diff options
Diffstat (limited to 'fs/ext4/crypto.c')
| -rw-r--r-- | fs/ext4/crypto.c | 558 | 
1 files changed, 558 insertions, 0 deletions
diff --git a/fs/ext4/crypto.c b/fs/ext4/crypto.c new file mode 100644 index 000000000000..8ff15273ab0c --- /dev/null +++ b/fs/ext4/crypto.c @@ -0,0 +1,558 @@ +/* + * linux/fs/ext4/crypto.c + * + * Copyright (C) 2015, Google, Inc. + * + * This contains encryption functions for ext4 + * + * Written by Michael Halcrow, 2014. + * + * Filename encryption additions + *	Uday Savagaonkar, 2014 + * Encryption policy handling additions + *	Ildar Muslukhov, 2014 + * + * This has not yet undergone a rigorous security audit. + * + * The usage of AES-XTS should conform to recommendations in NIST + * Special Publication 800-38E and IEEE P1619/D16. + */ + +#include <crypto/hash.h> +#include <crypto/sha.h> +#include <keys/user-type.h> +#include <keys/encrypted-type.h> +#include <linux/crypto.h> +#include <linux/ecryptfs.h> +#include <linux/gfp.h> +#include <linux/kernel.h> +#include <linux/key.h> +#include <linux/list.h> +#include <linux/mempool.h> +#include <linux/module.h> +#include <linux/mutex.h> +#include <linux/random.h> +#include <linux/scatterlist.h> +#include <linux/spinlock_types.h> + +#include "ext4_extents.h" +#include "xattr.h" + +/* Encryption added and removed here! (L: */ + +static unsigned int num_prealloc_crypto_pages = 32; +static unsigned int num_prealloc_crypto_ctxs = 128; + +module_param(num_prealloc_crypto_pages, uint, 0444); +MODULE_PARM_DESC(num_prealloc_crypto_pages, +		 "Number of crypto pages to preallocate"); +module_param(num_prealloc_crypto_ctxs, uint, 0444); +MODULE_PARM_DESC(num_prealloc_crypto_ctxs, +		 "Number of crypto contexts to preallocate"); + +static mempool_t *ext4_bounce_page_pool; + +static LIST_HEAD(ext4_free_crypto_ctxs); +static DEFINE_SPINLOCK(ext4_crypto_ctx_lock); + +/** + * ext4_release_crypto_ctx() - Releases an encryption context + * @ctx: The encryption context to release. + * + * If the encryption context was allocated from the pre-allocated pool, returns + * it to that pool. Else, frees it. + * + * If there's a bounce page in the context, this frees that. + */ +void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx) +{ +	unsigned long flags; + +	if (ctx->bounce_page) { +		if (ctx->flags & EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) +			__free_page(ctx->bounce_page); +		else +			mempool_free(ctx->bounce_page, ext4_bounce_page_pool); +		ctx->bounce_page = NULL; +	} +	ctx->control_page = NULL; +	if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) { +		if (ctx->tfm) +			crypto_free_tfm(ctx->tfm); +		kfree(ctx); +	} else { +		spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); +		list_add(&ctx->free_list, &ext4_free_crypto_ctxs); +		spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); +	} +} + +/** + * ext4_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context + * @mask: The allocation mask. + * + * Return: An allocated and initialized encryption context on success. An error + * value or NULL otherwise. + */ +static struct ext4_crypto_ctx *ext4_alloc_and_init_crypto_ctx(gfp_t mask) +{ +	struct ext4_crypto_ctx *ctx = kzalloc(sizeof(struct ext4_crypto_ctx), +					      mask); + +	if (!ctx) +		return ERR_PTR(-ENOMEM); +	return ctx; +} + +/** + * ext4_get_crypto_ctx() - Gets an encryption context + * @inode:       The inode for which we are doing the crypto + * + * Allocates and initializes an encryption context. + * + * Return: An allocated and initialized encryption context on success; error + * value or NULL otherwise. + */ +struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode) +{ +	struct ext4_crypto_ctx *ctx = NULL; +	int res = 0; +	unsigned long flags; +	struct ext4_encryption_key *key = &EXT4_I(inode)->i_encryption_key; + +	if (!ext4_read_workqueue) +		ext4_init_crypto(); + +	/* +	 * We first try getting the ctx from a free list because in +	 * the common case