diff options
Diffstat (limited to 'fs/xfs/linux-2.6/xfs_sync.c')
| -rw-r--r-- | fs/xfs/linux-2.6/xfs_sync.c | 1065 | 
1 files changed, 0 insertions, 1065 deletions
| diff --git a/fs/xfs/linux-2.6/xfs_sync.c b/fs/xfs/linux-2.6/xfs_sync.c deleted file mode 100644 index e4c938afb910..000000000000 --- a/fs/xfs/linux-2.6/xfs_sync.c +++ /dev/null @@ -1,1065 +0,0 @@ -/* - * Copyright (c) 2000-2005 Silicon Graphics, Inc. - * All Rights Reserved. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it would be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write the Free Software Foundation, - * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA - */ -#include "xfs.h" -#include "xfs_fs.h" -#include "xfs_types.h" -#include "xfs_bit.h" -#include "xfs_log.h" -#include "xfs_inum.h" -#include "xfs_trans.h" -#include "xfs_trans_priv.h" -#include "xfs_sb.h" -#include "xfs_ag.h" -#include "xfs_mount.h" -#include "xfs_bmap_btree.h" -#include "xfs_inode.h" -#include "xfs_dinode.h" -#include "xfs_error.h" -#include "xfs_filestream.h" -#include "xfs_vnodeops.h" -#include "xfs_inode_item.h" -#include "xfs_quota.h" -#include "xfs_trace.h" -#include "xfs_fsops.h" - -#include <linux/kthread.h> -#include <linux/freezer.h> - -struct workqueue_struct	*xfs_syncd_wq;	/* sync workqueue */ - -/* - * The inode lookup is done in batches to keep the amount of lock traffic and - * radix tree lookups to a minimum. The batch size is a trade off between - * lookup reduction and stack usage. This is in the reclaim path, so we can't - * be too greedy. - */ -#define XFS_LOOKUP_BATCH	32 - -STATIC int -xfs_inode_ag_walk_grab( -	struct xfs_inode	*ip) -{ -	struct inode		*inode = VFS_I(ip); - -	ASSERT(rcu_read_lock_held()); - -	/* -	 * check for stale RCU freed inode -	 * -	 * If the inode has been reallocated, it doesn't matter if it's not in -	 * the AG we are walking - we are walking for writeback, so if it -	 * passes all the "valid inode" checks and is dirty, then we'll write -	 * it back anyway.  If it has been reallocated and still being -	 * initialised, the XFS_INEW check below will catch it. -	 */ -	spin_lock(&ip->i_flags_lock); -	if (!ip->i_ino) -		goto out_unlock_noent; - -	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */ -	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) -		goto out_unlock_noent; -	spin_unlock(&ip->i_flags_lock); - -	/* nothing to sync during shutdown */ -	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) -		return EFSCORRUPTED; - -	/* If we can't grab the inode, it must on it's way to reclaim. */ -	if (!igrab(inode)) -		return ENOENT; - -	if (is_bad_inode(inode)) { -		IRELE(ip); -		return ENOENT; -	} - -	/* inode is valid */ -	return 0; - -out_unlock_noent: -	spin_unlock(&ip->i_flags_lock); -	return ENOENT; -} - -STATIC int -xfs_inode_ag_walk( -	struct xfs_mount	*mp, -	struct xfs_perag	*pag, -	int			(*execute)(struct xfs_inode *ip, -					   struct xfs_perag *pag, int flags), -	int			flags) -{ -	uint32_t		first_index; -	int			last_error = 0; -	int			skipped; -	int			done; -	int			nr_found; - -restart: -	done = 0; -	skipped = 0; -	first_index = 0; -	nr_found = 0; -	do { -		struct xfs_inode *batch[XFS_LOOKUP_BATCH]; -		int		error = 0; -		int		i; - -		rcu_read_lock(); -		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, -					(void **)batch, first_index, -					XFS_LOOKUP_BATCH); -		if (!nr_found) { -			rcu_read_unlock(); -			break; -		} - -		/* -		 * Grab the inodes before we drop the lock. if we found -		 * nothing, nr == 0 and the loop will be skipped. -		 */ -		for (i = 0; i < nr_found; i++) { -			struct xfs_inode *ip = batch[i]; - -			if (done || xfs_inode_ag_walk_grab(ip)) -				batch[i] = NULL; - -			/* -			 * Update the index for the next lookup. Catch -			 * overflows