diff options
Diffstat (limited to 'drivers/spi/spi-pl022.c')
| -rw-r--r-- | drivers/spi/spi-pl022.c | 2440 | 
1 files changed, 2440 insertions, 0 deletions
diff --git a/drivers/spi/spi-pl022.c b/drivers/spi/spi-pl022.c new file mode 100644 index 000000000000..eba88c749fb1 --- /dev/null +++ b/drivers/spi/spi-pl022.c @@ -0,0 +1,2440 @@ +/* + * A driver for the ARM PL022 PrimeCell SSP/SPI bus master. + * + * Copyright (C) 2008-2009 ST-Ericsson AB + * Copyright (C) 2006 STMicroelectronics Pvt. Ltd. + * + * Author: Linus Walleij <[email protected]> + * + * Initial version inspired by: + *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c + * Initial adoption to PL022 by: + *      Sachin Verma <[email protected]> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + */ + +#include <linux/init.h> +#include <linux/module.h> +#include <linux/device.h> +#include <linux/ioport.h> +#include <linux/errno.h> +#include <linux/interrupt.h> +#include <linux/spi/spi.h> +#include <linux/workqueue.h> +#include <linux/delay.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/amba/bus.h> +#include <linux/amba/pl022.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/dmaengine.h> +#include <linux/dma-mapping.h> +#include <linux/scatterlist.h> +#include <linux/pm_runtime.h> + +/* + * This macro is used to define some register default values. + * reg is masked with mask, the OR:ed with an (again masked) + * val shifted sb steps to the left. + */ +#define SSP_WRITE_BITS(reg, val, mask, sb) \ + ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask)))) + +/* + * This macro is also used to define some default values. + * It will just shift val by sb steps to the left and mask + * the result with mask. + */ +#define GEN_MASK_BITS(val, mask, sb) \ + (((val)<<(sb)) & (mask)) + +#define DRIVE_TX		0 +#define DO_NOT_DRIVE_TX		1 + +#define DO_NOT_QUEUE_DMA	0 +#define QUEUE_DMA		1 + +#define RX_TRANSFER		1 +#define TX_TRANSFER		2 + +/* + * Macros to access SSP Registers with their offsets + */ +#define SSP_CR0(r)	(r + 0x000) +#define SSP_CR1(r)	(r + 0x004) +#define SSP_DR(r)	(r + 0x008) +#define SSP_SR(r)	(r + 0x00C) +#define SSP_CPSR(r)	(r + 0x010) +#define SSP_IMSC(r)	(r + 0x014) +#define SSP_RIS(r)	(r + 0x018) +#define SSP_MIS(r)	(r + 0x01C) +#define SSP_ICR(r)	(r + 0x020) +#define SSP_DMACR(r)	(r + 0x024) +#define SSP_ITCR(r)	(r + 0x080) +#define SSP_ITIP(r)	(r + 0x084) +#define SSP_ITOP(r)	(r + 0x088) +#define SSP_TDR(r)	(r + 0x08C) + +#define SSP_PID0(r)	(r + 0xFE0) +#define SSP_PID1(r)	(r + 0xFE4) +#define SSP_PID2(r)	(r + 0xFE8) +#define SSP_PID3(r)	(r + 0xFEC) + +#define SSP_CID0(r)	(r + 0xFF0) +#define SSP_CID1(r)	(r + 0xFF4) +#define SSP_CID2(r)	(r + 0xFF8) +#define SSP_CID3(r)	(r + 0xFFC) + +/* + * SSP Control Register 0  - SSP_CR0 + */ +#define SSP_CR0_MASK_DSS	(0x0FUL << 0) +#define SSP_CR0_MASK_FRF	(0x3UL << 4) +#define SSP_CR0_MASK_SPO	(0x1UL << 6) +#define SSP_CR0_MASK_SPH	(0x1UL << 7) +#define SSP_CR0_MASK_SCR	(0xFFUL << 8) + +/* + * The ST version of this block moves som bits + * in SSP_CR0 and extends it to 32 bits + */ +#define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0) +#define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5) +#define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16) +#define SSP_CR0_MASK_FRF_ST	(0x3UL << 21) + + +/* + * SSP Control Register 0  - SSP_CR1 + */ +#define SSP_CR1_MASK_LBM	(0x1UL << 0) +#define SSP_CR1_MASK_SSE	(0x1UL << 1) +#define SSP_CR1_MASK_MS		(0x1UL << 2) +#define SSP_CR1_MASK_SOD	(0x1UL << 3) + +/* + * The ST version of this block adds some bits + * in SSP_CR1 + */ +#define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4) +#define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5) +#define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6) +#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7) +#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10) +/* This one is only in the PL023 variant */ +#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13) + +/* + * SSP Status Register - SSP_SR + */ +#define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */ +#define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */ +#define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */ +#define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */ +#define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */ + +/* + * SSP Clock Prescale Register  - SSP_CPSR + */ +#define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0) + +/* + * SSP Interrupt Mask Set/Clear Register - SSP_IMSC + */ +#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */ +#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */ +#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */ +#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */ + +/* + * SSP Raw Interrupt Status Register - SSP_RIS + */ +/* Receive Overrun Raw Interrupt status */ +#define SSP_RIS_MASK_RORRIS		(0x1UL << 0) +/* Receive Timeout Raw Interrupt status */ +#define SSP_RIS_MASK_RTRIS		(0x1UL << 1) +/* Receive FIFO Raw Interrupt status */ +#define SSP_RIS_MASK_RXRIS		(0x1UL << 2) +/* Transmit FIFO Raw Interrupt status */ +#define SSP_RIS_MASK_TXRIS		(0x1UL << 3) + +/* + * SSP Masked Interrupt Status Register - SSP_MIS + */ +/* Receive Overrun Masked Interrupt status */ +#define SSP_MIS_MASK_RORMIS		(0x1UL << 0) +/* Receive Timeout Masked Interrupt status */ +#define SSP_MIS_MASK_RTMIS		(0x1UL << 1) +/* Receive FIFO Masked Interrupt status */ +#define SSP_MIS_MASK_RXMIS		(0x1UL << 2) +/* Transmit FIFO Masked Interrupt status */ +#define SSP_MIS_MASK_TXMIS		(0x1UL << 3) + +/* + * SSP Interrupt Clear Register - SSP_ICR + */ +/* Receive Overrun Raw Clear Interrupt bit */ +#define SSP_ICR_MASK_RORIC		(0x1UL << 0) +/* Receive Timeout Clear Interrupt bit */ +#define SSP_ICR_MASK_RTIC		(0x1UL << 1) + +/* + * SSP DMA Control Register - SSP_DMACR + */ +/* Receive DMA Enable bit */ +#define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0) +/* Transmit DMA Enable bit */ +#define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1) + +/* + * SSP Integration Test control Register - SSP_ITCR + */ +#define SSP_ITCR_MASK_ITEN		(0x1UL << 0) +#define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1) + +/* + * SSP Integration Test Input Register - SSP_ITIP + */ +#define ITIP_MASK_SSPRXD		 (0x1UL << 0) +#define ITIP_MASK_SSPFSSIN		 (0x1UL << 1) +#define ITIP_MASK_SSPCLKIN		 (0x1UL << 2) +#define ITIP_MASK_RXDMAC		 (0x1UL << 3) +#define ITIP_MASK_TXDMAC		 (0x1UL << 4) +#define ITIP_MASK_SSPTXDIN		 (0x1UL << 5) + +/* + * SSP Integration Test output Register - SSP_ITOP + */ +#define ITOP_MASK_SSPTXD		 (0x1UL << 0) +#define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1) +#define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2) +#define ITOP_MASK_SSPOEn		 (0x1UL << 3) +#define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4) +#define ITOP_MASK_RORINTR		 (0x1UL << 5) +#define ITOP_MASK_RTINTR		 (0x1UL << 6) +#define ITOP_MASK_RXINTR		 (0x1UL << 7) +#define ITOP_MASK_TXINTR		 (0x1UL << 8) +#define ITOP_MASK_INTR			 (0x1UL << 9) +#define ITOP_MASK_RXDMABREQ		 (0x1UL << 10) +#define ITOP_MASK_RXDMASREQ		 (0x1UL << 11) +#define ITOP_MASK_TXDMABREQ		 (0x1UL << 12) +#define ITOP_MASK_TXDMASREQ		 (0x1UL << 13) + +/* + * SSP Test Data Register - SSP_TDR + */ +#define TDR_MASK_TESTDATA		(0xFFFFFFFF) + +/* + * Message State + * we use the spi_message.state (void *) pointer to + * hold a single state value, that's why all this + * (void *) casting is done here. + */ +#define STATE_START			((void *) 0) +#define STATE_RUNNING			((void *) 1) +#define STATE_DONE			((void *) 2) +#define STATE_ERROR			((void *) -1) + +/* + * SSP State - Whether Enabled or Disabled + */ +#define SSP_DISABLED			(0) +#define SSP_ENABLED			(1) + +/* + * SSP DMA State - Whether DMA Enabled or Disabled + */ +#define SSP_DMA_DISABLED		(0) +#define SSP_DMA_ENABLED			(1) + +/* + * SSP Clock Defaults + */ +#define SSP_DEFAULT_CLKRATE 0x2 +#define SSP_DEFAULT_PRESCALE 0x40 + +/* + * SSP Clock Parameter ranges + */ +#define CPSDVR_MIN 0x02 +#define CPSDVR_MAX 0xFE +#define SCR_MIN 0x00 +#define SCR_MAX 0xFF + +/* + * SSP Interrupt related Macros + */ +#define DEFAULT_SSP_REG_IMSC  0x0UL +#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC +#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC) + +#define CLEAR_ALL_INTERRUPTS  0x3 + +#define SPI_POLLING_TIMEOUT 1000 + + +/* + * The type of reading going on on this chip + */ +enum ssp_reading { +	READING_NULL, +	READING_U8, +	READING_U16, +	READING_U32 +}; + +/** + * The type of writing going on on this chip + */ +enum ssp_writing { +	WRITING_NULL, +	WRITING_U8, +	WRITING_U16, +	WRITING_U32 +}; + +/** + * struct vendor_data - vendor-specific config parameters + * for PL022 derivates + * @fifodepth: depth of FIFOs (both) + * @max_bpw: maximum number of bits per word + * @unidir: supports unidirection transfers + * @extended_cr: 32 bit wide control register 0 with extra + * features and extra features in CR1 as found in the ST variants + * @pl023: supports a subset of the ST extensions called "PL023" + */ +struct vendor_data { +	int fifodepth; +	int max_bpw; +	bool unidir; +	bool extended_cr; +	bool pl023; +	bool loopback; +}; + +/** + * struct pl022 - This is the private SSP driver data structure + * @adev: AMBA device model hookup + * @vendor: vendor data for the IP block + * @phybase: the physical memory where the SSP device resides + * @virtbase: the virtual memory where the SSP is mapped + * @clk: outgoing clock "SPICLK" for the SPI bus + * @master: SPI framework hookup + * @master_info: controller-specific data from machine setup + * @workqueue: a workqueue on which any spi_message request is queued + * @pump_messages: work struct for scheduling work to the workqueue + * @queue_lock: spinlock to syncronise access to message queue + * @queue: message queue + * @busy: workqueue is busy + * @running: workqueue is running + * @pump_transfers: Tasklet used in Interrupt Transfer mode + * @cur_msg: Pointer to current spi_message being processed + * @cur_transfer: Pointer to current spi_transfer + * @cur_chip: pointer to current clients chip(assigned from controller_state) + * @tx: current position in TX buffer to be read + * @tx_end: end position in TX buffer to be read + * @rx: current position in RX buffer to be written + * @rx_end: end position in RX buffer to be written + * @read: the type of read currently going on + * @write: the type of write currently going on + * @exp_fifo_level: expected FIFO level + * @dma_rx_channel: optional channel for RX DMA + * @dma_tx_channel: optional channel for TX DMA + * @sgt_rx: scattertable for the RX transfer + * @sgt_tx: scattertable for the TX transfer + * @dummypage: a dummy page used for driving data on the bus with DMA + */ +struct pl022 { +	struct amba_device		*adev; +	struct vendor_data		*vendor; +	resource_size_t			phybase; +	void __iomem			*virtbase; +	struct clk			*clk; +	struct spi_master		*master; +	struct pl022_ssp_controller	*master_info; +	/* Driver message queue */ +	struct workqueue_struct		*workqueue; +	struct work_struct		pump_messages; +	spinlock_t			queue_lock; +	struct list_head		queue; +	bool				busy; +	bool				running; +	/* Message transfer pump */ +	struct tasklet_struct		pump_transfers; +	struct spi_message		*cur_msg; +	struct spi_transfer		*cur_transfer; +	struct chip_data		*cur_chip; +	void				*tx; +	void				*tx_end; +	void				*rx; +	void				*rx_end; +	enum ssp_reading		read; +	enum ssp_writing		write; +	u32				exp_fifo_level; +	enum ssp_rx_level_trig		rx_lev_trig; +	enum ssp_tx_level_trig		tx_lev_trig; +	/* DMA settings */ +#ifdef CONFIG_DMA_ENGINE +	struct dma_chan			*dma_rx_channel; +	struct dma_chan			*dma_tx_channel; +	struct sg_table			sgt_rx; +	struct sg_table			sgt_tx; +	char				*dummypage; +#endif +}; + +/** + * struct chip_data - To maintain runtime state of SSP for each client chip + * @cr0: Value of control register CR0 of SSP - on later ST variants this + *       register is 32 bits wide rather than just 16 + * @cr1: Value of control register CR1 of SSP + * @dmacr: Value of DMA control Register of SSP + * @cpsr: Value of Clock prescale register + * @n_bytes: how many bytes(power of 2) reqd for a given data width of client + * @enable_dma: Whether to enable DMA or not + * @read: function ptr to be used to read when doing xfer for this chip + * @write: function ptr to be used to write when doing xfer for this chip + * @cs_control: chip select callback provided by chip + * @xfer_type: polling/interrupt/DMA + * + * Runtime state of the SSP controller, maintained per chip, + * This would be set according to the current message that would be served + */ +struct chip_data { +	u32 cr0; +	u16 cr1; +	u16 dmacr; +	u16 cpsr; +	u8 n_bytes; +	bool enable_dma; +	enum ssp_reading read; +	enum ssp_writing write; +	void (*cs_control) (u32 command); +	int xfer_type; +}; + +/** + * null_cs_control - Dummy chip select function + * @command: select/delect the chip + * + * If no chip select function is provided by client this is used as dummy + * chip select + */ +static void null_cs_control(u32 command) +{ +	pr_debug("pl022: dummy chip select control, CS=0x%x\n", command); +} + +/** + * giveback - current spi_message is over, schedule next message and call + * callback of this message. Assumes that caller already + * set message->status; dma and pio irqs are blocked + * @pl022: SSP driver private data structure + */ +static void giveback(struct pl022 *pl022) +{ +	struct spi_transfer *last_transfer; +	unsigned long flags; +	struct spi_message *msg; +	void (*curr_cs_control) (u32 command); + +	/* +	 * This local reference to the chip select function +	 * is needed because we set curr_chip to NULL +	 * as a step toward termininating the message. +	 */ +	curr_cs_control = pl022->cur_chip->cs_control; +	spin_lock_irqsave(&pl022->queue_lock, flags); +	msg = pl022->cur_msg; +	pl022->cur_msg = NULL; +	pl022->cur_transfer = NULL; +	pl022->cur_chip = NULL; +	queue_work(pl022->workqueue, &pl022->pump_messages); +	spin_unlock_irqrestore(&pl022->queue_lock, flags); + +	last_transfer = list_entry(msg->transfers.prev, +					struct spi_transfer, +					transfer_list); + +	/* Delay if requested before any change in chip select */ +	if (last_transfer->delay_usecs) +		/* +		 * FIXME: This runs in interrupt context. +		 * Is this really smart? +		 */ +		udelay(last_transfer->delay_usecs); + +	/* +	 * Drop chip select UNLESS cs_change is true or we are returning +	 * a message with an error, or next message is for another chip +	 */ +	if (!last_transfer->cs_change) +		curr_cs_control(SSP_CHIP_DESELECT); +	else { +		struct spi_message *next_msg; + +		/* Holding of cs was hinted, but we need to make sure +		 * the next message is for the same chip.  Don't waste +		 * time with the following tests unless this was hinted. +		 * +		 * We cannot postpone this until pump_messages, because +		 * after calling msg->complete (below) the driver that +		 * sent the current message could be unloaded, which +		 * could invalidate the cs_control() callback... +		 */ + +		/* get a pointer to the next message, if any */ +		spin_lock_irqsave(&pl022->queue_lock, flags); +		if (list_empty(&pl022->queue)) +			next_msg = NULL; +		else +			next_msg = list_entry(pl022->queue.next, +					struct spi_message, queue); +		spin_unlock_irqrestore(&pl022->queue_lock, flags); + +		/* see if the next and current messages point +		 * to the same chip +		 */ +		if (next_msg && next_msg->spi != msg->spi) +			next_msg = NULL; +		if (!next_msg || msg->state == STATE_ERROR) +			curr_cs_control(SSP_CHIP_DESELECT); +	} +	msg->state = NULL; +	if (msg->complete) +		msg->complete(msg->context); +	/* This message is completed, so let's turn off the clocks & power */ +	clk_disable(pl022->clk); +	amba_pclk_disable(pl022->adev); +	amba_vcore_disable(pl022->adev); +	pm_runtime_put(&pl022->adev->dev); +} + +/** + * flush - flush the FIFO to reach a clean state + * @pl022: SSP driver private data structure + */ +static int flush(struct pl022 *pl022) +{ +	unsigned long limit = loops_per_jiffy << 1; + +	dev_dbg(&pl022->adev->dev, "flush\n"); +	do { +		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) +			readw(SSP_DR(pl022->virtbase)); +	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--); + +	pl022->exp_fifo_level = 0; + +	return limit; +} + +/** + * restore_state - Load configuration of current chip + * @pl022: SSP driver private data structure + */ +static void restore_state(struct pl022 *pl022) +{ +	struct chip_data *chip = pl022->cur_chip; + +	