the ctx will have an allocated and +	 * initialized crypto tfm, so it's probably a worthwhile +	 * optimization. For the bounce page, we first try getting it +	 * from the kernel allocator because that's just about as fast +	 * as getting it from a list and because a cache of free pages +	 * should generally be a "last resort" option for a filesystem +	 * to be able to do its job. +	 */ +	spin_lock_irqsave(&ext4_crypto_ctx_lock, flags); +	ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs, +				       struct ext4_crypto_ctx, free_list); +	if (ctx) +		list_del(&ctx->free_list); +	spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags); +	if (!ctx) { +		ctx = ext4_alloc_and_init_crypto_ctx(GFP_NOFS); +		if (IS_ERR(ctx)) { +			res = PTR_ERR(ctx); +			goto out; +		} +		ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; +	} else { +		ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL; +	} + +	/* Allocate a new Crypto API context if we don't already have +	 * one or if it isn't the right mode. */ +	BUG_ON(key->mode == EXT4_ENCRYPTION_MODE_INVALID); +	if (ctx->tfm && (ctx->mode != key->mode)) { +		crypto_free_tfm(ctx->tfm); +		ctx->tfm = NULL; +		ctx->mode = EXT4_ENCRYPTION_MODE_INVALID; +	} +	if (!ctx->tfm) { +		switch (key->mode) { +		case EXT4_ENCRYPTION_MODE_AES_256_XTS: +			ctx->tfm = crypto_ablkcipher_tfm( +				crypto_alloc_ablkcipher("xts(aes)", 0, 0)); +			break; +		case EXT4_ENCRYPTION_MODE_AES_256_GCM: +			/* TODO(mhalcrow): AEAD w/ gcm(aes); +			 * crypto_aead_setauthsize() */ +			ctx->tfm = ERR_PTR(-ENOTSUPP); +			break; +		default: +			BUG(); +		} +		if (IS_ERR_OR_NULL(ctx->tfm)) { +			res = PTR_ERR(ctx->tfm); +			ctx->tfm = NULL; +			goto out; +		} +		ctx->mode = key->mode; +	} +	BUG_ON(key->size != ext4_encryption_key_size(key->mode)); + +	/* There shouldn't be a bounce page attached to the crypto +	 * context at this point. */ +	BUG_ON(ctx->bounce_page); + +out: +	if (res) { +		if (!IS_ERR_OR_NULL(ctx)) +			ext4_release_crypto_ctx(ctx); +		ctx = ERR_PTR(res); +	} +	return ctx; +} + +struct workqueue_struct *ext4_read_workqueue; +static DEFINE_MUTEX(crypto_init); + +/** + * ext4_exit_crypto() - Shutdown the ext4 encryption system + */ +void ext4_exit_crypto(void) +{ +	struct ext4_crypto_ctx *pos, *n; + +	list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list) { +		if (pos->bounce_page) { +			if (pos->flags & +			    EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL) { +				__free_page(pos->bounce_page); +			} else { +				mempool_free(pos->bounce_page, +					     ext4_bounce_page_pool); +			} +		} +		if (pos->tfm) +			crypto_free_tfm(pos->tfm); +		kfree(pos); +	} +	INIT_LIST_HEAD(&ext4_free_crypto_ctxs); +	if (ext4_bounce_page_pool) +		mempool_destroy(ext4_bounce_page_pool); +	ext4_bounce_page_pool = NULL; +	if (ext4_read_workqueue) +		destroy_workqueue(ext4_read_workqueue); +	ext4_read_workqueue = NULL; +} + +/** + * ext4_init_crypto() - Set up for ext4 encryption. + * + * We only call this when we start accessing encrypted files, since it + * results in memory getting allocated that wouldn't otherwise be used. + * + * Return: Zero on success, non-zero otherwise. + */ +int ext4_init_crypto(void) +{ +	int i, res; + +	mutex_lock(&crypto_init); +	if (ext4_read_workqueue) +		goto already_initialized; +	ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0); +	if (!ext4_read_workqueue) { +		res = -ENOMEM; +		goto fail; +	} + +	for (i = 0; i < num_prealloc_crypto_ctxs; i++) { +		struct ext4_crypto_ctx *ctx; + +		ctx = ext4_alloc_and_init_crypto_ctx(GFP_KERNEL); +		if (IS_ERR(ctx)) { +			res = PTR_ERR(ctx); +			goto fail; +		} +		list_add(&ctx->free_list, &ext4_free_crypto_ctxs); +	} + +	ext4_bounce_page_pool = +		mempool_create_page_pool(num_prealloc_crypto_pages, 0); +	if (!ext4_bounce_page_pool) { +		res = -ENOMEM; +		goto fail; +	} +already_initialized: +	mutex_unlock(&crypto_init); +	return 0; +fail: +	ext4_exit_crypto(); +	mutex_unlock(&crypto_init); +	