into the next AG range which can occur if -			 * we have inodes in the last block of the AG and we -			 * are currently pointing to the last inode. -			 * -			 * Because we may see inodes that are from the wrong AG -			 * due to RCU freeing and reallocation, only update the -			 * index if it lies in this AG. It was a race that lead -			 * us to see this inode, so another lookup from the -			 * same index will not find it again. -			 */ -			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) -				continue; -			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); -			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) -				done = 1; -		} - -		/* unlock now we've grabbed the inodes. */ -		rcu_read_unlock(); - -		for (i = 0; i < nr_found; i++) { -			if (!batch[i]) -				continue; -			error = execute(batch[i], pag, flags); -			IRELE(batch[i]); -			if (error == EAGAIN) { -				skipped++; -				continue; -			} -			if (error && last_error != EFSCORRUPTED) -				last_error = error; -		} - -		/* bail out if the filesystem is corrupted.  */ -		if (error == EFSCORRUPTED) -			break; - -		cond_resched(); - -	} while (nr_found && !done); - -	if (skipped) { -		delay(1); -		goto restart; -	} -	return last_error; -} - -int -xfs_inode_ag_iterator( -	struct xfs_mount	*mp, -	int			(*execute)(struct xfs_inode *ip, -					   struct xfs_perag *pag, int flags), -	int			flags) -{ -	struct xfs_perag	*pag; -	int			error = 0; -	int			last_error = 0; -	xfs_agnumber_t		ag; - -	ag = 0; -	while ((pag = xfs_perag_get(mp, ag))) { -		ag = pag->pag_agno + 1; -		error = xfs_inode_ag_walk(mp, pag, execute, flags); -		xfs_perag_put(pag); -		if (error) { -			last_error = error; -			if (error == EFSCORRUPTED) -				break; -		} -	} -	return XFS_ERROR(last_error); -} - -STATIC int -xfs_sync_inode_data( -	struct xfs_inode	*ip, -	struct xfs_perag	*pag, -	int			flags) -{ -	struct inode		*inode = VFS_I(ip); -	struct address_space *mapping = inode->i_mapping; -	int			error = 0; - -	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) -		goto out_wait; - -	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { -		if (flags & SYNC_TRYLOCK) -			goto out_wait; -		xfs_ilock(ip, XFS_IOLOCK_SHARED); -	} - -	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? -				0 : XBF_ASYNC, FI_NONE); -	xfs_iunlock(ip, XFS_IOLOCK_SHARED); - - out_wait: -	if (flags & SYNC_WAIT) -		xfs_ioend_wait(ip); -	return error; -} - -STATIC int -xfs_sync_inode_attr( -	struct xfs_inode	*ip, -	struct xfs_perag	*pag, -	int			flags) -{ -	int			error = 0; - -	xfs_ilock(ip, XFS_ILOCK_SHARED); -	if (xfs_inode_clean(ip)) -		goto out_unlock; -	if (!xfs_iflock_nowait(ip)) { -		if (!(flags & SYNC_WAIT)) -			goto out_unlock; -		xfs_iflock(ip); -	} - -	if (xfs_inode_clean(ip)) { -		xfs_ifunlock(ip); -		goto out_unlock; -	} - -	error = xfs_iflush(ip, flags); - -	/* -	 * We don't want to try again on non-blocking flushes that can't run -	 * again immediately. If an inode really must be written, then that's -	 * what the SYNC_WAIT flag is for. -	 */ -	if (error == EAGAIN) { -		ASSERT(!(flags & SYNC_WAIT)); -		error = 0; -	} - - out_unlock: -	xfs_iunlock(ip, XFS_ILOCK_SHARED); -	return error; -} - -/* - * Write out pagecache data for the whole filesystem. - */ -STATIC int -xfs_sync_data( -	struct xfs_mount	*mp, -	int			flags) -{ -	int			error; - -	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0); - -	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags); -	if (error) -		return XFS_ERROR(error); - -	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); -	return 0; -} - -/* - * Write out inode metadata (attributes) for the whole filesystem. - */ -STATIC int -xfs_sync_attr( -	struct xfs_mount	*mp, -	int			flags) -{ -	ASSERT((flags & ~SYNC_WAIT) == 0); - -	