */ +	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ +	u32 used_map_cnt;		/* number of used maps */ +}; + +/* verbose verifier prints what it's seeing + * bpf_check() is called under lock, so no race to access these global vars + */ +static u32 log_level, log_size, log_len; +static char *log_buf; + +static DEFINE_MUTEX(bpf_verifier_lock); + +/* log_level controls verbosity level of eBPF verifier. + * verbose() is used to dump the verification trace to the log, so the user + * can figure out what's wrong with the program + */ +static void verbose(const char *fmt, ...) +{ +	va_list args; + +	if (log_level == 0 || log_len >= log_size - 1) +		return; + +	va_start(args, fmt); +	log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args); +	va_end(args); +} + +/* string representation of 'enum bpf_reg_type' */ +static const char * const reg_type_str[] = { +	[NOT_INIT]		= "?", +	[UNKNOWN_VALUE]		= "inv", +	[PTR_TO_CTX]		= "ctx", +	[CONST_PTR_TO_MAP]	= "map_ptr", +	[PTR_TO_MAP_VALUE]	= "map_value", +	[PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null", +	[FRAME_PTR]		= "fp", +	[PTR_TO_STACK]		= "fp", +	[CONST_IMM]		= "imm", +}; + +static void print_verifier_state(struct verifier_env *env) +{ +	enum bpf_reg_type t; +	int i; + +	for (i = 0; i < MAX_BPF_REG; i++) { +		t = env->cur_state.regs[i].type; +		if (t == NOT_INIT) +			continue; +		verbose(" R%d=%s", i, reg_type_str[t]); +		if (t == CONST_IMM || t == PTR_TO_STACK) +			verbose("%d", env->cur_state.regs[i].imm); +		else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE || +			 t == PTR_TO_MAP_VALUE_OR_NULL) +			verbose("(ks=%d,vs=%d)", +				env->cur_state.regs[i].map_ptr->key_size, +				env->cur_state.regs[i].map_ptr->value_size); +	} +	for (i = 0; i < MAX_BPF_STACK; i++) { +		if (env->cur_state.stack[i].stype == STACK_SPILL) +			verbose(" fp%d=%s", -MAX_BPF_STACK + i, +				reg_type_str[env->cur_state.stack[i].reg_st.type]); +	} +	verbose("\n"); +} + +static const char *const bpf_class_string[] = { +	[BPF_LD]    = "ld", +	[BPF_LDX]   = "ldx", +	[BPF_ST]    = "st", +	[BPF_STX]   = "stx", +	[BPF_ALU]   = "alu", +	[BPF_JMP]   = "jmp", +	[BPF_RET]   = "BUG", +	[BPF_ALU64] = "alu64", +}; + +static const char *const bpf_alu_string[] = { +	[BPF_ADD >> 4]  = "+=", +	[BPF_SUB >> 4]  = "-=", +	[BPF_MUL >> 4]  = "*=", +	[BPF_DIV >> 4]  = "/=", +	[BPF_OR  >> 4]  = "|=", +	[BPF_AND >> 4]  = "&=", +	[BPF_LSH >> 4]  = "<<=", +	[BPF_RSH >> 4]  = ">>=", +	[BPF_NEG >> 4]  = "neg", +	[BPF_MOD >> 4]  = "%=", +	[BPF_XOR >> 4]  = "^=", +	[BPF_MOV >> 4]  = "=", +	[BPF_ARSH >> 4] = "s>>=", +	[BPF_END >> 4]  = "endian", +}; + +static const char *const bpf_ldst_string[] = { +	[BPF_W >> 3]  = "u32", +	[BPF_H >> 3]  = "u16", +	[BPF_B >> 3]  = "u8", +	[BPF_DW >> 3] = "u64", +}; + +static const char *const bpf_jmp_string[] = { +	[BPF_JA >> 4]   = "jmp", +	[BPF_JEQ >> 4]  = "==", +	[BPF_JGT >> 4]  = ">", +	[BPF_JGE >> 4]  = ">=", +	[BPF_JSET >> 4] = "&", +	[BPF_JNE >> 4]  = "!=", +	[BPF_JSGT >> 4] = "s>", +	[BPF_JSGE >> 4] = "s>=", +	[BPF_CALL >> 4] = "call", +	[BPF_EXIT >> 4] = "exit", +}; + +static void print_bpf_insn(struct bpf_insn *insn) +{ +	u8 class = BPF_CLASS(insn->code); + +	if (class == BPF_ALU || class == BPF_ALU64) { +		if (BPF_SRC(insn->code) == BPF_X) +			verbose("(%02x) %sr%d %s %sr%d\n", +				insn->code, class == BPF_ALU ? "(u32) " : "", +				insn->dst_reg, +				bpf_alu_string[BPF_OP(insn->code) >> 4], +				class == BPF_ALU ? "(u32) " : "", +				insn->src_reg); +		else +			verbose("(%02x) %sr%d %s %s%d\n", +				insn->code, class == BPF_ALU ? "(u32) " : "", +				insn->dst_reg, +				bpf_alu_string[BPF_OP(insn->code) >> 4], +				class == BPF_ALU ? "(u32) " : "", +				insn->imm); +	} else if (class == BPF_STX) { +		if (BPF_MODE(insn->code) == BPF_MEM) +			verbose("(%02x) *(%s *)(r%d %+d) = r%d\n", +				insn->code, +				bpf_ldst_string[BPF_SIZE(insn->code) >> 3], +				insn->dst_reg, +				insn->off, insn->src_reg); +		else if (BPF_MODE(insn->code) == BPF_XADD) +			verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n", +				insn->code, +				bpf_ldst_string[BPF_SIZE(insn->code) >> 3], +				insn->dst_reg, insn->off, +				insn->src_reg); +		else +			verbose("BUG_%02x\n", insn->code); +	} else if (class == BPF_ST) { +		if (BPF_MODE(insn->code) != BPF_MEM) { +			verbose("BUG_st_%02x\n", insn->code); +			return; +		} +		verbose("(%02x) *(%s *)(r%d %+d) = %d\n", +			insn->code, +			bpf_ldst_string[BPF_SIZE(insn->code) >> 3], +			insn->dst_reg, +			insn->off, insn->imm); +	} else if (class == BPF_LDX) { +		if (BPF_MODE(insn->code) != BPF_MEM) { +			verbose("BUG_ldx_%02x\n", insn->code); +			return; +		} +		verbose("(%02x) r%d = *(%s *)(r%d %+d)\n", +			insn->code, insn->dst_reg, +			bpf_ldst_string[BPF_SIZE(insn->code) >> 3], +			insn->src_reg, insn->off); +	} else if (class == BPF_LD) { +		if (BPF_MODE(insn->code) == BPF_ABS) { +			verbose("(%02x) r0 = *(%s *)skb[%d]\n", +				insn->code, +				bpf_ldst_string[BPF_SIZE(insn->code) >> 3], +				insn->imm); +		} else if (BPF_MODE(insn->code) == BPF_IND) { +			verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n", +				insn->code, +				bpf_ldst_string[BPF_SIZE(insn->code) >> 3], +				insn->src_reg, insn->imm); +		} else if (BPF_MODE(insn->code) == BPF_IMM) { +			verbose("(%02x) r%d = 0x%x\n", +				insn->code, insn->dst_reg, insn->imm); +		} else { +			verbose("BUG_ld_%02x\n", insn->code); +			return; +		} +	} else if (class == BPF_JMP) { +		u8 opcode = BPF_OP(insn->code); + +		if (opcode == BPF_CALL) { +			verbose("(%02x) call %d\n", insn->code, insn->imm); +		} else if (insn->code == (BPF_JMP | BPF_JA)) { +			verbose("(%02x) goto pc%+d\n", +				insn->code, insn->off); +		} else if (insn->code == (BPF_JMP | BPF_EXIT)) { +			verbose("(%02x) exit\n", insn->code); +		} else if (BPF_SRC(insn->code) == BPF_X) { +			verbose("(%02x) if r%d %s r%d goto pc%+d\n", +				insn->code, insn->dst_reg, +				