return res; +} + +void ext4_restore_control_page(struct page *data_page) +{ +	struct ext4_crypto_ctx *ctx = +		(struct ext4_crypto_ctx *)page_private(data_page); + +	set_page_private(data_page, (unsigned long)NULL); +	ClearPagePrivate(data_page); +	unlock_page(data_page); +	ext4_release_crypto_ctx(ctx); +} + +/** + * ext4_crypt_complete() - The completion callback for page encryption + * @req: The asynchronous encryption request context + * @res: The result of the encryption operation + */ +static void ext4_crypt_complete(struct crypto_async_request *req, int res) +{ +	struct ext4_completion_result *ecr = req->data; + +	if (res == -EINPROGRESS) +		return; +	ecr->res = res; +	complete(&ecr->completion); +} + +typedef enum { +	EXT4_DECRYPT = 0, +	EXT4_ENCRYPT, +} ext4_direction_t; + +static int ext4_page_crypto(struct ext4_crypto_ctx *ctx, +			    struct inode *inode, +			    ext4_direction_t rw, +			    pgoff_t index, +			    struct page *src_page, +			    struct page *dest_page) + +{ +	u8 xts_tweak[EXT4_XTS_TWEAK_SIZE]; +	struct ablkcipher_request *req = NULL; +	DECLARE_EXT4_COMPLETION_RESULT(ecr); +	struct scatterlist dst, src; +	struct ext4_inode_info *ei = EXT4_I(inode); +	struct crypto_ablkcipher *atfm = __crypto_ablkcipher_cast(ctx->tfm); +	int res = 0; + +	BUG_ON(!ctx->tfm); +	BUG_ON(ctx->mode != ei->i_encryption_key.mode); + +	if (ctx->mode != EXT4_ENCRYPTION_MODE_AES_256_XTS) { +		printk_ratelimited(KERN_ERR +				   "%s: unsupported crypto algorithm: %d\n", +				   __func__, ctx->mode); +		return -ENOTSUPP; +	} + +	crypto_ablkcipher_clear_flags(atfm, ~0); +	crypto_tfm_set_flags(ctx->tfm, CRYPTO_TFM_REQ_WEAK_KEY); + +	res = crypto_ablkcipher_setkey(atfm, ei->i_encryption_key.raw, +				       ei->i_encryption_key.size); +	if (res) { +		printk_ratelimited(KERN_ERR +				   "%s: crypto_ablkcipher_setkey() failed\n", +				   __func__); +		return res; +	} +	req = ablkcipher_request_alloc(atfm, GFP_NOFS); +	if (!req) { +		printk_ratelimited(KERN_ERR +				   "%s: crypto_request_alloc() failed\n", +				   __func__); +		return -ENOMEM; +	} +	ablkcipher_request_set_callback( +		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, +		ext4_crypt_complete, &ecr); + +	BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index)); +	memcpy(xts_tweak, &index, sizeof(index)); +	memset(&xts_tweak[sizeof(index)], 0, +	       EXT4_XTS_TWEAK_SIZE - sizeof(index)); + +	sg_init_table(&dst, 1); +	sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0); +	sg_init_table(&src, 1); +	sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0); +	ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE, +				     xts_tweak); +	if (rw == EXT4_DECRYPT) +		res = crypto_ablkcipher_decrypt(req); +	else +		res = crypto_ablkcipher_encrypt(req); +	if (res == -EINPROGRESS || res == -EBUSY) { +		BUG_ON(req->base.data != &ecr); +		wait_for_completion(&ecr.completion); +		res = ecr.res; +	} +	ablkcipher_request_free(req); +	if (res) { +		printk_ratelimited( +			KERN_ERR +			"%s: crypto_ablkcipher_encrypt() returned %d\n", +			__func__, res); +		return res; +	} +	return 0; +} + +/** + * ext4_encrypt() - Encrypts a page + * @inode:          The inode for which the encryption should take place + * @plaintext_page: The page to encrypt. Must be locked. + * + * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx + * encryption context. + * + * Called on the page write path.  