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags); -} - -STATIC int -xfs_sync_fsdata( -	struct xfs_mount	*mp) -{ -	struct xfs_buf		*bp; - -	/* -	 * If the buffer is pinned then push on the log so we won't get stuck -	 * waiting in the write for someone, maybe ourselves, to flush the log. -	 * -	 * Even though we just pushed the log above, we did not have the -	 * superblock buffer locked at that point so it can become pinned in -	 * between there and here. -	 */ -	bp = xfs_getsb(mp, 0); -	if (XFS_BUF_ISPINNED(bp)) -		xfs_log_force(mp, 0); - -	return xfs_bwrite(mp, bp); -} - -/* - * When remounting a filesystem read-only or freezing the filesystem, we have - * two phases to execute. This first phase is syncing the data before we - * quiesce the filesystem, and the second is flushing all the inodes out after - * we've waited for all the transactions created by the first phase to - * complete. The second phase ensures that the inodes are written to their - * location on disk rather than just existing in transactions in the log. This - * means after a quiesce there is no log replay required to write the inodes to - * disk (this is the main difference between a sync and a quiesce). - */ -/* - * First stage of freeze - no writers will make progress now we are here, - * so we flush delwri and delalloc buffers here, then wait for all I/O to - * complete.  Data is frozen at that point. Metadata is not frozen, - * transactions can still occur here so don't bother flushing the buftarg - * because it'll just get dirty again. - */ -int -xfs_quiesce_data( -	struct xfs_mount	*mp) -{ -	int			error, error2 = 0; - -	xfs_qm_sync(mp, SYNC_TRYLOCK); -	xfs_qm_sync(mp, SYNC_WAIT); - -	/* force out the newly dirtied log buffers */ -	xfs_log_force(mp, XFS_LOG_SYNC); - -	/* write superblock and hoover up shutdown errors */ -	error = xfs_sync_fsdata(mp); - -	/* make sure all delwri buffers are written out */ -	xfs_flush_buftarg(mp->m_ddev_targp, 1); - -	/* mark the log as covered if needed */ -	if (xfs_log_need_covered(mp)) -		error2 = xfs_fs_log_dummy(mp); - -	/* flush data-only devices */ -	if (mp->m_rtdev_targp) -		XFS_bflush(mp->m_rtdev_targp); - -	return error ? error : error2; -} - -STATIC void -xfs_quiesce_fs( -	struct xfs_mount	*mp) -{ -	int	count = 0, pincount; - -	xfs_reclaim_inodes(mp, 0); -	xfs_flush_buftarg(mp->m_ddev_targp, 0); - -	/* -	 * This loop must run at least twice.  The first instance of the loop -	 * will flush most meta data but that will generate more meta data -	 * (typically directory updates).  Which then must be flushed and -	 * logged before we can write the unmount record. We also so sync -	 * reclaim of inodes to catch any that the above delwri flush skipped. -	 */ -	do { -		xfs_reclaim_inodes(mp, SYNC_WAIT); -		xfs_sync_attr(mp, SYNC_WAIT); -		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); -		if (!pincount) { -			delay(50); -			count++; -		} -	} while (count < 2); -} - -/* - * Second stage of a quiesce. The data is already synced, now we have to take - * care of the metadata. New transactions are already blocked, so we need to - * wait for any remaining transactions to drain out before proceeding. - */ -void -xfs_quiesce_attr( -	struct xfs_mount	*mp) -{ -	int	error = 0; - -	/* wait for all modifications to complete */ -	while (atomic_read(&mp->m_active_trans) > 0) -		delay(100); - -	/* flush inodes and push all remaining buffers out to disk */ -	xfs_quiesce_fs(mp); - -	/* -	 * Just warn here till VFS can correctly support -	 * read-only remount without racing. -	 */ -	WARN_ON(atomic_read(&mp->m_active_trans) != 0); - -	/* Push the superblock and write an unmount record */ -	error = xfs_log_sbcount(mp); -	if (error) -		xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " -				"Frozen image may not be consistent."); -	xfs_log_unmount_write(mp); -	xfs_unmountfs_writesb(mp); -} - -static void -xfs_syncd_queue_sync( -	struct xfs_mount        *mp) -{ -	queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work, -				msecs_to_jiffies(xfs_syncd_centisecs * 10)); -} - -/* - * Every sync period we need to unpin all items, reclaim inodes and sync - * disk quotas.  