bpf_jmp_string[BPF_OP(insn->code) >> 4], +				insn->src_reg, insn->off); +		} else { +			verbose("(%02x) if r%d %s 0x%x goto pc%+d\n", +				insn->code, insn->dst_reg, +				bpf_jmp_string[BPF_OP(insn->code) >> 4], +				insn->imm, insn->off); +		} +	} else { +		verbose("(%02x) %s\n", insn->code, bpf_class_string[class]); +	} +} + +static int pop_stack(struct verifier_env *env, int *prev_insn_idx) +{ +	struct verifier_stack_elem *elem; +	int insn_idx; + +	if (env->head == NULL) +		return -1; + +	memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state)); +	insn_idx = env->head->insn_idx; +	if (prev_insn_idx) +		*prev_insn_idx = env->head->prev_insn_idx; +	elem = env->head->next; +	kfree(env->head); +	env->head = elem; +	env->stack_size--; +	return insn_idx; +} + +static struct verifier_state *push_stack(struct verifier_env *env, int insn_idx, +					 int prev_insn_idx) +{ +	struct verifier_stack_elem *elem; + +	elem = kmalloc(sizeof(struct verifier_stack_elem), GFP_KERNEL); +	if (!elem) +		goto err; + +	memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state)); +	elem->insn_idx = insn_idx; +	elem->prev_insn_idx = prev_insn_idx; +	elem->next = env->head; +	env->head = elem; +	env->stack_size++; +	if (env->stack_size > 1024) { +		verbose("BPF program is too complex\n"); +		goto err; +	} +	return &elem->st; +err: +	/* pop all elements and return */ +	while (pop_stack(env, NULL) >= 0); +	return NULL; +} + +#define CALLER_SAVED_REGS 6 +static const int caller_saved[CALLER_SAVED_REGS] = { +	BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5 +}; + +static void init_reg_state(struct reg_state *regs) +{ +	int i; + +	for (i = 0; i < MAX_BPF_REG; i++) { +		regs[i].type = NOT_INIT; +		regs[i].imm = 0; +		regs[i].map_ptr = NULL; +	} + +	/* frame pointer */ +	regs[BPF_REG_FP].type = FRAME_PTR; + +	/* 1st arg to a function */ +	regs[BPF_REG_1].type = PTR_TO_CTX; +} + +static void mark_reg_unknown_value(struct reg_state *regs, u32 regno) +{ +	BUG_ON(regno >= MAX_BPF_REG); +	regs[regno].type = UNKNOWN_VALUE; +	regs[regno].imm = 0; +	regs[regno].map_ptr = NULL; +} + +enum reg_arg_type { +	SRC_OP,		/* register is used as source operand */ +	DST_OP,		/* register is used as destination operand */ +	DST_OP_NO_MARK	/* same as above, check only, don't mark */ +}; + +static int check_reg_arg(struct reg_state *regs, u32 regno, +			 enum reg_arg_type t) +{ +	if (regno >= MAX_BPF_REG) { +		verbose("R%d is invalid\n", regno); +		return -EINVAL; +	} + +	if (t == SRC_OP) { +		/* check whether register used as source operand can be read */ +		if (regs[regno].type == NOT_INIT) { +			verbose("R%d !read_ok\n", regno); +			return -EACCES; +		} +	} else { +		/* check whether register used as dest operand can be written to */ +		if (regno == BPF_REG_FP) { +			verbose("frame pointer is read only\n"); +			return -EACCES; +		} +		if (t == DST_OP) +			mark_reg_unknown_value(regs, regno); +	} +	return 0; +} + +static int bpf_size_to_bytes(int bpf_size) +{ +	if (bpf_size == BPF_W) +		return 4; +	else if (bpf_size == BPF_H) +		return 2; +	else if (bpf_size == BPF_B) +		return 1; +	else if (bpf_size == BPF_DW) +		return 8; +	else +		return -EINVAL; +} + +/* check_stack_read/write functions track spill/fill of registers, + * stack boundary and alignment are checked in check_mem_access() + */ +static int check_stack_write(struct verifier_state *state, int off, int size, +			     int value_regno) +{ +	struct bpf_stack_slot *slot; +	int i; + +	if (value_regno >= 0 && +	    (state->regs[value_regno].type == PTR_TO_MAP_VALUE || +	     state->regs[value_regno].type == PTR_TO_STACK || +	     state->regs[value_regno].type == PTR_TO_CTX)) { + +		/* register containing pointer is being spilled into stack */ +		if (size != 8) { +			verbose("invalid size of register spill\n"); +			return -EACCES; +		} + +		slot = &state->stack[MAX_BPF_STACK + off]; +		slot->stype = STACK_SPILL; +		/* save register state */ +		slot->reg_st = state->regs[value_regno]; +		for (i = 1; i < 8; i++) { +			slot = &state->stack[MAX_BPF_STACK + off + i]; +			slot->stype = STACK_SPILL_PART; +			slot->reg_st.type = UNKNOWN_VALUE; +			slot->reg_st.map_ptr = NULL; +		} +	} else { + +		/* regular write of data into stack */ +		for (i = 0; i < size; i++) { +			slot = &state->stack[MAX_BPF_STACK + off + i]; +			slot->stype = STACK_MISC; +			slot->reg_st.type = UNKNOWN_VALUE; +			slot->reg_st.map_ptr = NULL; +		} +	} +	return 0; +} + +static int check_stack_read(struct verifier_state *state, int off, int size, +			    int value_regno) +{ +	int i; +	struct bpf_stack_slot *slot; + +	slot = &state->stack[MAX_BPF_STACK + off]; + +	if (slot->stype == STACK_SPILL) { +		if (size != 8) { +			verbose("invalid size of register spill\n"); +			return -EACCES; +		} +		for (i = 1; i < 8; i++) { +			if (state->stack[MAX_BPF_STACK + off + i].stype != +			    STACK_SPILL_PART) { +				verbose("corrupted spill memory\n"); +				return -EACCES; +			} +		} + +		if (value_regno >= 0) +			/* restore register state from stack */ +			state->regs[value_regno] = slot->reg_st; +		return 0; +	} else { +		for (i = 0; i < size; i++) { +			if (state->stack[MAX_BPF_STACK + off + i].stype != +			    STACK_MISC) { +				verbose("invalid read from stack off %d+%d size %d\n", +					off, i, size); +				return -EACCES; +			} +		} +		if (value_regno >= 0) +			/* have read misc data from the stack */ +			mark_reg_unknown_value(state->regs, value_regno); +		return 0; +	} +} + +/* check read/write into map element returned by bpf_map_lookup_elem() */ +static int check_map_access(struct verifier_env *env, u32 regno, int off, +			    int size) +{ +	struct bpf_map *map = env->cur_state.regs[regno].map_ptr; + +	if (off < 0 || off + size > map->value_size) { +		verbose("invalid access to map value, value_size=%d off=%d size=%d\n", +			map->value_size, off, size); +		return -EACCES; +	} +	return 0; +} + +/* check access to 