if (pl022->vendor->extended_cr) +		writel(chip->cr0, SSP_CR0(pl022->virtbase)); +	else +		writew(chip->cr0, SSP_CR0(pl022->virtbase)); +	writew(chip->cr1, SSP_CR1(pl022->virtbase)); +	writew(chip->dmacr, SSP_DMACR(pl022->virtbase)); +	writew(chip->cpsr, SSP_CPSR(pl022->virtbase)); +	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); +	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); +} + +/* + * Default SSP Register Values + */ +#define DEFAULT_SSP_REG_CR0 ( \ +	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \ +	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \ +	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ +	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ +	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ +) + +/* ST versions have slightly different bit layout */ +#define DEFAULT_SSP_REG_CR0_ST ( \ +	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \ +	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \ +	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ +	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ +	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \ +	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \ +	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \ +) + +/* The PL023 version is slightly different again */ +#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \ +	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \ +	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ +	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ +	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ +) + +#define DEFAULT_SSP_REG_CR1 ( \ +	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \ +	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ +	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ +	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \ +) + +/* ST versions extend this register to use all 16 bits */ +#define DEFAULT_SSP_REG_CR1_ST ( \ +	DEFAULT_SSP_REG_CR1 | \ +	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ +	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ +	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\ +	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ +	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \ +) + +/* + * The PL023 variant has further differences: no loopback mode, no microwire + * support, and a new clock feedback delay setting. + */ +#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \ +	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ +	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ +	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \ +	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ +	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ +	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ +	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \ +	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \ +) + +#define DEFAULT_SSP_REG_CPSR ( \ +	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \ +) + +#define DEFAULT_SSP_REG_DMACR (\ +	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \ +	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \ +) + +/** + * load_ssp_default_config - Load default configuration for SSP + * @pl022: SSP driver private data structure + */ +static void load_ssp_default_config(struct pl022 *pl022) +{ +	if (pl022->vendor->pl023) { +		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase)); +		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase)); +	} else if (pl022->vendor->extended_cr) { +		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase)); +		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase)); +	} else { +		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase)); +		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase)); +	} +	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase)); +	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase)); +	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); +	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); +} + +/** + * This will write to TX and read from RX according to the parameters + * set in pl022. + */ +static void readwriter(struct pl022 *pl022) +{ + +	/* +	 * The FIFO depth is different between primecell variants. +	 * I believe filling in too much in the FIFO might cause +	 * errons in 8bit wide transfers on ARM variants (just 8 words +	 * FIFO, means only 8x8 = 64 bits in FIFO) at least. +	 * +	 * To prevent this issue, the TX FIFO is only filled to the +	 * unused RX FIFO fill length, regardless of what the TX +	 * FIFO status flag indicates. +	 */ +	dev_dbg(&pl022->adev->dev, +		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n", +		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end); + +	/* Read as much as you can */ +	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) +	       && (pl022->rx < pl022->rx_end)) { +		switch (pl022->read) { +		case READING_NULL: +			readw(SSP_DR(pl022->virtbase)); +			break; +		case READING_U8: +			*(u8 *) (pl022->rx) = +				readw(SSP_DR(pl022->virtbase)) & 0xFFU; +			break; +		case READING_U16: +			*(u16 *) (pl022->rx) = +				(u16) readw(SSP_DR(pl022->virtbase)); +			break; +		case READING_U32: +			*(u32 *) (pl022->rx) = +				readl(SSP_DR(pl022->virtbase)); +			break; +		} +		pl022->rx += (pl022->cur_chip->n_bytes); +		pl022->exp_fifo_level--; +	} +	/* +	 * Write as much as possible up to the RX FIFO size +	 */ +	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth) +	       && (pl022->tx < pl022->tx_end)) { +		switch (pl022->write) { +		case WRITING_NULL: +			writew(0x0, SSP_DR(pl022->virtbase)); +			break; +		case WRITING_U8: +			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase)); +			break; +		case WRITING_U16: +			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase)); +			break; +		case WRITING_U32: +			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase)); +			break; +		} +		pl022->tx += (pl022->cur_chip->n_bytes); +		pl022->exp_fifo_level++; +		/* +		 * This inner reader takes care of things appearing in the RX +		 * FIFO as we're transmitting. This will happen a lot since the +		 * clock starts running when you put things into the TX FIFO, +		 * and then things are continuously clocked into the RX FIFO. +		 */ +		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) +		       && (pl022->rx < pl022->rx_end)) { +			switch (pl022->read) { +			case READING_NULL: +				readw(SSP_DR(pl022->virtbase)); +				break; +			case READING_U8: +				*(u8 *) (pl022->rx) = +					readw(SSP_DR(pl022->virtbase)) & 0xFFU; +				break; +			case READING_U16: +				*(u16 *) (pl022->rx) = +					(u16) readw(SSP_DR(pl022->virtbase)); +				break; +			case READING_U32: +				*(u32 *) (pl022->rx) = +					readl(SSP_DR(pl022->virtbase)); +				break; +			} +			pl022->rx += (pl022->cur_chip->n_bytes); +			pl022->exp_fifo_level--; +		} +	} +	/* +	 * When we exit here the TX FIFO should be full and the RX FIFO +	 * should be empty +	 */ +} + + +/** + * next_transfer - Move to the Next transfer in the current spi message + * @pl022: SSP driver private data structure + * + * This function moves though the linked list of spi transfers in the + * current spi message and returns with the state of current spi + * message i.e whether its last transfer is done(STATE_DONE) or + * Next transfer is ready(STATE_RUNNING) + */ +static void *next_transfer(struct pl022 *pl022) +{ +	struct spi_message *msg = pl022->cur_msg; +	struct spi_transfer *trans = pl022->cur_transfer; + +	/* Move to next transfer */ +	if (trans->transfer_list.next != &msg->transfers) { +		pl022->cur_transfer = +		    list_entry(trans->transfer_list.next, +			       struct spi_transfer, transfer_list); +		return STATE_RUNNING; +	} +	return STATE_DONE; +} + +/* + * This DMA functionality is only compiled in if we have + * access to the generic DMA devices/DMA engine. + */ +#ifdef CONFIG_DMA_ENGINE +static void unmap_free_dma_scatter(struct pl022 *pl022) +{ +	/* Unmap and free the SG tables */ +	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl, +		     pl022->sgt_tx.nents, DMA_TO_DEVICE); +	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl, +		     pl022->sgt_rx.nents, DMA_FROM_DEVICE); +	sg_free_table(&pl022->sgt_rx); +	sg_free_table(&pl022->sgt_tx); +} + +static