We might need to cover the log to indicate that the - * filesystem is idle and not frozen. - */ -STATIC void -xfs_sync_worker( -	struct work_struct *work) -{ -	struct xfs_mount *mp = container_of(to_delayed_work(work), -					struct xfs_mount, m_sync_work); -	int		error; - -	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { -		/* dgc: errors ignored here */ -		if (mp->m_super->s_frozen == SB_UNFROZEN && -		    xfs_log_need_covered(mp)) -			error = xfs_fs_log_dummy(mp); -		else -			xfs_log_force(mp, 0); -		error = xfs_qm_sync(mp, SYNC_TRYLOCK); - -		/* start pushing all the metadata that is currently dirty */ -		xfs_ail_push_all(mp->m_ail); -	} - -	/* queue us up again */ -	xfs_syncd_queue_sync(mp); -} - -/* - * Queue a new inode reclaim pass if there are reclaimable inodes and there - * isn't a reclaim pass already in progress. By default it runs every 5s based - * on the xfs syncd work default of 30s. Perhaps this should have it's own - * tunable, but that can be done if this method proves to be ineffective or too - * aggressive. - */ -static void -xfs_syncd_queue_reclaim( -	struct xfs_mount        *mp) -{ - -	/* -	 * We can have inodes enter reclaim after we've shut down the syncd -	 * workqueue during unmount, so don't allow reclaim work to be queued -	 * during unmount. -	 */ -	if (!(mp->m_super->s_flags & MS_ACTIVE)) -		return; - -	rcu_read_lock(); -	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { -		queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work, -			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10)); -	} -	rcu_read_unlock(); -} - -/* - * This is a fast pass over the inode cache to try to get reclaim moving on as - * many inodes as possible in a short period of time. It kicks itself every few - * seconds, as well as being kicked by the inode cache shrinker when memory - * goes low. It scans as quickly as possible avoiding locked inodes or those - * already being flushed, and once done schedules a future pass. - */ -STATIC void -xfs_reclaim_worker( -	struct work_struct *work) -{ -	struct xfs_mount *mp = container_of(to_delayed_work(work), -					struct xfs_mount, m_reclaim_work); - -	xfs_reclaim_inodes(mp, SYNC_TRYLOCK); -	xfs_syncd_queue_reclaim(mp); -} - -/* - * Flush delayed allocate data, attempting to free up reserved space - * from existing allocations.  At this point a new allocation attempt - * has failed with ENOSPC and we are in the process of scratching our - * heads, looking about for more room. - * - * Queue a new data flush if there isn't one already in progress and - * wait for completion of the flush. This means that we only ever have one - * inode flush in progress no matter how many ENOSPC events are occurring and - * so will prevent the system from bogging down due to every concurrent - * ENOSPC event scanning all the active inodes in the system for writeback. - */ -void -xfs_flush_inodes( -	struct xfs_inode	*ip) -{ -	struct xfs_mount	*mp = ip->i_mount; - -	queue_work(xfs_syncd_wq, &mp->m_flush_work); -	flush_work_sync(&mp->m_flush_work); -} - -STATIC void -xfs_flush_worker( -	struct work_struct *work) -{ -	struct xfs_mount *mp = container_of(work, -					struct xfs_mount, m_flush_work); - -	xfs_sync_data(mp, SYNC_TRYLOCK); -	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT); -} - -int -xfs_syncd_init( -	struct xfs_mount	*mp) -{ -	