'struct bpf_context' fields */ +static int check_ctx_access(struct verifier_env *env, int off, int size, +			    enum bpf_access_type t) +{ +	if (env->prog->aux->ops->is_valid_access && +	    env->prog->aux->ops->is_valid_access(off, size, t)) +		return 0; + +	verbose("invalid bpf_context access off=%d size=%d\n", off, size); +	return -EACCES; +} + +/* check whether memory at (regno + off) is accessible for t = (read | write) + * if t==write, value_regno is a register which value is stored into memory + * if t==read, value_regno is a register which will receive the value from memory + * if t==write && value_regno==-1, some unknown value is stored into memory + * if t==read && value_regno==-1, don't care what we read from memory + */ +static int check_mem_access(struct verifier_env *env, u32 regno, int off, +			    int bpf_size, enum bpf_access_type t, +			    int value_regno) +{ +	struct verifier_state *state = &env->cur_state; +	int size, err = 0; + +	size = bpf_size_to_bytes(bpf_size); +	if (size < 0) +		return size; + +	if (off % size != 0) { +		verbose("misaligned access off %d size %d\n", off, size); +		return -EACCES; +	} + +	if (state->regs[regno].type == PTR_TO_MAP_VALUE) { +		err = check_map_access(env, regno, off, size); +		if (!err && t == BPF_READ && value_regno >= 0) +			mark_reg_unknown_value(state->regs, value_regno); + +	} else if (state->regs[regno].type == PTR_TO_CTX) { +		err = check_ctx_access(env, off, size, t); +		if (!err && t == BPF_READ && value_regno >= 0) +			mark_reg_unknown_value(state->regs, value_regno); + +	} else if (state->regs[regno].type == FRAME_PTR) { +		if (off >= 0 || off < -MAX_BPF_STACK) { +			verbose("invalid stack off=%d size=%d\n", off, size); +			return -EACCES; +		} +		if (t == BPF_WRITE) +			err = check_stack_write(state, off, size, value_regno); +		else +			err = check_stack_read(state, off, size, value_regno); +	} else { +		verbose("R%d invalid mem access '%s'\n", +			regno, reg_type_str[state->regs[regno].type]); +		return -EACCES; +	} +	return err; +} + +static int check_xadd(struct verifier_env *env, struct bpf_insn *insn) +{ +	struct reg_state *regs = env->cur_state.regs; +	int err; + +	if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) || +	    insn->imm != 0) { +		verbose("BPF_XADD uses reserved fields\n"); +		return -EINVAL; +	} + +	/* check src1 operand */ +	err = check_reg_arg(regs, insn->src_reg, SRC_OP); +	if (err) +		return err; + +	/* check src2 operand */ +	err = check_reg_arg(regs, insn->dst_reg, SRC_OP); +	if (err) +		return err; + +	/* check whether atomic_add can read the memory */ +	err = check_mem_access(env, insn->dst_reg, insn->off, +			       BPF_SIZE(insn->code), BPF_READ, -1); +	if (err) +		return err; + +	/* check whether atomic_add can write into the same memory */ +	return check_mem_access(env, insn->dst_reg, insn->off, +				BPF_SIZE(insn->code), BPF_WRITE, -1); +} + +/* when register 'regno' is passed into function that will read 'access_size' + * bytes from that pointer, make sure that it's within stack boundary + * and all elements of stack are initialized + */ +static int check_stack_boundary(struct verifier_env *env, +				int regno, int access_size) +{ +	struct verifier_state *state = &env->cur_state; +	struct reg_state *regs = state->regs; +	int off, i; + +	if (regs[regno].type != PTR_TO_STACK) +		return -EACCES; + +	off = regs[regno].imm; +	if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 || +	    access_size <= 0) { +		verbose("invalid stack type R%d off=%d access_size=%d\n", +			regno, off, access_size); +		return -EACCES; +	} + +	for (i = 0; i < access_size; i++) { +		if (state->stack[MAX_BPF_STACK + off + i].stype != STACK_MISC) { +			verbose("invalid indirect read from stack off %d+%d size %d\n", +				off, i, access_size); +			return -EACCES; +		} +	} +	return 0; +} + +static int check_func_arg(struct verifier_env *env, u32 regno, +			  enum bpf_arg_type arg_type, struct bpf_map **mapp) +{ +	struct reg_state *reg = env->cur_state.regs + regno; +	enum bpf_reg_type expected_type; +	int err = 0; + +	if (arg_type == ARG_ANYTHING) +		return 0; + +	if (reg->type == NOT_INIT) { +		verbose("R%d !read_ok\n", regno); +		return -EACCES; +	} + +	if (arg_type == ARG_PTR_TO_STACK || arg_type == ARG_PTR_TO_MAP_KEY || +	    arg_type == ARG_PTR_TO_MAP_VALUE) { +		expected_type = PTR_TO_STACK; +	} else if (arg_type == ARG_CONST_STACK_SIZE) { +		expected_type = CONST_IMM; +	} else if (arg_type == ARG_CONST_MAP_PTR) { +		expected_type = CONST_PTR_TO_MAP; +	} else { +		verbose("unsupported arg_type %d\n", arg_type); +		return -EFAULT; +	} + +	if (reg->type != expected_type) { +		verbose("R%d type=%s expected=%s\n", regno, +			reg_type_str[reg->type], reg_type_str[expected_type]); +		return -EACCES; +	} + +	if (arg_type == ARG_CONST_MAP_PTR) { +		/* bpf_map_xxx(map_ptr) call: remember that map_ptr */ +		*mapp = reg->map_ptr; + +	} else if (arg_type == ARG_PTR_TO_MAP_KEY) { +		/* bpf_map_xxx(..., map_ptr, ..., key) call: +		 * check that [key, key + map->key_size) are within +		 * stack limits and initialized +		 */ +		if (!*mapp) { +			/* in function declaration map_ptr must come before +			 * map_key, so that it's verified and known before +			 * we have to check map_key here. Otherwise it means +			 * that kernel subsystem misconfigured verifier +			 */ +			verbose("invalid map_ptr to access map->key\n"); +			return -EACCES; +		} +		err = check_stack_boundary(env, regno, (*mapp)->key_size); + +	} else if (arg_type == ARG_PTR_TO_MAP_VALUE) { +		/* bpf_map_xxx(..., map_ptr, ..., value) call: +		 * check [value, value + map->value_size) validity +		 */ +		if (!