void dma_callback(void *data) +{ +	struct pl022 *pl022 = data; +	struct spi_message *msg = pl022->cur_msg; + +	BUG_ON(!pl022->sgt_rx.sgl); + +#ifdef VERBOSE_DEBUG +	/* +	 * Optionally dump out buffers to inspect contents, this is +	 * good if you want to convince yourself that the loopback +	 * read/write contents are the same, when adopting to a new +	 * DMA engine. +	 */ +	{ +		struct scatterlist *sg; +		unsigned int i; + +		dma_sync_sg_for_cpu(&pl022->adev->dev, +				    pl022->sgt_rx.sgl, +				    pl022->sgt_rx.nents, +				    DMA_FROM_DEVICE); + +		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) { +			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i); +			print_hex_dump(KERN_ERR, "SPI RX: ", +				       DUMP_PREFIX_OFFSET, +				       16, +				       1, +				       sg_virt(sg), +				       sg_dma_len(sg), +				       1); +		} +		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) { +			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i); +			print_hex_dump(KERN_ERR, "SPI TX: ", +				       DUMP_PREFIX_OFFSET, +				       16, +				       1, +				       sg_virt(sg), +				       sg_dma_len(sg), +				       1); +		} +	} +#endif + +	unmap_free_dma_scatter(pl022); + +	/* Update total bytes transferred */ +	msg->actual_length += pl022->cur_transfer->len; +	if (pl022->cur_transfer->cs_change) +		pl022->cur_chip-> +			cs_control(SSP_CHIP_DESELECT); + +	/* Move to next transfer */ +	msg->state = next_transfer(pl022); +	tasklet_schedule(&pl022->pump_transfers); +} + +static void setup_dma_scatter(struct pl022 *pl022, +			      void *buffer, +			      unsigned int length, +			      struct sg_table *sgtab) +{ +	struct scatterlist *sg; +	int bytesleft = length; +	void *bufp = buffer; +	int mapbytes; +	int i; + +	if (buffer) { +		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { +			/* +			 * If there are less bytes left than what fits +			 * in the current page (plus page alignment offset) +			 * we just feed in this, else we stuff in as much +			 * as we can. +			 */ +			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp))) +				mapbytes = bytesleft; +			else +				mapbytes = PAGE_SIZE - offset_in_page(bufp); +			sg_set_page(sg, virt_to_page(bufp), +				    mapbytes, offset_in_page(bufp)); +			bufp += mapbytes; +			bytesleft -= mapbytes; +			dev_dbg(&pl022->adev->dev, +				"set RX/TX target page @ %p, %d bytes, %d left\n", +				bufp, mapbytes, bytesleft); +		} +	} else { +		/* Map the dummy buffer on every page */ +		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { +			if (bytesleft < PAGE_SIZE) +				mapbytes = bytesleft; +			else +				mapbytes = PAGE_SIZE; +			sg_set_page(sg, virt_to_page(pl022->dummypage), +				    mapbytes, 0); +			bytesleft -= mapbytes; +			dev_dbg(&pl022->adev->dev, +				"set RX/TX to dummy page %d bytes, %d left\n", +				mapbytes, bytesleft); + +		} +	} +	BUG_ON(bytesleft); +} + +/** + * configure_dma - configures the channels for the next transfer + * @pl022: SSP driver's private data structure + */ +static int configure_dma(struct pl022 *pl022) +{ +	struct dma_slave_config rx_conf = { +		.src_addr = SSP_DR(pl022->phybase), +		.direction = DMA_FROM_DEVICE, +	}; +	struct dma_slave_config tx_conf = { +		.dst_addr = SSP_DR(pl022->phybase), +		.direction = DMA_TO_DEVICE, +	}; +	unsigned int pages; +	int ret; +	int rx_sglen, tx_sglen; +	struct dma_chan *rxchan = pl022->dma_rx_channel; +	struct dma_chan *txchan = pl022->dma_tx_channel; +	struct dma_async_tx_descriptor *rxdesc; +	struct dma_async_tx_descriptor *txdesc; + +	/* Check that the channels are available */ +	if (!rxchan || !txchan) +		return -ENODEV; + +	/* +	 * If supplied, the DMA burstsize should equal the FIFO trigger level. +	 * Notice that the DMA engine uses one-to-one mapping. Since we can +	 * not trigger on 2 elements this needs explicit mapping rather than +	 * calculation. +	 */ +	switch (pl022->rx_lev_trig) { +	case SSP_RX_1_OR_MORE_ELEM: +		rx_conf.src_maxburst = 1; +		break; +	case SSP_RX_4_OR_MORE_ELEM: +		rx_conf.src_maxburst = 4; +		break; +	case SSP_RX_8_OR_MORE_ELEM: +		rx_conf.src_maxburst = 8; +		break; +	case SSP_RX_16_OR_MORE_ELEM: +		rx_conf.src_maxburst = 16; +		break; +	case SSP_RX_32_OR_MORE_ELEM: +		rx_conf.src_maxburst = 32; +		break; +	default: +		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1; +		break; +	} + +	switch (pl022->tx_lev_trig) { +	case SSP_TX_1_OR_MORE_EMPTY_LOC: +		tx_conf.dst_maxburst = 1; +		break; +	case SSP_TX_4_OR_MORE_EMPTY_LOC: +		tx_conf.dst_maxburst = 4; +		break; +	case SSP_TX_8_OR_MORE_EMPTY_LOC: +		tx_conf.dst_maxburst = 8; +		break; +	case SSP_TX_16_OR_MORE_EMPTY_LOC: +		tx_conf.dst_maxburst = 16; +		break; +	case SSP_TX_32_OR_MORE_EMPTY_LOC: +		tx_conf.dst_maxburst = 32; +		break; +	default: +		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1; +		break; +	} + +	switch (pl022->read) { +	case READING_NULL: +		/* Use the same as for writing */ +		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; +		break; +	case READING_U8: +		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; +		break; +	case READING_U16: +		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; +		break; +	case READING_U32: +		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; +		break; +	} + +	switch (pl022->write) { +	case WRITING_NULL: +		/* Use the same as for reading */ +		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; +		break; +	case WRITING_U8: +		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; +		break; +	case WRITING_U16: +		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; +		break; +	case WRITING_U32: +		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; +		break; +	} + +	/* SPI pecularity: we need to read and write the same width */ +	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) +		rx_conf.src_addr_width = tx_conf.dst_addr_width; +	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) +		tx_conf.dst_addr_width = rx_conf.src_addr_width; +	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width); + +	dmaengine_slave_config(rxchan, &rx_conf); +	dmaengine_slave_config(txchan, &tx_conf); + +	/* Create sglists for the transfers */ +	pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1; +	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages); + +	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL); +	if (ret) +		goto err_alloc_rx_sg; + +	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL); +	if (ret) +		goto err_alloc_tx_sg; + +	/* Fill in the scatterlists for the RX+TX buffers */ +	setup_dma_scatter(pl022, pl022->rx, +			  pl022->cur_transfer->len, &pl022->sgt_rx); +	setup_dma_scatter(pl022, pl022->tx, +			  pl022->cur_transfer->len, &pl022->sgt_tx); + +	/* Map DMA buffers */ +	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl, +			   pl022->sgt_rx.nents, DMA_FROM_DEVICE); +	if (!rx_sglen) +		goto err_rx_sgmap; + +	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl, +			   pl022->sgt_tx.nents, DMA_TO_DEVICE); +	if (!tx_sglen) +		goto err_tx_sgmap; + +	/* Send both scatterlists */ +	rxdesc = rxchan->device->device_prep_slave_sg(rxchan, +				      pl022->sgt_rx.sgl, +				      rx_sglen, +				      DMA_FROM_DEVICE, +				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK); +	if (!rxdesc) +		goto err_rxdesc; + +	txdesc = txchan->device->device_prep_slave_sg(txchan, +				      pl022->sgt_tx.sgl, +				      tx_sglen, +				      DMA_TO_DEVICE, +				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK); +	if (!txdesc) +		goto err_txdesc; + +	/* Put the callback on the RX transfer only, that should finish last */ +	rxdesc->callback = dma_callback; +	rxdesc->callback_param = pl022; + +	/* Submit and fire RX and TX with TX last so we're ready to read! */ +	dmaengine_submit(rxdesc); +	dmaengine_submit(txdesc); +	dma_async_issue_pending(rxchan); +	dma_async_issue_pending(txchan); + +	return 0; + +err_txdesc: +	dmaengine_terminate_all(txchan); +err_rxdesc: +	dmaengine_terminate_all(rxchan); +	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl, +		     pl022->sgt_tx.nents, DMA_TO_DEVICE); +err_tx_sgmap: +	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl, +		     pl022->sgt_tx.nents, DMA_FROM_DEVICE); +err_rx_sgmap: +	sg_free_table(&pl022->sgt_tx); +err_alloc_tx_sg: +	sg_free_table(&pl022->sgt_rx); +err_alloc_rx_sg: +	return -ENOMEM; +} + +static int __init pl022_dma_probe(struct pl022 *pl022) +{ +	dma_cap_mask_t mask; + +	/* Try to acquire a generic DMA engine slave channel */ +	dma_cap_zero(mask); +	dma_cap_set(DMA_SLAVE, mask); +	/* +	 * We need both RX and TX channels to do DMA, else do none +	 * of them. +	 */ +	pl022->dma_rx_channel = dma_request_channel(mask, +					    pl022->master_info->dma_filter, +					    pl022->master_info->dma_rx_param); +	if (!pl022->dma_rx_channel) { +		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n"); +		goto err_no_rxchan; +	} + +	pl022->dma_tx_channel = dma_request_channel(mask, +					    pl022->master_info->dma_filter, +					    pl022->master_info->dma_tx_param); +	if (!pl022->dma_tx_channel) { +		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n"); +		goto err_no_txchan; +	} + +	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); +	if (!pl022->dummypage) { +		dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n"); +		goto err_no_dummypage; +	} + +	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", +		 dma_chan_name(pl022->dma_rx_channel), +		 dma_chan_name(pl022->dma_tx_channel)); + +	return 0; + +err_no_dummypage: +	dma_release_channel(pl022->dma_tx_channel); +err_no_txchan: +	dma_release_channel(pl022->dma_rx_channel); +	pl022->dma_rx_channel = NULL; +err_no_rxchan: +	dev_err(&pl022->adev->dev, +			"Failed to work in dma mode, work without dma!\n"); +	return -ENODEV; +} + +static void terminate_dma(struct pl022 *pl022) +{ +	struct dma_chan *rxchan = pl022->dma_rx_channel; +	struct dma_chan *txchan = pl022->dma_tx_channel; + +	dmaengine_terminate_all(rxchan); +	dmaengine_terminate_all(txchan); +	unmap_free_dma_scatter(pl022); +} + +static void pl022_dma_remove(struct pl022 *pl022) +{ +	if (pl022->busy) +		terminate_dma(pl022); +	if (pl022->dma_tx_channel) +		dma_release_channel(pl022->dma_tx_channel); +	if (pl022->dma_rx_channel) +		dma_release_channel(pl022->dma_rx_channel); +	kfree(pl022->dummypage); +} + +#else +static inline int configure_dma(struct pl022 *pl022) +{ +	return -ENODEV; +} + +static inline int pl022_dma_probe(struct pl022 *pl022) +{ +	return 0; +} + +static inline void pl022_dma_remove(struct pl022 *pl022) +{ +} +#endif + +/** + * pl022_interrupt_handler - Interrupt handler for SSP controller + * + * This function handles interrupts generated for an interrupt based transfer. + * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the + * current message's state as STATE_ERROR and schedule the tasklet + * pump_transfers which will do the postprocessing of the current message by + * calling giveback(). Otherwise it reads data from RX FIFO till there is no + * more data, and writes data in TX FIFO till it is not full. If we complete + * the transfer we move to the next transfer and schedule the tasklet. + */ +static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id) +{ +	struct pl022 *pl022 = dev_id; +	struct spi_message *msg = pl022->cur_msg; +	u16 irq_status = 0; +	u16 flag = 0; + +	if (unlikely(!msg)) { +		dev_err(&pl022->adev->dev, +			"bad message state in interrupt handler"); +		/* Never fail */ +		return IRQ_HANDLED; +	} + +	/* Read the Interrupt Status Register */ +	irq_status = readw(SSP_MIS(pl022->virtbase)); + +	if (unlikely(!irq_status)) +		return IRQ_NONE; + +	/* +	 * This handles the FIFO interrupts, the timeout +	 * interrupts are flatly ignored, they cannot be +	 * trusted. +	 */ +	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) { +		/* +		 * Overrun interrupt - bail out since our Data has been +		 * corrupted +		 */ +		dev_err(&pl022->adev->dev, "FIFO overrun\n"); +		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF) +			dev_err(&pl022->adev->dev, +				"RXFIFO is full\n"); +		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF) +			dev_err(&pl022->adev->dev, +				"TXFIFO is full\n"); + +		/* +		 * Disable and clear interrupts, disable SSP, +		 * mark message with bad status so it can be +		 * retried. +		 */ +		writew(DISABLE_ALL_INTERRUPTS, +		       SSP_IMSC(pl022->virtbase)); +		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); +		writew((readw(SSP_CR1(pl022->virtbase)) & +			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); +		msg->state = STATE_ERROR; + +		/* Schedule message queue handler */ +		tasklet_schedule(&pl022->pump_transfers); +		return IRQ_HANDLED; +	} + +	readwriter(pl022); + +	if ((pl022->tx == pl022->tx_end) && (flag == 0)) { +		flag = 1; +		/* Disable Transmit interrupt */ +		writew(readw(SSP_IMSC(pl022->virtbase)) & +		       (~SSP_IMSC_MASK_TXIM), +		       SSP_IMSC(pl022->virtbase)); +	} + +	/* +	 * Since all transactions must write as much as shall be read, +	 * we can conclude the entire transaction once RX is complete. +	 * At this point, all TX will always be finished. +	 */ +	if (pl022->rx >= pl022->rx_end) { +		writew(DISABLE_ALL_INTERRUPTS, +		       SSP_IMSC(pl022->virtbase)); +		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); +		if (unlikely(pl022->rx > pl022->rx_end)) { +			dev_warn(&pl022->adev->dev, "read %u surplus " +				 "bytes (did you request an odd " +				 "number of bytes on a 16bit bus?)\n", +				 (u32) (pl022->rx - pl022->rx_end)); +		} +		/* Update total bytes transferred */ +		msg->actual_length += pl022->cur_transfer->len; +		if (pl022->cur_transfer->cs_change) +			pl022->cur_chip-> +				cs_control(SSP_CHIP_DESELECT); +		/* Move to next transfer */ +		msg->state = next_transfer(pl022); +		tasklet_schedule(&pl022->pump_transfers); +		return IRQ_HANDLED; +	} + +	return IRQ_HANDLED; +} + +/** + * This sets up the pointers to memory for the next message to + * send out on the SPI bus. + */ +static int set_up_next_transfer(struct pl022 *pl022, +				struct spi_transfer *transfer) +{ +	int residue; + +	/* Sanity check the message for this bus width */ +	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes; +	if (unlikely(residue != 0)) { +		dev_err(&pl022->adev->dev, +			"message of %u bytes to transmit but the current " +			"chip bus has a data width of %u bytes!\n", +			pl022->cur_transfer->len, +			pl022->cur_chip->n_bytes); +		dev_err(&pl022->adev->dev, "skipping this message\n"); +		return -EIO; +	} +	pl022->tx = (void *)transfer->tx_buf; +	pl022->tx_end = pl022->tx + pl022->cur_transfer->len; +	pl022->rx = (void *)transfer->rx_buf; +	pl022->rx_end = pl022->rx + pl022->cur_transfer->len; +	pl022->write = +	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL; +	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL; +	return 0; +} + +/** + * pump_transfers - Tasklet function which schedules next transfer + * when running in interrupt or DMA transfer mode. + * @data: SSP driver private data structure + * + */ +static void pump_transfers(unsigned long data) +{ +	struct pl022 *pl022 = (struct pl022 *) data; +	struct spi_message *message = NULL; +	struct spi_transfer *transfer = NULL; +	struct spi_transfer *previous = NULL; + +	/* Get current state information */ +	message = pl022->cur_msg; +	transfer = pl022->cur_transfer; + +	/* Handle for abort */ +	if (message->state == STATE_ERROR) { +		message->status = -EIO; +		giveback(pl022); +		return; +	} + +	/* Handle end of message */ +	if (message->state == STATE_DONE) { +		message->status = 0; +		giveback(pl022); +		return; +	} + +	/* Delay if requested at end of transfer before CS change */ +	if (message->state == STATE_RUNNING) { +		previous = list_entry(transfer->transfer_list.prev, +					struct spi_transfer, +					transfer_list); +		if (previous->delay_usecs) +			/* +			 * FIXME: This runs in interrupt context. +			 * Is this really smart? +			 */ +			udelay(previous->delay_usecs); + +		/* Drop chip select only if cs_change is requested */ +		if (previous->cs_change) +			pl022->cur_chip->cs_control(SSP_CHIP_SELECT); +	} else { +		/* STATE_START */ +		message->state = STATE_RUNNING; +	} + +	if (set_up_next_transfer(pl022, transfer)) { +		message->state = STATE_ERROR; +		message->status = -EIO; +		giveback(pl022); +		return; +	} +	/* Flush the FIFOs and let's go! */ +	flush(pl022); + +	if (pl022->cur_chip->enable_dma) { +		if (configure_dma(pl022)) { +			dev_dbg(&pl022->adev->dev, +				"configuration of DMA failed, fall back to interrupt mode\n"); +			goto err_config_dma; +		} +		return; +	} + +err_config_dma: +	writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); +} + +static void do_interrupt_dma_transfer(struct pl022 *pl022) +{ +	u32 irqflags = ENABLE_ALL_INTERRUPTS; + +	/* Enable target chip */ +	pl022->cur_chip->cs_control(SSP_CHIP_SELECT); +	if (set_up_next_transfer(pl022, pl022->cur_transfer)) { +		/* Error path */ +		pl022->cur_msg->state = STATE_ERROR; +		pl022->cur_msg->status = -EIO; +		giveback(pl022); +		return; +	} +	/* If we're using DMA, set up DMA here */ +	if (pl022->cur_chip->enable_dma) { +		/* Configure DMA transfer */ +		if (configure_dma(pl022)) { +			dev_dbg(&pl022->adev->dev, +				"configuration of DMA failed, fall back to interrupt mode\n"); +			goto err_config_dma; +		} +		/* Disable interrupts in DMA mode, IRQ from DMA controller */ +		irqflags = DISABLE_ALL_INTERRUPTS; +	} +err_config_dma: +	/* Enable SSP, turn on interrupts */ +	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), +	       SSP_CR1(pl022->virtbase)); +	writew(irqflags, SSP_IMSC(pl022->virtbase)); +} + +static void do_polling_transfer(struct pl022 *pl022) +{ +	struct spi_message *message = NULL; +	struct spi_transfer *transfer = NULL; +	struct spi_transfer *previous = NULL; +	struct chip_data *chip; +	unsigned long time, timeout; + +	chip = pl022->cur_chip; +	message = pl022->cur_msg; + +	while (message->state != STATE_DONE) { +		/* Handle for abort */ +		if (message->state == STATE_ERROR) +			break; +		transfer = pl022->cur_transfer; + +		/* Delay if requested at end of transfer */ +		if (message->state == STATE_RUNNING) { +			previous = +			    list_entry(transfer->transfer_list.prev, +				       struct spi_transfer, transfer_list); +			if (previous->delay_usecs) +				udelay(previous->delay_usecs); +			if (previous->cs_change) +				pl022->cur_chip->cs_control(SSP_CHIP_SELECT); +		} else { +			/* STATE_START */ +			message->state = STATE_RUNNING; +			pl022->cur_chip->cs_control(SSP_CHIP_SELECT); +		} + +		/* Configuration Changing Per Transfer */ +		if (set_up_next_transfer(pl022, transfer)) { +			/* Error path */ +			message->state = STATE_ERROR; +			break; +		} +		/* Flush FIFOs and enable SSP */ +		flush(pl022); +		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), +		       SSP_CR1(pl022->virtbase)); + +		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n"); + +		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT); +		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) { +			time = jiffies; +			readwriter(pl022); +			if (time_after(time, timeout)) { +				dev_warn(&pl022->adev->dev, +				"%s: timeout!\n", __func__); +				message->state = STATE_ERROR; +				goto out; +			} +			cpu_relax(); +		} + +		/* Update total byte transferred */ +		message->actual_length += pl022->cur_transfer->len; +		if (pl022->cur_transfer->cs_change) +			pl022->cur_chip->cs_control(SSP_CHIP_DESELECT); +		/* Move to next transfer */ +		message->state = next_transfer(pl022); +	} +out: +	/* Handle end of message */ +	if (message->state == STATE_DONE) +		message->status = 0; +	else +		message->status = -EIO; + +	giveback(pl022); +	return; +} + +/** + * pump_messages - Workqueue function which processes spi message queue + * @data: pointer to private data of SSP driver + * + * This function checks if there is any spi message in the queue that + * needs processing and delegate control to appropriate function + * do_polling_transfer()/do_interrupt_dma_transfer() + * based on the kind of the transfer + * + */ +static void pump_messages(struct work_struct *work) +{ +	struct pl022 *pl022 = +		container_of(work, struct pl022, pump_messages); +	unsigned long flags; + +	/* Lock queue and check for queue work */ +	spin_lock_irqsave(&pl022->queue_lock, flags); +	if (list_empty(&pl022->queue) || !pl022->running) { +		pl022->busy = false; +		spin_unlock_irqrestore(&pl022->queue_lock, flags); +		return; +	} +	/* Make sure we are not already running a message */ +	if (pl022->cur_msg) { +		spin_unlock_irqrestore(&pl022->queue_lock, flags); +		return; +	} +	/* Extract head of queue */ +	pl022->cur_msg = +	    list_entry(pl022->queue.next, struct spi_message, queue); + +	list_del_init(&pl022->cur_msg->queue); +	pl022->busy = true; +	spin_unlock_irqrestore(&pl022->queue_lock, flags); + +	/* Initial message state */ +	pl022->cur_msg->state = STATE_START; +	pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next, +					    struct spi_transfer, +					    transfer_list); + +	/* Setup the SPI using the per chip configuration */ +	pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi); +	/* +	 * We enable the core voltage and clocks here, then the clocks +	 * and core will be disabled when giveback() is called in each method +	 * (poll/interrupt/DMA) +	 */ +	pm_runtime_get_sync(&pl022->adev->dev); +	amba_vcore_enable(pl022->adev); +	amba_pclk_enable(pl022->adev); +	clk_enable(pl022->clk); +	restore_state(pl022); +	flush(pl022); + +	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER) +		do_polling_transfer(pl022); +	else +		do_interrupt_dma_transfer(pl022); +} + + +static int __init init_queue(struct pl022 *pl022) +{ +	INIT_LIST_HEAD(&pl022->queue); +	spin_lock_init(&pl022->queue_lock); + +	pl022->running = false; +	pl022->busy = false; + +	tasklet_init(&pl022->pump_transfers, +			pump_transfers,	(unsigned long)pl022); + +	INIT_WORK(&pl022->pump_messages, pump_messages); +	pl022->workqueue = create_singlethread_workqueue( +					dev_name(pl022->master->dev.parent)); +	if (pl022->workqueue == NULL) +		return -EBUSY; + +	return 0; +} + + +static int start_queue(struct pl022 *pl022) +{ +	unsigned long flags; + +	spin_lock_irqsave(&pl022->queue_lock, flags); + +	if (pl022->running || pl022->busy) { +		spin_unlock_irqrestore(&pl022->queue_lock, flags); +		return -EBUSY; +	} + +	pl022->running = true; +	pl022->cur_msg = NULL; +	pl022->cur_transfer = NULL; +	pl022->cur_chip = NULL; +	spin_unlock_irqrestore(&pl022->queue_lock, flags); + +	queue_work(pl022->workqueue, &pl022->pump_messages); + +	return 0; +} + + +static int stop_queue(struct pl022 *pl022) +{ +	unsigned long flags; +	unsigned limit = 500; +	int status = 0; + +	spin_lock_irqsave(&pl022->queue_lock, flags); + +	/* This is a bit lame, but is optimized for the common execution path. +	 * A wait_queue on the pl022->busy could be used, but then the common +	 * execution path (pump_messages) would be required to call wake_up or +	 * friends on every SPI message. Do this instead */ +	while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) { +		spin_unlock_irqrestore(&pl022->queue_lock, flags); +		msleep(10); +		spin_lock_irqsave(&pl022->queue_lock, flags); +	} + +	if (!list_empty(&pl022->queue) || pl022->busy) +		status = -EBUSY; +	else +		pl022->running = false; + +	spin_unlock_irqrestore(&pl022->queue_lock, flags); + +	return status; +} + +static int destroy_queue(struct pl022 *pl022) +{ +	int status; + +	status = stop_queue(pl022); +	/* we are unloading the module or failing to load (only two calls +	 * to this routine), and neither call can handle a return value. +	 * However, destroy_workqueue calls flush_workqueue, and that will +	 * block until all work is done.  