INIT_WORK(&mp->m_flush_work, xfs_flush_worker); -	INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker); -	INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); - -	xfs_syncd_queue_sync(mp); -	xfs_syncd_queue_reclaim(mp); - -	return 0; -} - -void -xfs_syncd_stop( -	struct xfs_mount	*mp) -{ -	cancel_delayed_work_sync(&mp->m_sync_work); -	cancel_delayed_work_sync(&mp->m_reclaim_work); -	cancel_work_sync(&mp->m_flush_work); -} - -void -__xfs_inode_set_reclaim_tag( -	struct xfs_perag	*pag, -	struct xfs_inode	*ip) -{ -	radix_tree_tag_set(&pag->pag_ici_root, -			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), -			   XFS_ICI_RECLAIM_TAG); - -	if (!pag->pag_ici_reclaimable) { -		/* propagate the reclaim tag up into the perag radix tree */ -		spin_lock(&ip->i_mount->m_perag_lock); -		radix_tree_tag_set(&ip->i_mount->m_perag_tree, -				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), -				XFS_ICI_RECLAIM_TAG); -		spin_unlock(&ip->i_mount->m_perag_lock); - -		/* schedule periodic background inode reclaim */ -		xfs_syncd_queue_reclaim(ip->i_mount); - -		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno, -							-1, _RET_IP_); -	} -	pag->pag_ici_reclaimable++; -} - -/* - * We set the inode flag atomically with the radix tree tag. - * Once we get tag lookups on the radix tree, this inode flag - * can go away. - */ -void -xfs_inode_set_reclaim_tag( -	xfs_inode_t	*ip) -{ -	struct xfs_mount *mp = ip->i_mount; -	struct xfs_perag *pag; - -	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); -	spin_lock(&pag->pag_ici_lock); -	spin_lock(&ip->i_flags_lock); -	__xfs_inode_set_reclaim_tag(pag, ip); -	__xfs_iflags_set(ip, XFS_IRECLAIMABLE); -	spin_unlock(&ip->i_flags_lock); -	spin_unlock(&pag->pag_ici_lock); -	xfs_perag_put(pag); -} - -STATIC void -__xfs_inode_clear_reclaim( -	xfs_perag_t	*pag, -	xfs_inode_t	*ip) -{ -	pag->pag_ici_reclaimable--; -	if (!pag->pag_ici_reclaimable) { -		/* clear the reclaim tag from the perag radix tree */ -		spin_lock(&ip->i_mount->m_perag_lock); -		radix_tree_tag_clear(&ip->i_mount->m_perag_tree, -				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino), -				XFS_ICI_RECLAIM_TAG); -		spin_unlock(&ip->i_mount->m_perag_lock); -		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno, -							-1, _RET_IP_); -	} -} - -void -__xfs_inode_clear_reclaim_tag( -	xfs_mount_t	*mp, -	xfs_perag_t	*pag, -	xfs_inode_t	*ip) -{ -	radix_tree_tag_clear(&pag->pag_ici_root, -			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); -	__xfs_inode_clear_reclaim(pag, ip); -} - -/* - * Grab the inode for reclaim exclusively. - * Return 0 if we grabbed it, non-zero otherwise. - */ -STATIC int -xfs_reclaim_inode_grab( -	struct xfs_inode	*ip, -	int			flags) -{ -	ASSERT(rcu_read_lock_held()); - -	/* quick check for stale RCU freed inode */ -	if (!ip->i_ino) -		return 1; - -	/* -	 * do some unlocked checks first to avoid unnecessary lock traffic. -	 * The first is a flush lock check, the second is a already in reclaim -	 * check. Only do these checks if we are not going to block on locks. -	 */ -	if ((flags & SYNC_TRYLOCK) && -	    (!ip->i_flush.done || __xfs_iflags_test(ip, XFS_IRECLAIM))) { -		return 1; -	} - -	/* -	 * The radix tree lock here protects a thread in xfs_iget from racing -	 * with us starting reclaim on the inode.  