*mapp) { +			/* kernel subsystem misconfigured verifier */ +			verbose("invalid map_ptr to access map->value\n"); +			return -EACCES; +		} +		err = check_stack_boundary(env, regno, (*mapp)->value_size); + +	} else if (arg_type == ARG_CONST_STACK_SIZE) { +		/* bpf_xxx(..., buf, len) call will access 'len' bytes +		 * from stack pointer 'buf'. Check it +		 * note: regno == len, regno - 1 == buf +		 */ +		if (regno == 0) { +			/* kernel subsystem misconfigured verifier */ +			verbose("ARG_CONST_STACK_SIZE cannot be first argument\n"); +			return -EACCES; +		} +		err = check_stack_boundary(env, regno - 1, reg->imm); +	} + +	return err; +} + +static int check_call(struct verifier_env *env, int func_id) +{ +	struct verifier_state *state = &env->cur_state; +	const struct bpf_func_proto *fn = NULL; +	struct reg_state *regs = state->regs; +	struct bpf_map *map = NULL; +	struct reg_state *reg; +	int i, err; + +	/* find function prototype */ +	if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) { +		verbose("invalid func %d\n", func_id); +		return -EINVAL; +	} + +	if (env->prog->aux->ops->get_func_proto) +		fn = env->prog->aux->ops->get_func_proto(func_id); + +	if (!fn) { +		verbose("unknown func %d\n", func_id); +		return -EINVAL; +	} + +	/* eBPF programs must be GPL compatible to use GPL-ed functions */ +	if (!env->prog->aux->is_gpl_compatible && fn->gpl_only) { +		verbose("cannot call GPL only function from proprietary program\n"); +		return -EINVAL; +	} + +	/* check args */ +	err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &map); +	if (err) +		return err; +	err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &map); +	if (err) +		return err; +	err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &map); +	if (err) +		return err; +	err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &map); +	if (err) +		return err; +	err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &map); +	if (err) +		return err; + +	/* reset caller saved regs */ +	for (i = 0; i < CALLER_SAVED_REGS; i++) { +		reg = regs + caller_saved[i]; +		reg->type = NOT_INIT; +		reg->imm = 0; +	} + +	/* update return register */ +	if (fn->ret_type == RET_INTEGER) { +		regs[BPF_REG_0].type = UNKNOWN_VALUE; +	} else if (fn->ret_type == RET_VOID) { +		regs[BPF_REG_0].type = NOT_INIT; +	} else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) { +		regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL; +		/* remember map_ptr, so that check_map_access() +		 * can check 'value_size' boundary of memory access +		 * to map element returned from bpf_map_lookup_elem() +		 */ +		if (map == NULL) { +			verbose("kernel subsystem misconfigured verifier\n"); +			return -EINVAL; +		} +		regs[BPF_REG_0].map_ptr = map; +	} else { +		verbose("unknown return type %d of func %d\n", +			fn->ret_type, func_id); +		return -EINVAL; +	} +	return 0; +} + +/* check validity of 32-bit and 64-bit arithmetic operations */ +static int check_alu_op(struct reg_state *regs, struct bpf_insn *insn) +{ +	u8 opcode = BPF_OP(insn->code); +	int err; + +	if (opcode == BPF_END || opcode == BPF_NEG) { +		if (opcode == BPF_NEG) { +			if (BPF_SRC(insn->code) != 0 || +			    insn->src_reg != BPF_REG_0 || +			    insn->off != 0 || insn->imm != 0) { +				verbose("BPF_NEG uses reserved fields\n"); +				return -EINVAL; +			} +		} else { +			if (insn->src_reg != BPF_REG_0 || insn->off != 0 || +			    (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) { +				verbose("BPF_END uses reserved fields\n"); +				return -EINVAL; +			} +		} + +		/* check src operand */ +		err = check_reg_arg(regs, insn->dst_reg, SRC_OP); +		if (err) +			return err; + +		/* check dest operand */ +		err = check_reg_arg(regs, insn->dst_reg, DST_OP); +		if (err) +			return err; + +	} else if (opcode == BPF_MOV) { + +		if (BPF_SRC(insn->code) == BPF_X) { +			if (insn->imm != 0 || insn->off != 0) { +				verbose("BPF_MOV uses reserved fields\n"); +				return -EINVAL; +			} + +			/* check src operand */ +			err = check_reg_arg(regs, insn->src_reg, SRC_OP); +			if (err) +				return err; +		} else { +			if (insn->src_reg != BPF_REG_0 || insn->off != 0) { +				verbose("BPF_MOV uses reserved fields\n"); +				return -EINVAL; +			} +		} + +		/* check dest operand */ +		err = check_reg_arg(regs, insn->dst_reg, DST_OP); +		if (err) +			return err; + +		if (BPF_SRC(insn->code) == BPF_X) { +			if (BPF_CLASS(insn->code) == BPF_ALU64) { +				/* case: R1 = R2 +				 * copy register state to dest reg +				 */ +				regs[insn->dst_reg] = regs[insn->src_reg]; +			} else { +				regs[insn->dst_reg].type = UNKNOWN_VALUE; +				regs[insn->dst_reg].map_ptr = NULL; +			} +		} else { +			/* case: R = imm +			 * remember the value we stored into this reg +			 */ +			regs[insn->dst_reg].type = CONST_IMM; +			regs[insn->dst_reg].imm = insn->imm; +		} + +	} else if (opcode > BPF_END) { +		verbose("invalid BPF_ALU opcode %x\n", opcode); +		return -EINVAL; + +	} else {	/* all other ALU ops: and, sub, xor, add, ... */ + +		bool stack_relative = false; + +		if (BPF_SRC(insn->code) == BPF_X) { +			if (insn->imm != 0 || insn->off != 0) { +				verbose("BPF_ALU uses reserved fields\n"); +				return -EINVAL; +			} +			/* check src1 operand */ +			err = check_reg_arg(regs, insn->src_reg, SRC_OP); +			if (err) +				return err; +		} else { +			if (insn->src_reg != BPF_REG_0 || insn->off != 0) { +				verbose("BPF_ALU uses reserved fields\n"); +				return -EINVAL; +			} +		} + +		/* check src2 operand */ +		err = check_reg_arg(regs, insn->dst_reg, SRC_OP); +		if (err) +			return err; + +		if ((opcode == BPF_MOD || opcode == BPF_DIV) && +		    BPF_SRC(insn->code) == BPF_K && insn->imm == 0) { +			verbose("div by zero\n"); +			return -EINVAL; +		} + +		/* pattern match 'bpf_add Rx, imm' instruction */ +		if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 && +		    regs[insn->dst_reg].type == FRAME_PTR && +		    BPF_SRC(insn->code) == BPF_K) +			stack_relative = true; + +		/* check dest operand */ +		err = check_reg_arg(regs, insn->dst_reg, DST_OP); +		if (err) +			return err; + +		if (stack_relative) { +			regs[insn->dst_reg].type = PTR_TO_STACK; +			regs[insn->dst_reg].imm = insn->imm; +		} +	} + +	return 0; +} + +static int check_cond_jmp_op(struct verifier_env *env, +			     struct bpf_insn *insn, int *insn_idx) +{ +	struct reg_state *regs = env->cur_state.regs; +	struct verifier_state *other_branch; +	u8 opcode = BPF_OP(insn->code); +	int err; + +	if (opcode > BPF_EXIT) { +		verbose("invalid BPF_JMP opcode %x\n", opcode); +		return -EINVAL; +	} + +	if (BPF_SRC(insn->code) == BPF_X) { +		if (insn->imm != 0) { +			verbose("BPF_JMP uses reserved fields\n"); +			return -EINVAL; +		} + +		/* check src1 operand */ +		err = check_reg_arg(regs, insn->src_reg, SRC_OP); +		if (err) +			return err; +	} else { +		if (insn->src_reg != BPF_REG_0) { +			verbose("BPF_JMP uses reserved fields\n"); +			return -EINVAL; +		} +	} + +	/* check src2 operand */ +	err = check_reg_arg(regs, insn->dst_reg, SRC_OP); +	if (err) +		return err; + +	/* detect if R == 0 where R was initialized to zero earlier */ +	if (BPF_SRC(insn->code) == BPF_K && +	    (opcode == BPF_JEQ || opcode == BPF_JNE) && +	    regs[insn->dst_reg].type == CONST_IMM && +	    regs[insn->dst_reg].imm == insn->imm) { +		if (opcode == BPF_JEQ) { +			/* if (imm == imm) goto pc+off; +			 * only follow the goto, ignore fall-through +			 */ +			*insn_idx += insn->off; +			return 0; +		} else { +			/* if (imm != imm) goto pc+off; +			 * only follow fall-through branch, since +			 * that's where the program will go +			 */ +			return 0; +		} +	} + +	other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx); +	if (!other_branch) +		return -EFAULT; + +	/* detect if R == 0 where R is returned value from bpf_map_lookup_elem() */ +	if (BPF_SRC(insn->code) == BPF_K && +	    insn->imm == 0 && (opcode == BPF_JEQ || +			       opcode == BPF_JNE) && +	    regs[insn->dst_reg].type == PTR_TO_MAP_VALUE_OR_NULL) { +		if (opcode == BPF_JEQ) { +			/* next fallthrough insn can access memory via +			 * this register +			 */ +			regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; +			/* branch targer cannot access it, since reg == 0 */ +			other_branch->regs[insn->dst_reg].type = CONST_IMM; +			other_branch->regs[insn->dst_reg].imm = 0; +		} else { +			other_branch->regs[insn->dst_reg].type = PTR_TO_MAP_VALUE; +			regs[insn->dst_reg].type = CONST_IMM; +			regs[insn->dst_reg].imm = 0; +		} +	} else if (BPF_SRC(insn->code) == BPF_K && +		   (opcode == BPF_JEQ || opcode == BPF_JNE)) { + +		if (opcode == BPF_JEQ) { +			/* detect if (R == imm) goto +			 * and in the target state recognize that R = imm +			 */ +			other_branch->regs[insn->dst_reg].type = CONST_IMM; +			other_branch->regs[insn->dst_reg].imm = insn->imm; +		} else { +			/* detect if (R != imm) goto +			 * and in the fall-through state recognize that R = imm +			 */ +			regs[insn->dst_reg].type = CONST_IMM; +			regs[insn->dst_reg].imm = insn->imm; +		} +	} +	if (log_level) +		print_verifier_state(env); +	return 0; +} + +/* return the map pointer stored inside BPF_LD_IMM64 instruction */ +static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn) +{ +	u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32; + +	return (struct bpf_map *) (unsigned long) imm64; +} + +/* verify BPF_LD_IMM64 instruction */ +static int check_ld_imm(struct verifier_env *env, struct bpf_insn *insn) +{ +	struct reg_state *regs = env->cur_state.regs; +	int err; + +	if (BPF_SIZE(insn->code) != BPF_DW) { +		verbose("invalid BPF_LD_IMM insn\n"); +		return -EINVAL; +	} +	if (insn->off != 0) { +		verbose("BPF_LD_IMM64 uses reserved fields\n"); +		return -EINVAL; +	} + +	err = check_reg_arg(regs, insn->dst_reg, DST_OP); +	if (err) +		return err; + +	if (insn->src_reg == 0) +		/* generic move 64-bit immediate into a register */ +		return 0; + +	/* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */ +	BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD); + +	regs[insn->dst_reg].type = CONST_PTR_TO_MAP; +	regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn); +	return 0; +} + +/* non-recursive DFS pseudo code + * 1  procedure DFS-iterative(G,v): + * 2      label v as discovered + * 3      let S be a stack + * 4      S.push(v) + * 5      while S is not empty + * 6            t <- S.pop() + * 7            if t is what we're looking for: + * 8                return t + * 9            for all edges e in G.adjacentEdges(t) do + * 10               if edge e is already labelled + * 11                   continue with the next edge + * 12               w <- G.adjacentVertex(t,e) + * 13               if vertex w is not discovered and not explored + * 14                   label e as tree-edge + * 15                   label w as discovered + * 16                   S.push(w) + * 17                   continue at 5 + * 18               else if vertex w is discovered + * 19                   label e as back-edge + * 20               else + * 21                   // vertex w is explored + * 22                   label e as forward- or cross-edge + * 23           label t as explored + * 24           S.pop() + * + * convention: + * 0x10 - discovered + * 0x11 - discovered and fall-through edge labelled + * 0x12 - discovered and fall-through and branch edges labelled + * 0x20 - explored + */ + +enum { +	DISCOVERED = 0x10, +	EXPLORED = 0x20, +	FALLTHROUGH = 1, +	BRANCH = 2, +}; + +#define STATE_LIST_MARK ((struct verifier_state_list *) -1L) + +static int *insn_stack;	/* stack of insns to process */ +static int cur_stack;	/* current stack index */ +static int *insn_state; + +/* t, w, e - match pseudo-code above: + * t - index of current instruction + * w - next instruction + * e - edge + */ +static int push_insn(int t, int w, int e, struct verifier_env *env) +{ +	if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH)) +		return 0; + +	if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH)) +		return 0; + +	if (w < 0 || w >= env->prog->len) { +		verbose("jump out of range from insn %d to %d\n", t, w); +		return -EINVAL; +	} + +	if (e == BRANCH) +		/* mark branch target for state pruning */ +		env->explored_states[w] = STATE_LIST_MARK; + +	if (insn_state[w] == 0) { +		/* tree-edge */ +		insn_state[t] = DISCOVERED | e; +		insn_state[w] = DISCOVERED; +		if (cur_stack >= env->prog->len) +			return -E2BIG; +		insn_stack[cur_stack++] = w; +		return 1; +	} else if ((insn_state[w] & 0xF0) == DISCOVERED) { +		verbose("back-edge from insn %d to %d\n", t, w); +		return -EINVAL; +	} else if (insn_state[w] == EXPLORED) { +		/* forward- or cross-edge */ +		insn_state[t] = DISCOVERED | e; +	} else { +		verbose("insn state internal bug\n"); +		return -EFAULT; +	} +	return 0; +} + +/* non-recursive depth-first-search to detect loops in BPF program + * loop == back-edge in directed graph + */ +static int check_cfg(struct verifier_env *env) +{ +	struct bpf_insn *insns = env->prog->insnsi; +	int insn_cnt = env->prog->len; +	int ret = 0; +	int i, t; + +	insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); +	if (!insn_state) +		return -ENOMEM; + +	insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL); +	if (!insn_stack) { +		kfree(insn_state); +		return -ENOMEM; +	} + +	insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */ +	insn_stack[0] = 0; /* 0 is the first instruction */ +	cur_stack = 1; + +peek_stack: +	if (cur_stack == 0) +		goto check_state; +	t = insn_stack[cur_stack - 1]; + +	if (BPF_CLASS(insns[t].code) == BPF_JMP) { +		u8 opcode = BPF_OP(insns[t].code); + +		if (opcode == BPF_EXIT) { +			goto mark_explored; +		} else if (opcode == BPF_CALL) { +			ret = push_insn(t, t + 1, FALLTHROUGH, env); +			if (ret == 1) +				goto peek_stack; +			else if (ret < 0) +				goto err_free; +		} else if (opcode == BPF_JA) { +			if (BPF_SRC(insns[t].code) != BPF_K) { +				ret = -EINVAL; +				goto err_free; +			} +			/* unconditional jump with single edge */ +			ret = push_insn(t, t + insns[t].off + 1, +					FALLTHROUGH, env); +			if (ret == 1) +				goto peek_stack; +			else if (ret < 0) +				goto err_free; +			/* tell verifier to check for equivalent states +			 * after every call and jump +			 */ +			env->explored_states[t + 1] = STATE_LIST_MARK; +		} else { +			/* conditional jump with two edges */ +			ret = push_insn(t, t + 1, FALLTHROUGH, env); +			if (ret == 1) +				goto peek_stack; +			else if (ret < 0) +				goto err_free; + +			ret = push_insn(t, t + insns[t].off + 1, BRANCH, env); +			if (ret == 1) +				goto peek_stack; +			else if (ret < 0) +				goto err_free; +		} +	} else { +		/* all other non-branch instructions with single +		 * fall-through edge +		 */ +		ret = push_insn(t, t + 1, FALLTHROUGH, env); +		if (ret == 1) +			goto peek_stack; +		else if (ret < 0) +			goto err_free; +	} + +mark_explored: +	insn_state[t] = EXPLORED; +	if (cur_stack-- <= 0) { +		verbose("pop stack internal bug\n"); +		ret = -EFAULT; +		goto err_free; +	} +	goto peek_stack; + +check_state: +	for (i = 0; i < insn_cnt; i++) { +		if (insn_state[i] != EXPLORED) { +			verbose("unreachable insn %d\n", i); +			ret = -EINVAL; +			goto err_free; +		} +	} +	ret = 0; /* cfg looks good */ + +err_free: +	kfree(insn_state); +	kfree(insn_stack); +	return ret; +} + +/* compare two verifier states + * + * all states stored in state_list are known to be valid, since + * verifier reached 'bpf_exit' instruction through them + * + * this function is called when verifier exploring different branches of + * execution popped from the state stack. If it sees an old state that has + * more strict register state and more strict stack state then this execution + * branch doesn't need to be explored further, since verifier already + * concluded that more strict state leads to valid finish. + * + * Therefore two states are equivalent if register state is more conservative + * and explored stack state is more conservative than the current one. + * Example: + *       explored                   current + * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC) + * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC) + * + * In other words if current stack state (one being explored) has more + * valid slots than old one that already passed validation, it means + * the verifier can stop exploring and conclude that current state is valid too + * + * Similarly with registers. If explored state has register type as invalid + * whereas register type in current state is meaningful, it means that + * the current state will reach 'bpf_exit' instruction safely + */ +static bool states_equal(struct verifier_state *old, struct verifier_state *cur) +{ +	int i; + +	for (i = 0; i < MAX_BPF_REG; i++) { +		if (memcmp(&old->regs[i], &cur->regs[i], +			   sizeof(old->regs[0])) != 0) { +			if (old->regs[i].type == NOT_INIT || +			    old->regs[i].type == UNKNOWN_VALUE) +				continue; +			return false; +		} +	} + +	for (i = 0; i < MAX_BPF_STACK; i++) { +		if (memcmp(&old->stack[i], &cur->stack[i], +			   sizeof(old->stack[0])) != 0) { +			if (old->stack[i].stype == STACK_INVALID) +				continue; +			return false; +		} +	} +	return true; +} + +static int is_state_visited(struct verifier_env *env, int insn_idx) +{ +	struct verifier_state_list *new_sl; +	struct verifier_state_list *sl; + +	sl = env->explored_states[insn_idx]; +	if (!sl) +		/* this 'insn_idx' instruction wasn't marked, so we will not +		 * be doing state search here +		 */ +		return 0; + +	while (sl != STATE_LIST_MARK) { +		if (states_equal(&sl->state, &env->cur_state)) +			/* reached equivalent register/stack state, +			 * prune the search +			 */ +			return 1; +		sl = sl->next; +	} + +	/* there were no equivalent states, remember current one. +	 * technically the current state is not proven to be safe yet, +	 * but it will either reach bpf_exit (which means it's safe) or +	 * it will be rejected. Since there are no loops, we won't be +	 * seeing this 'insn_idx' instruction again on the way to bpf_exit +	 */ +	new_sl = kmalloc(sizeof(struct verifier_state_list), GFP_USER); +	if (!new_sl) +		return -ENOMEM; + +	/* add new state to the head of linked list */ +	memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state)); +	new_sl->next = env->explored_states[insn_idx]; +	env->explored_states[insn_idx] = new_sl; +	return 0; +} + +static int do_check(struct verifier_env *env) +{ +	struct verifier_state *state = &env->cur_state; +	struct bpf_insn *insns = env->prog->insnsi; +	struct reg_state *regs = state->regs; +	int insn_cnt = env->prog->len; +	int insn_idx, prev_insn_idx = 0; +	int insn_processed = 0; +	bool do_print_state = false; + +	init_reg_state(regs); +	insn_idx = 0; +	for (;;) { +		struct bpf_insn *insn; +		u8 class; +		int err; + +		if (insn_idx >= insn_cnt) { +			verbose("invalid insn idx %d insn_cnt %d\n", +				insn_idx, insn_cnt); +			return -EFAULT; +		} + +		insn = &insns[insn_idx]; +		class = BPF_CLASS(insn->code); + +		if (++insn_processed > 32768) { +			verbose("BPF program is too large. Proccessed %d insn\n", +				insn_processed); +			return -E2BIG; +		} + +		err = is_state_visited(env, insn_idx); +		if (err < 0) +			return err; +		if (err == 1) { +			/* found equivalent state, can prune the search */ +			if (log_level) { +				if (do_print_state) +					verbose("\nfrom %d to %d: safe\n", +						prev_insn_idx, insn_idx); +				else +					verbose("%d: safe\n", insn_idx); +			} +			goto process_bpf_exit; +		} + +		if (log_level && do_print_state) { +			verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx); +			print_verifier_state(env); +			do_print_state = false; +		} + +		if (log_level) { +			verbose("%d: ", insn_idx); +			print_bpf_insn(insn); +		} + +		if (class == BPF_ALU || class == BPF_ALU64) { +			err = check_alu_op(regs, insn); +			if (err) +				return err; + +		} else if (class == BPF_LDX) { +			if (BPF_MODE(insn->code) != BPF_MEM || +			    insn->imm != 0) { +				verbose("BPF_LDX uses reserved fields\n"); +				return -EINVAL; +			} +			/* check src operand */ +			err = check_reg_arg(regs, insn->src_reg, SRC_OP); +			if (err) +				return err; + +			err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK); +			if (err) +				return err; + +			/* check that memory (src_reg + off) is readable, +			 * the state of dst_reg will be updated by this func +			 */ +			err = check_mem_access(env, insn->src_reg, insn->off, +					       BPF_SIZE(insn->code), BPF_READ, +					       insn->dst_reg); +			if (err) +				return err; + +		} else if (class == BPF_STX) { +			if (BPF_MODE(insn->code) == BPF_XADD) { +				err = check_xadd(env, insn); +				if (err) +					return err; +				insn_idx++; +				continue; +			} + +			if (BPF_MODE(insn->code) != BPF_MEM || +			    insn->imm != 0) { +				verbose("BPF_STX uses reserved fields\n"); +				return -EINVAL; +			} +			/* check src1 operand */ +			err = check_reg_arg(regs, insn->src_reg, SRC_OP); +			if (err) +				return err; +			/* check src2 operand */ +			err = check_reg_arg(regs, insn->dst_reg, SRC_OP); +			if (err) +				return err; + +			/* check that memory (dst_reg + off) is writeable */ +			err = check_mem_access(env, insn->dst_reg, insn->off, +					       BPF_SIZE(insn->code), BPF_WRITE, +					       insn->src_reg); +			if (err) +				return err; + +		} else if (class == BPF_ST) { +			if (BPF_MODE(insn->code) != BPF_MEM || +			    insn->src_reg != BPF_REG_0) { +				verbose("BPF_ST uses reserved fields\n"); +				return -EINVAL; +			} +			/* check src operand */ +			err = check_reg_arg(regs, insn->dst_reg, SRC_OP); +			if (err) +				return err; + +			/* check that memory (dst_reg + off) is writeable */ +			err = check_mem_access(env, insn->dst_reg, insn->off, +					       BPF_SIZE(insn->code), BPF_WRITE, +					       -1); +			if (err) +				return err; + +		} else if (class == BPF_JMP) { +			u8 opcode = BPF_OP(insn->code); + +			if (opcode == BPF_CALL) { +				if (BPF_SRC(insn->code) != BPF_K || +				    insn->off != 0 || +				    insn->src_reg != BPF_REG_0 || +				    insn->dst_reg != BPF_REG_0) { +					verbose("BPF_CALL uses reserved fields\n"); +					return -EINVAL; +				} + +				err = check_call(env, insn->imm); +				if (err) +					return err; + +			} else if (opcode == BPF_JA) { +				if (BPF_SRC(insn->code) != BPF_K || +				    insn->imm != 0 || +				    insn->src_reg != BPF_REG_0 || +				    insn->dst_reg != BPF_REG_0) { +					verbose("BPF_JA uses reserved fields\n"); +					return -EINVAL; +				} + +				insn_idx += insn->off + 1; +				continue; + +			} else if (opcode == BPF_EXIT) { +				if (BPF_SRC(insn->code) != BPF_K || +				    insn->imm != 0 || +				    insn->src_reg != BPF_REG_0 || +				    insn->dst_reg != BPF_REG_0) { +					verbose("BPF_EXIT uses reserved fields\n"); +					return -EINVAL; +				} + +				/* eBPF calling convetion is such that R0 is used +				 * to return the value from eBPF program. +				 * Make sure that it's readable at this time +				 * of bpf_exit, which means that program wrote +				 * something into it earlier +				 */ +				err = check_reg_arg(regs, BPF_REG_0, SRC_OP); +				if (err) +					return err; + +process_bpf_exit: +				insn_idx = pop_stack(env, &prev_insn_idx); +				if (insn_idx < 0) { +					break; +				} else { +					do_print_state = true; +					continue; +				} +			} else { +				err = check_cond_jmp_op(env, insn, &insn_idx); +				if (err) +					return err; +			} +		} else if (class == BPF_LD) { +			u8 mode = BPF_MODE(insn->code); + +			if (mode == BPF_ABS || mode == BPF_IND) { +				verbose("LD_ABS is not supported yet\n"); +				return -EINVAL; +			} else if (mode == BPF_IMM) { +				err = check_ld_imm(env, insn); +				if (err) +					return err; + +				insn_idx++; +			} else { +				verbose("invalid BPF_LD mode\n"); +				return -EINVAL; +			} +		} else { +			verbose("unknown insn class %d\n", class); +			return -EINVAL; +		} + +		insn_idx++; +	} + +	return 0; +} + +/* look for pseudo eBPF