The caller must call + * ext4_restore_control_page() on the returned ciphertext page to + * release the bounce buffer and the encryption context. + * + * Return: An allocated page with the encrypted content on success. Else, an + * error value or NULL. + */ +struct page *ext4_encrypt(struct inode *inode, +			  struct page *plaintext_page) +{ +	struct ext4_crypto_ctx *ctx; +	struct page *ciphertext_page = NULL; +	int err; + +	BUG_ON(!PageLocked(plaintext_page)); + +	ctx = ext4_get_crypto_ctx(inode); +	if (IS_ERR(ctx)) +		return (struct page *) ctx; + +	/* The encryption operation will require a bounce page. */ +	ciphertext_page = alloc_page(GFP_NOFS); +	if (!ciphertext_page) { +		/* This is a potential bottleneck, but at least we'll have +		 * forward progress. */ +		ciphertext_page = mempool_alloc(ext4_bounce_page_pool, +						 GFP_NOFS); +		if (WARN_ON_ONCE(!ciphertext_page)) { +			ciphertext_page = mempool_alloc(ext4_bounce_page_pool, +							 GFP_NOFS | __GFP_WAIT); +		} +		ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; +	} else { +		ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; +	} +	ctx->bounce_page = ciphertext_page; +	ctx->control_page = plaintext_page; +	err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, plaintext_page->index, +			       plaintext_page, ciphertext_page); +	if (err) { +		ext4_release_crypto_ctx(ctx); +		return ERR_PTR(err); +	} +	SetPagePrivate(ciphertext_page); +	set_page_private(ciphertext_page, (unsigned long)ctx); +	lock_page(ciphertext_page); +	return ciphertext_page; +} + +/** + * ext4_decrypt() - Decrypts a page in-place + * @ctx:  The encryption context. + * @page: The page to decrypt. Must be locked. + * + * Decrypts page in-place using the ctx encryption context. + * + * Called from the read completion callback. + * + * Return: Zero on success, non-zero otherwise. + */ +int ext4_decrypt(struct ext4_crypto_ctx *ctx, struct page *page) +{ +	BUG_ON(!PageLocked(page)); + +	return ext4_page_crypto(ctx, page->mapping->host, +				EXT4_DECRYPT, page->index, page, page); +} + +/* + * Convenience function which takes care of allocating and + * deallocating the encryption context + */ +int ext4_decrypt_one(struct inode *inode, struct page *page) +{ +	int ret; + +	struct ext4_crypto_ctx *ctx = ext4_get_crypto_ctx(inode); + +	if (!ctx) +		return -ENOMEM; +	ret = ext4_decrypt(ctx, page); +	ext4_release_crypto_ctx(ctx); +	return ret; +} + +int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex) +{ +	struct ext4_crypto_ctx	*ctx; +	struct page		*ciphertext_page = NULL; +	struct bio		*bio; +	ext4_lblk_t		lblk = ex->ee_block; +	ext4_fsblk_t		pblk = ext4_ext_pblock(ex); +	unsigned int		len = ext4_ext_get_actual_len(ex); +	int			err = 0; + +	BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE); + +	ctx = ext4_get_crypto_ctx(inode); +	if (IS_ERR(ctx)) +		return PTR_ERR(ctx); + +	ciphertext_page = alloc_page(GFP_NOFS); +	if (!ciphertext_page) { +		/* This is a potential bottleneck, but at least we'll have +		 * forward progress. */ +		ciphertext_page = mempool_alloc(ext4_bounce_page_pool, +						 GFP_NOFS); +		if (WARN_ON_ONCE(!ciphertext_page)) { +			ciphertext_page = mempool_alloc(ext4_bounce_page_pool, +							 GFP_NOFS | __GFP_WAIT); +		} +		ctx->flags &= ~EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; +	} else { +		ctx->flags |= EXT4_BOUNCE_PAGE_REQUIRES_FREE_ENCRYPT_FL; +	} +	ctx->bounce_page = ciphertext_page; + +	while (len--) { +		err = ext4_page_crypto(ctx, inode, EXT4_ENCRYPT, lblk, +				       ZERO_PAGE(0), ciphertext_page); +		if (err) +			goto errout; + +		bio = bio_alloc(GFP_KERNEL, 1); +		if (!bio) { +			err = -ENOMEM; +			goto errout; +		} +		bio->bi_bdev = inode->i_sb->s_bdev; +		bio->bi_iter.bi_sector = pblk; +		err = bio_add_page(bio, ciphertext_page, +				   inode->i_sb->s_blocksize, 0); +		if (err) { +			bio_put(bio); +			goto errout; +		} +		err = submit_bio_wait(WRITE, bio); +		if (err) +			goto errout; +	} +	err = 0; +errout: +	ext4_release_crypto_ctx(ctx); +	return err; +} + +bool ext4_valid_contents_enc_mode(uint32_t mode) +{ +	return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS); +} + +/** + * ext4_validate_encryption_key_size() - Validate the encryption key size + * @mode: The key mode. + * @size: The key size to validate. + * + * Return: The validated key size for @mode. Zero if invalid. + */ +uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size) +{ +	if (size == ext4_encryption_key_size(mode)) +		return size; +	return 0; +}  |