Once we have the -	 * XFS_IRECLAIM flag set it will not touch us. -	 * -	 * Due to RCU lookup, we may find inodes that have been freed and only -	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that -	 * aren't candidates for reclaim at all, so we must check the -	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim. -	 */ -	spin_lock(&ip->i_flags_lock); -	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) || -	    __xfs_iflags_test(ip, XFS_IRECLAIM)) { -		/* not a reclaim candidate. */ -		spin_unlock(&ip->i_flags_lock); -		return 1; -	} -	__xfs_iflags_set(ip, XFS_IRECLAIM); -	spin_unlock(&ip->i_flags_lock); -	return 0; -} - -/* - * Inodes in different states need to be treated differently, and the return - * value of xfs_iflush is not sufficient to get this right. The following table - * lists the inode states and the reclaim actions necessary for non-blocking - * reclaim: - * - * - *	inode state	     iflush ret		required action - *      ---------------      ----------         --------------- - *	bad			-		reclaim - *	shutdown		EIO		unpin and reclaim - *	clean, unpinned		0		reclaim - *	stale, unpinned		0		reclaim - *	clean, pinned(*)	0		requeue - *	stale, pinned		EAGAIN		requeue - *	dirty, delwri ok	0		requeue - *	dirty, delwri blocked	EAGAIN		requeue - *	dirty, sync flush	0		reclaim - * - * (*) dgc: I don't think the clean, pinned state is possible but it gets - * handled anyway given the order of checks implemented. - * - * As can be seen from the table, the return value of xfs_iflush() is not - * sufficient to correctly decide the reclaim action here. The checks in - * xfs_iflush() might look like duplicates, but they are not. - * - * Also, because we get the flush lock first, we know that any inode that has - * been flushed delwri has had the flush completed by the time we check that - * the inode is clean. The clean inode check needs to be done before flushing - * the inode delwri otherwise we would loop forever requeuing clean inodes as - * we cannot tell apart a successful delwri flush and a clean inode from the - * return value of xfs_iflush(). - * - * Note that because the inode is flushed delayed write by background - * writeback, the flush lock may already be held here and waiting on it can - * result in very long latencies. Hence for sync reclaims, where we wait on the - * flush lock, the caller should push out delayed write inodes first before - * trying to reclaim them to minimise the amount of time spent waiting. For - * background relaim, we just requeue the inode for the next pass. - * - * Hence the order of actions after gaining the locks should be: - *	bad		=> reclaim - *	shutdown	=> unpin and reclaim - *	pinned, delwri	=> requeue - *	pinned, sync	=> unpin - *	stale		=> reclaim - *	clean		=> reclaim - *	dirty, delwri	=> flush and requeue - *	dirty, sync	=> flush, wait and reclaim - */ -STATIC int -xfs_reclaim_inode( -	struct xfs_inode	*ip, -	struct xfs_perag	*pag, -	int			sync_mode) -{ -	int	error; - -restart: -	error = 0; -	xfs_ilock(ip, XFS_ILOCK_EXCL); -	if (!xfs_iflock_nowait(ip)) { -		if (!(sync_mode & SYNC_WAIT)) -			goto out; -		xfs_iflock(ip); -	} - -	if (is_bad_inode(VFS_I(ip))) -		goto reclaim; -	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { -		xfs_iunpin_wait(ip); -		goto reclaim; -	} -	if (xfs_ipincount(ip)) { -		if (!(sync_mode & SYNC_WAIT)) { -			xfs_ifunlock(ip); -			goto out; -		} -		xfs_iunpin_wait(ip); -	} -	if (xfs_iflags_test(ip, XFS_ISTALE)) -		goto reclaim; -	if (xfs_inode_clean(ip)) -		goto reclaim; - -	/* -	 * Now we have an inode that needs flushing. -	 * -	 * We do a nonblocking flush here even if we are doing a SYNC_WAIT -	 * reclaim as we can deadlock with inode cluster removal. -	 * xfs_ifree_cluster() can lock the inode buffer before it locks the -	 * ip->i_lock, and we are doing the exact opposite here. As a result, -	 * doing a blocking xfs_itobp() to get the cluster buffer will result -	 * in an ABBA deadlock with xfs_ifree_cluster(). -	 * -	 * As xfs_ifree_cluser() must gather all inodes that are active in the -	 * cache to mark them stale, if we hit this case we don't actually want -	 * to do IO here - we want the inode marked stale so we can simply -	 