instructions that access map FDs and + * replace them with actual map pointers + */ +static int replace_map_fd_with_map_ptr(struct verifier_env *env) +{ +	struct bpf_insn *insn = env->prog->insnsi; +	int insn_cnt = env->prog->len; +	int i, j; + +	for (i = 0; i < insn_cnt; i++, insn++) { +		if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) { +			struct bpf_map *map; +			struct fd f; + +			if (i == insn_cnt - 1 || insn[1].code != 0 || +			    insn[1].dst_reg != 0 || insn[1].src_reg != 0 || +			    insn[1].off != 0) { +				verbose("invalid bpf_ld_imm64 insn\n"); +				return -EINVAL; +			} + +			if (insn->src_reg == 0) +				/* valid generic load 64-bit imm */ +				goto next_insn; + +			if (insn->src_reg != BPF_PSEUDO_MAP_FD) { +				verbose("unrecognized bpf_ld_imm64 insn\n"); +				return -EINVAL; +			} + +			f = fdget(insn->imm); + +			map = bpf_map_get(f); +			if (IS_ERR(map)) { +				verbose("fd %d is not pointing to valid bpf_map\n", +					insn->imm); +				fdput(f); +				return PTR_ERR(map); +			} + +			/* store map pointer inside BPF_LD_IMM64 instruction */ +			insn[0].imm = (u32) (unsigned long) map; +			insn[1].imm = ((u64) (unsigned long) map) >> 32; + +			/* check whether we recorded this map already */ +			for (j = 0; j < env->used_map_cnt; j++) +				if (env->used_maps[j] == map) { +					fdput(f); +					goto next_insn; +				} + +			if (env->used_map_cnt >= MAX_USED_MAPS) { +				fdput(f); +				return -E2BIG; +			} + +			/* remember this map */ +			env->used_maps[env->used_map_cnt++] = map; + +			/* hold the map. If the program is rejected by verifier, +			 * the map will be released by release_maps() or it +			 * will be used by the valid program until it's unloaded +			 * and all maps are released in free_bpf_prog_info() +			 */ +			atomic_inc(&map->refcnt); + +			fdput(f); +next_insn: +			insn++; +			i++; +		} +	} + +	/* now all pseudo BPF_LD_IMM64 instructions load valid +	 * 'struct bpf_map *' into a register instead of user map_fd. +	 * These pointers will be used later by verifier to validate map access. +	 */ +	return 0; +} + +/* drop refcnt of maps used by the rejected program */ +static void release_maps(struct verifier_env *env) +{ +	int i; + +	for (i = 0; i < env->used_map_cnt; i++) +		bpf_map_put(env->used_maps[i]); +} + +/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */ +static void convert_pseudo_ld_imm64(struct verifier_env *env) +{ +	struct bpf_insn *insn = env->prog->insnsi; +	int insn_cnt = env->prog->len; +	int i; + +	for (i = 0; i < insn_cnt; i++, insn++) +		if (insn->code == (BPF_LD | BPF_IMM | BPF_DW)) +			insn->src_reg = 0; +} + +static void free_states(struct verifier_env *env) +{ +	struct verifier_state_list *sl, *sln; +	int i; + +	if (!env->explored_states) +		return; + +	for (i = 0; i < env->prog->len; i++) { +		sl = env->explored_states[i]; + +		if (sl) +			while (sl != STATE_LIST_MARK) { +				sln = sl->next; +				kfree(sl); +				sl = sln; +			} +	} + +	kfree(env->explored_states); +} + +int bpf_check(struct bpf_prog *prog, union bpf_attr *attr) +{ +	char __user *log_ubuf = NULL; +	struct verifier_env *env; +	int ret = -EINVAL; + +	if (prog->len <= 0 || prog->len > BPF_MAXINSNS) +		return -E2BIG; + +	/* 'struct verifier_env' can be global, but since it's not small, +	 * allocate/free it every time bpf_check() is called +	 */ +	env = kzalloc(sizeof(struct verifier_env), GFP_KERNEL); +	if (!env) +		return -ENOMEM; + +	env->prog = prog; + +	/* grab the mutex to protect few globals used by verifier */ +	mutex_lock(&bpf_verifier_lock); + +	if (attr->log_level || attr->log_buf || attr->log_size) { +		/* user requested verbose verifier output +		 * and supplied buffer to store the verification trace +		 */ +		log_level = attr->log_level; +		log_ubuf = (char __user *) (unsigned long) attr->log_buf; +		log_size = attr->log_size; +		log_len = 0; + +		ret = -EINVAL; +		/* log_* values have to be sane */ +		if (log_size < 128 || log_size > UINT_MAX >> 8 || +		    log_level == 0 || log_ubuf == NULL) +			goto free_env; + +		ret = -ENOMEM; +		log_buf = vmalloc(log_size); +		if (!log_buf) +			goto free_env; +	} else { +		log_level = 0; +	} + +	ret = replace_map_fd_with_map_ptr(env); +	if (ret < 0) +		goto skip_full_check; + +	env->explored_states = kcalloc(prog->len, +				       sizeof(struct verifier_state_list *), +				       GFP_USER); +	ret = -ENOMEM; +	if (!env->explored_states) +		goto skip_full_check; + +	ret = check_cfg(env); +	if (ret < 0) +		goto skip_full_check; + +	ret = do_check(env); + +skip_full_check: +	while (pop_stack(env, NULL) >= 0); +	free_states(env); + +	if (log_level && log_len >= log_size - 1) { +		BUG_ON(log_len >= log_size); +		/* verifier log exceeded user supplied buffer */ +		ret = -ENOSPC; +		/* fall through to return what was recorded */ +	} + +	/* copy verifier log back to user space including trailing zero */ +	if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) { +		ret = -EFAULT; +		goto free_log_buf; +	} + +	if (ret == 0 && env->used_map_cnt) { +		/* if program passed verifier, update used_maps in bpf_prog_info */ +		prog->aux->used_maps = kmalloc_array(env->used_map_cnt, +						     sizeof(env->used_maps[0]), +						     GFP_KERNEL); + +		if (!prog->aux->used_maps) { +			ret = -ENOMEM; +			goto free_log_buf; +		} + +		memcpy(prog->aux->used_maps, env->used_maps, +		       sizeof(env->used_maps[0]) * env->used_map_cnt); +		prog->aux->used_map_cnt = env->used_map_cnt; + +		/* program is valid. Convert pseudo bpf_ld_imm64 into generic +		 * bpf_ld_imm64 instructions +		 */ +		convert_pseudo_ld_imm64(env); +	} + +free_log_buf: +	if (log_level) +		vfree(log_buf); +free_env: +	if (!prog->aux->used_maps) +		/* if we didn't copy map pointers into bpf_prog_info, release +		 * them now. Otherwise free_bpf_prog_info() will release them. +		 */ +		release_maps(env); +	kfree(env); +	mutex_unlock(&bpf_verifier_lock); +	return ret; +} |