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush, -	 * just unlock the inode, back off and try again. Hopefully the next -	 * pass through will see the stale flag set on the inode. -	 */ -	error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode); -	if (sync_mode & SYNC_WAIT) { -		if (error == EAGAIN) { -			xfs_iunlock(ip, XFS_ILOCK_EXCL); -			/* backoff longer than in xfs_ifree_cluster */ -			delay(2); -			goto restart; -		} -		xfs_iflock(ip); -		goto reclaim; -	} - -	/* -	 * When we have to flush an inode but don't have SYNC_WAIT set, we -	 * flush the inode out using a delwri buffer and wait for the next -	 * call into reclaim to find it in a clean state instead of waiting for -	 * it now. We also don't return errors here - if the error is transient -	 * then the next reclaim pass will flush the inode, and if the error -	 * is permanent then the next sync reclaim will reclaim the inode and -	 * pass on the error. -	 */ -	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { -		xfs_warn(ip->i_mount, -			"inode 0x%llx background reclaim flush failed with %d", -			(long long)ip->i_ino, error); -	} -out: -	xfs_iflags_clear(ip, XFS_IRECLAIM); -	xfs_iunlock(ip, XFS_ILOCK_EXCL); -	/* -	 * We could return EAGAIN here to make reclaim rescan the inode tree in -	 * a short while. However, this just burns CPU time scanning the tree -	 * waiting for IO to complete and xfssyncd never goes back to the idle -	 * state. Instead, return 0 to let the next scheduled background reclaim -	 * attempt to reclaim the inode again. -	 */ -	return 0; - -reclaim: -	xfs_ifunlock(ip); -	xfs_iunlock(ip, XFS_ILOCK_EXCL); - -	XFS_STATS_INC(xs_ig_reclaims); -	/* -	 * Remove the inode from the per-AG radix tree. -	 * -	 * Because radix_tree_delete won't complain even if the item was never -	 * added to the tree assert that it's been there before to catch -	 * problems with the inode life time early on. -	 */ -	spin_lock(&pag->pag_ici_lock); -	if (!radix_tree_delete(&pag->pag_ici_root, -				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino))) -		ASSERT(0); -	__xfs_inode_clear_reclaim(pag, ip); -	spin_unlock(&pag->pag_ici_lock); - -	/* -	 * Here we do an (almost) spurious inode lock in order to coordinate -	 * with inode cache radix tree lookups.  This is because the lookup -	 * can reference the inodes in the cache without taking references. -	 * -	 * We make that OK here by ensuring that we wait until the inode is -	 * unlocked after the lookup before we go ahead and free it.  We get -	 * both the ilock and the iolock because the code may need to drop the -	 * ilock one but will still hold the iolock. -	 */ -	xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); -	xfs_qm_dqdetach(ip); -	xfs_iunlock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL); - -	xfs_inode_free(ip); -	return error; - -} - -/* - * Walk the AGs and reclaim the inodes in them. Even if the filesystem is - * corrupted, we still want to try to reclaim all the inodes. If we don't, - * then a shut down during filesystem unmount reclaim walk leak all the - * unreclaimed inodes. - */ -int -xfs_reclaim_inodes_ag( -	struct xfs_mount	*mp, -	int			flags, -	int			*nr_to_scan) -{ -	struct xfs_perag	*pag; -	int			error = 0; -	int			last_error = 0; -	xfs_agnumber_t		ag; -	int			trylock = flags & SYNC_TRYLOCK; -	int			skipped; - -restart: -	ag = 0; -	skipped = 0; -	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { -		unsigned long	first_index = 0; -		int		done = 0; -		int		nr_found = 0; - -		ag = pag->pag_agno + 1; - -		if (trylock) { -			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) { -				skipped++; -				xfs_perag_put(pag); -				continue; -			} -			first_index = pag->pag_ici_reclaim_cursor; -		} else -			mutex_lock(&pag->pag_ici_reclaim_lock); - -		do { -			struct xfs_inode *batch[XFS_LOOKUP_BATCH]; -			int	i; - -			rcu_read_lock(); -			nr_found = radix_tree_gang_lookup_tag( -					&pag->pag_ici_root, -					(void **)batch, first_index, -					XFS_LOOKUP_BATCH, -					XFS_ICI_RECLAIM_TAG); -			if (!nr_found) { -				done = 1; -				rcu_read_unlock(); -				break; -			} - -			/* -			 * Grab the inodes before we drop the lock. if we found -			 * nothing, nr == 0 and the loop will be skipped. -			 */ -			for (i = 0; i < nr_found; i++) { -				struct xfs_inode *ip = batch[i]; - -				if (done || xfs_reclaim_inode_grab(ip, flags)) -					batch[i] = NULL; - -				/* -				 * Update the index for the next lookup. Catch -				 * overflows into the next AG range which can -				 * occur if we have inodes in the last block of -				 * the AG and we are currently pointing to the -				 * last inode. -				 * -				 * Because we may see inodes that are from the -				 * wrong AG due to RCU freeing and -				 * reallocation, only update the index if it -				 * lies in this AG. It was a race that lead us -				 * to see this inode, so another lookup from -				 * the same index will not find it again. -				 */ -				if (XFS_INO_TO_AGNO(mp, ip->i_ino) != -								pag->pag_agno) -					continue; -				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); -				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) -					done = 1; -			} - -			/* unlock now we've grabbed the inodes. */ -			rcu_read_unlock(); - -			for (i = 0; i < nr_found; i++) { -				if (!batch[i]) -					continue; -				error = xfs_reclaim_inode(batch[i], pag, flags); -				if (error && last_error != EFSCORRUPTED) -					last_error = error; -			} - -			*nr_to_scan -= XFS_LOOKUP_BATCH; - -			cond_resched(); - -		} while (nr_found && !done && *nr_to_scan > 0); - -		if (trylock && !done) -			pag->pag_ici_reclaim_cursor = first_index; -		else -			pag->pag_ici_reclaim_cursor = 0; -		mutex_unlock(&pag->pag_ici_reclaim_lock); -		xfs_perag_put(pag); -	} - -	/* -	 * if we skipped any AG, and we still have scan count remaining, do -	 * another pass this time using blocking reclaim semantics (i.e -	 * waiting on the reclaim locks and ignoring the reclaim cursors). This -	 * ensure that when we get more reclaimers than AGs we block rather -	 * than spin trying to execute reclaim. -	 */ -	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) { -		trylock = 0; -		goto restart; -	} -	return XFS_ERROR(last_error); -} - -int -xfs_reclaim_inodes( -	xfs_mount_t	*mp, -	int		mode) -{ -	int		nr_to_scan = INT_MAX; - -	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan); -} - -/* - * Scan a certain number of inodes for reclaim. - * - * When called we make sure that there is a background (fast) inode reclaim in - * progress, while we will throttle the speed of reclaim via doing synchronous - * reclaim of inodes. That means if we come across dirty inodes, we wait for - * them to be cleaned, which we hope will not be very long due to the - * background walker having already kicked the IO off on those dirty inodes. - */ -void -xfs_reclaim_inodes_nr( -	struct xfs_mount	*mp, -	int			nr_to_scan) -{ -	/* kick background reclaimer and push the AIL */ -	xfs_syncd_queue_reclaim(mp); -	xfs_ail_push_all(mp->m_ail); - -	xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan); -} - -/* - * Return the number of reclaimable inodes in the filesystem for - * the shrinker to determine how much to reclaim. - */ -int -xfs_reclaim_inodes_count( -	struct xfs_mount	*mp) -{ -	struct xfs_perag	*pag; -	xfs_agnumber_t		ag = 0; -	int			reclaimable = 0; - -	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) { -		ag = pag->pag_agno + 1; -		reclaimable += pag->pag_ici_reclaimable; -		xfs_perag_put(pag); -	} -	return reclaimable; -} - |