If the reason that stop_queue +	 * timed out is that the work will never finish, then it does no +	 * good to call destroy_workqueue, so return anyway. */ +	if (status != 0) +		return status; + +	destroy_workqueue(pl022->workqueue); + +	return 0; +} + +static int verify_controller_parameters(struct pl022 *pl022, +				struct pl022_config_chip const *chip_info) +{ +	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI) +	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) { +		dev_err(&pl022->adev->dev, +			"interface is configured incorrectly\n"); +		return -EINVAL; +	} +	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) && +	    (!pl022->vendor->unidir)) { +		dev_err(&pl022->adev->dev, +			"unidirectional mode not supported in this " +			"hardware version\n"); +		return -EINVAL; +	} +	if ((chip_info->hierarchy != SSP_MASTER) +	    && (chip_info->hierarchy != SSP_SLAVE)) { +		dev_err(&pl022->adev->dev, +			"hierarchy is configured incorrectly\n"); +		return -EINVAL; +	} +	if ((chip_info->com_mode != INTERRUPT_TRANSFER) +	    && (chip_info->com_mode != DMA_TRANSFER) +	    && (chip_info->com_mode != POLLING_TRANSFER)) { +		dev_err(&pl022->adev->dev, +			"Communication mode is configured incorrectly\n"); +		return -EINVAL; +	} +	switch (chip_info->rx_lev_trig) { +	case SSP_RX_1_OR_MORE_ELEM: +	case SSP_RX_4_OR_MORE_ELEM: +	case SSP_RX_8_OR_MORE_ELEM: +		/* These are always OK, all variants can handle this */ +		break; +	case SSP_RX_16_OR_MORE_ELEM: +		if (pl022->vendor->fifodepth < 16) { +			dev_err(&pl022->adev->dev, +			"RX FIFO Trigger Level is configured incorrectly\n"); +			return -EINVAL; +		} +		break; +	case SSP_RX_32_OR_MORE_ELEM: +		if (pl022->vendor->fifodepth < 32) { +			dev_err(&pl022->adev->dev, +			"RX FIFO Trigger Level is configured incorrectly\n"); +			return -EINVAL; +		} +		break; +	default: +		dev_err(&pl022->adev->dev, +			"RX FIFO Trigger Level is configured incorrectly\n"); +		return -EINVAL; +		break; +	} +	switch (chip_info->tx_lev_trig) { +	case SSP_TX_1_OR_MORE_EMPTY_LOC: +	case SSP_TX_4_OR_MORE_EMPTY_LOC: +	case SSP_TX_8_OR_MORE_EMPTY_LOC: +		/* These are always OK, all variants can handle this */ +		break; +	case SSP_TX_16_OR_MORE_EMPTY_LOC: +		if (pl022->vendor->fifodepth < 16) { +			dev_err(&pl022->adev->dev, +			"TX FIFO Trigger Level is configured incorrectly\n"); +			return -EINVAL; +		} +		break; +	case SSP_TX_32_OR_MORE_EMPTY_LOC: +		if (pl022->vendor->fifodepth < 32) { +			dev_err(&pl022->adev->dev, +			"TX FIFO Trigger Level is configured incorrectly\n"); +			return -EINVAL; +		} +		break; +	default: +		dev_err(&pl022->adev->dev, +			"TX FIFO Trigger Level is configured incorrectly\n"); +		return -EINVAL; +		break; +	} +	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) { +		if ((chip_info->ctrl_len < SSP_BITS_4) +		    || (chip_info->ctrl_len > SSP_BITS_32)) { +			dev_err(&pl022->adev->dev, +				"CTRL LEN is configured incorrectly\n"); +			return -EINVAL; +		} +		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO) +		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) { +			dev_err(&pl022->adev->dev, +				"Wait State is configured incorrectly\n"); +			return -EINVAL; +		} +		/* Half duplex is only available in the ST Micro version */ +		if (pl022->vendor->extended_cr) { +			if ((chip_info->duplex != +			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) +			    && (chip_info->duplex != +				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) { +				dev_err(&pl022->adev->dev, +					"Microwire duplex mode is configured incorrectly\n"); +				return -EINVAL; +			} +		} else { +			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) +				dev_err(&pl022->adev->dev, +					"Microwire half duplex mode requested," +					" but this is only available in the" +					" ST version of PL022\n"); +			return -EINVAL; +		} +	} +	return 0; +} + +/** + * pl022_transfer - transfer function registered to SPI master framework + * @spi: spi device which is requesting transfer + * @msg: spi message which is to handled is queued to driver queue + * + * This function is registered to the SPI framework for this SPI master + * controller. It will queue the spi_message in the queue of driver if + * the queue is not stopped and return. + */ +static int pl022_transfer(struct spi_device *spi, struct spi_message *msg) +{ +	struct pl022 *pl022 = spi_master_get_devdata(spi->master); +	unsigned long flags; + +	spin_lock_irqsave(&pl022->queue_lock, flags); + +	if (!pl022->running) { +		spin_unlock_irqrestore(&pl022->queue_lock, flags); +		return -ESHUTDOWN; +	} +	msg->actual_length = 0; +	msg->status = -EINPROGRESS; +	msg->state = STATE_START; + +	list_add_tail(&msg->queue, &pl022->queue); +	if (pl022->running && !pl022->busy) +		queue_work(pl022->workqueue, &pl022->pump_messages); + +	spin_unlock_irqrestore(&pl022->queue_lock, flags); +	return 0; +} + +static int calculate_effective_freq(struct pl022 *pl022, +				    int freq, +				    struct ssp_clock_params *clk_freq) +{ +	/* Lets calculate the frequency parameters */ +	u16 cpsdvsr = 2; +	u16 scr = 0; +	bool freq_found = false; +	u32 rate; +	u32 max_tclk; +	u32 min_tclk; + +	rate = clk_get_rate(pl022->clk); +	/* cpsdvscr = 2 & scr 0 */ +	max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN))); +	/* cpsdvsr = 254 & scr = 255 */ +	min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX))); + +	if ((freq <= max_tclk) && (freq >= min_tclk)) { +		while (cpsdvsr <= CPSDVR_MAX && !freq_found) { +			while (scr <= SCR_MAX && !freq_found) { +				if ((rate / +				     (cpsdvsr * (1 + scr))) > freq) +					scr += 1; +				else { +					/* +					 * This bool is made true when +					 * effective frequency >= +					 * target frequency is found +					 */ +					freq_found = true; +					if ((rate / +					     (cpsdvsr * (1 + scr))) != freq) { +						if (scr == SCR_MIN) { +							cpsdvsr -= 2; +							scr = SCR_MAX; +						} else +							scr -= 1; +					} +				} +			} +			if (!freq_found) { +				cpsdvsr += 2; +				scr = SCR_MIN; +			} +		} +		if (cpsdvsr != 0) { +			dev_dbg(&pl022->adev->dev, +				"SSP Effective Frequency is %u\n", +				(rate / (cpsdvsr * (1 + scr)))); +			clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF); +			clk_freq->scr = (u8) (scr & 0xFF); +			dev_dbg(&pl022->adev->dev, +				"SSP cpsdvsr = %d, scr = %d\n", +				clk_freq->cpsdvsr, clk_freq->scr); +		} +	} else { +		dev_err(&pl022->adev->dev, +			"controller data is incorrect: out of range frequency"); +		return -EINVAL; +	} +	return 0; +} + + +/* + * A piece of default chip info unless the platform + * supplies it. + */ +static const struct pl022_config_chip pl022_default_chip_info = { +	.com_mode = POLLING_TRANSFER, +	.iface = SSP_INTERFACE_MOTOROLA_SPI, +	.hierarchy = SSP_SLAVE, +	.slave_tx_disable = DO_NOT_DRIVE_TX, +	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM, +	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC, +	.ctrl_len = SSP_BITS_8, +	.wait_state = SSP_MWIRE_WAIT_ZERO, +	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, +	.cs_control = null_cs_control, +}; + + +/** + * pl022_setup - setup function registered to SPI master framework + * @spi: spi device which is requesting setup + * + * This function is registered to the SPI framework for this SPI master + * controller. If it is the first time when setup is called by this device, + * this function will initialize the runtime state for this chip and save + * the same in the device structure. Else it will update the runtime info + * with the updated chip info. Nothing is really being written to the + * controller hardware here, that is not done until the actual transfer + * commence. + */ +static int pl022_setup(struct spi_device *spi) +{ +	struct pl022_config_chip const *chip_info; +	struct chip_data *chip; +	struct ssp_clock_params clk_freq = {0, }; +	int status = 0; +	struct pl022 *pl022 = spi_master_get_devdata(spi->master); +	unsigned int bits = spi->bits_per_word; +	u32 tmp; + +	if (!spi->max_speed_hz) +		return -EINVAL; + +	/* Get controller_state if one is supplied */ +	chip = spi_get_ctldata(spi); + +	if (chip == NULL) { +		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); +		if (!chip) { +			dev_err(&spi->dev, +				"cannot allocate controller state\n"); +			return -ENOMEM; +		} +		dev_dbg(&spi->dev, +			"allocated memory for controller's runtime state\n"); +	} + +	/* Get controller data if one is supplied */ +	chip_info = spi->controller_data; + +	if (chip_info == NULL) { +		chip_info = &pl022_default_chip_info; +		/* spi_board_info.controller_data not is supplied */ +		dev_dbg(&spi->dev, +			"using default controller_data settings\n"); +	} else +		dev_dbg(&spi->dev, +			"using user supplied controller_data settings\n"); + +	/* +	 * We can override with custom divisors, else we use the board +	 * frequency setting +	 */ +	if ((0 == chip_info->clk_freq.cpsdvsr) +	    && (0 == chip_info->clk_freq.scr)) { +		status = calculate_effective_freq(pl022, +						  spi->max_speed_hz, +						  &clk_freq); +		if (status < 0) +			goto err_config_params; +	} else { +		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq)); +		if ((clk_freq.cpsdvsr % 2) != 0) +			clk_freq.cpsdvsr = +				clk_freq.cpsdvsr - 1; +	} +	if ((clk_freq.cpsdvsr < CPSDVR_MIN) +	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) { +		status = -EINVAL; +		dev_err(&spi->dev, +			"cpsdvsr is configured incorrectly\n"); +		goto err_config_params; +	} + + +	status = verify_controller_parameters(pl022, chip_info); +	if (status) { +		dev_err(&spi->dev, "controller data is incorrect"); +		goto err_config_params; +	} + +	pl022->rx_lev_trig = chip_info->rx_lev_trig; +	pl022->tx_lev_trig = chip_info->tx_lev_trig; + +	/* Now set controller state based on controller data */ +	chip->xfer_type = chip_info->com_mode; +	if (!chip_info->cs_control) { +		chip->cs_control = null_cs_control; +		dev_warn(&spi->dev, +			 "chip select function is NULL for this chip\n"); +	} else +		chip->cs_control = chip_info->cs_control; + +	if (bits <= 3) { +		/* PL022 doesn't support less than 4-bits */ +		status = -ENOTSUPP; +		goto err_config_params; +	} else if (bits <= 8) { +		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n"); +		chip->n_bytes = 1; +		chip->read = READING_U8; +		chip->write = WRITING_U8; +	} else if (bits <= 16) { +		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n"); +		chip->n_bytes = 2; +		chip->read = READING_U16; +		chip->write = WRITING_U16; +	} else { +		if (pl022->vendor->max_bpw >= 32) { +			dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n"); +			chip->n_bytes = 4; +			chip->read = READING_U32; +			chip->write = WRITING_U32; +		} else { +			dev_err(&spi->dev, +				"illegal data size for this controller!\n"); +			dev_err(&spi->dev, +				"a standard pl022 can only handle " +				"1 <= n <= 16 bit words\n"); +			status = -ENOTSUPP; +			goto err_config_params; +		} +	} + +	/* Now Initialize all register settings required for this chip */ +	chip->cr0 = 0; +	chip->cr1 = 0; +	chip->dmacr = 0; +	chip->cpsr = 0; +	if ((chip_info->com_mode == DMA_TRANSFER) +	    && ((pl022->master_info)->enable_dma)) { +		chip->enable_dma = true; +		dev_dbg(&spi->dev, "DMA mode set in controller state\n"); +		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, +			       SSP_DMACR_MASK_RXDMAE, 0); +		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, +			       SSP_DMACR_MASK_TXDMAE, 1); +	} else { +		chip->enable_dma = false; +		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n"); +		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, +			       SSP_DMACR_MASK_RXDMAE, 0); +		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, +			       SSP_DMACR_MASK_TXDMAE, 1); +	} + +	chip->cpsr = clk_freq.cpsdvsr; + +	/* Special setup for the ST micro extended control registers */ +	if (pl022->vendor->extended_cr) { +		u32 etx; + +		if (pl022->vendor->pl023) { +			/* These bits are only in the PL023 */ +			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay, +				       SSP_CR1_MASK_FBCLKDEL_ST, 13); +		} else { +			/* These bits are in the PL022 but not PL023 */ +			SSP_WRITE_BITS(chip->cr0, chip_info->duplex, +				       SSP_CR0_MASK_HALFDUP_ST, 5); +			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, +				       SSP_CR0_MASK_CSS_ST, 16); +			SSP_WRITE_BITS(chip->cr0, chip_info->iface, +				       SSP_CR0_MASK_FRF_ST, 21); +			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, +				       SSP_CR1_MASK_MWAIT_ST, 6); +		} +		SSP_WRITE_BITS(chip->cr0, bits - 1, +			       SSP_CR0_MASK_DSS_ST, 0); + +		if (spi->mode & SPI_LSB_FIRST) { +			tmp = SSP_RX_LSB; +			etx = SSP_TX_LSB; +		} else { +			tmp = SSP_RX_MSB; +			etx = SSP_TX_MSB; +		} +		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4); +		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5); +		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, +			       SSP_CR1_MASK_RXIFLSEL_ST, 7); +		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, +			       SSP_CR1_MASK_TXIFLSEL_ST, 10); +	} else { +		SSP_WRITE_BITS(chip->cr0, bits - 1, +			       SSP_CR0_MASK_DSS, 0); +		SSP_WRITE_BITS(chip->cr0, chip_info->iface, +			       SSP_CR0_MASK_FRF, 4); +	} + +	/* Stuff that is common for all versions */ +	if (spi->mode & SPI_CPOL) +		tmp = SSP_CLK_POL_IDLE_HIGH; +	else +		tmp = SSP_CLK_POL_IDLE_LOW; +	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6); + +	if (spi->mode & SPI_CPHA) +		tmp = SSP_CLK_SECOND_EDGE; +	else +		tmp = SSP_CLK_FIRST_EDGE; +	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7); + +	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8); +	/* Loopback is available on all versions except PL023 */ +	if (pl022->vendor->loopback) { +		if (spi->mode & SPI_LOOP) +			tmp = LOOPBACK_ENABLED; +		else +			tmp = LOOPBACK_DISABLED; +		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0); +	} +	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1); +	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2); +	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3); + +	/* Save controller_state */ +	spi_set_ctldata(spi, chip); +	return status; + err_config_params: +	spi_set_ctldata(spi, NULL); +	kfree(chip); +	return status; +} + +/** + * pl022_cleanup - cleanup function registered to SPI master framework + * @spi: spi device which is requesting cleanup + * + * This function is registered to the SPI framework for this SPI master + * controller. It will free the runtime state of chip. + */ +static void pl022_cleanup(struct spi_device *spi) +{ +	struct chip_data *chip = spi_get_ctldata(spi); + +	spi_set_ctldata(spi, NULL); +	kfree(chip); +} + + +static int __devinit +pl022_probe(struct amba_device *adev, const struct amba_id *id) +{ +	struct device *dev = &adev->dev; +	struct pl022_ssp_controller *platform_info = adev->dev.platform_data; +	struct spi_master *master; +	struct pl022 *pl022 = NULL;	/*Data for this driver */ +	int status = 0; + +	dev_info(&adev->dev, +		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid); +	if (platform_info == NULL) { +		dev_err(&adev->dev, "probe - no platform data supplied\n"); +		status = -ENODEV; +		goto err_no_pdata; +	} + +	/* Allocate master with space for data */ +	master = spi_alloc_master(dev, sizeof(struct pl022)); +	if (master == NULL) { +		dev_err(&adev->dev, "probe - cannot alloc SPI master\n"); +		status = -ENOMEM; +		goto err_no_master; +	} + +	pl022 = spi_master_get_devdata(master); +	pl022->master = master; +	pl022->master_info = platform_info; +	pl022->adev = adev; +	pl022->vendor = id->data; + +	/* +	 * Bus Number Which has been Assigned to this SSP controller +	 * on this board +	 */ +	master->bus_num = platform_info->bus_id; +	master->num_chipselect = platform_info->num_chipselect; +	master->cleanup = pl022_cleanup; +	master->setup = pl022_setup; +	master->transfer = pl022_transfer; + +	/* +	 * Supports mode 0-3, loopback, and active low CS. Transfers are +	 * always MS bit first on the original pl022. +	 */ +	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; +	if (pl022->vendor->extended_cr) +		master->mode_bits |= SPI_LSB_FIRST; + +	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num); + +	status = amba_request_regions(adev, NULL); +	if (status) +		goto err_no_ioregion; + +	pl022->phybase = adev->res.start; +	pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res)); +	if (pl022->virtbase == NULL) { +		status = -ENOMEM; +		goto err_no_ioremap; +	} +	printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n", +	       adev->res.start, pl022->virtbase); +	pm_runtime_enable(dev); +	pm_runtime_resume(dev); + +	pl022->clk = clk_get(&adev->dev, NULL); +	if (IS_ERR(pl022->clk)) { +		status = PTR_ERR(pl022->clk); +		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n"); +		goto err_no_clk; +	} + +	/* Disable SSP */ +	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)), +	       SSP_CR1(pl022->virtbase)); +	load_ssp_default_config(pl022); + +	status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022", +			     pl022); +	if (status < 0) { +		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status); +		goto err_no_irq; +	} + +	/* Get DMA channels */ +	if (platform_info->enable_dma) { +		status = pl022_dma_probe(pl022); +		if (status != 0) +			platform_info->enable_dma = 0; +	} + +	/* Initialize and start queue */ +	status = init_queue(pl022); +	if (status != 0) { +		dev_err(&adev->dev, "probe - problem initializing queue\n"); +		goto err_init_queue; +	} +	status = start_queue(pl022); +	if (status != 0) { +		dev_err(&adev->dev, "probe - problem starting queue\n"); +		goto err_start_queue; +	} +	/* Register with the SPI framework */ +	amba_set_drvdata(adev, pl022); +	status = spi_register_master(master); +	if (status != 0) { +		dev_err(&adev->dev, +			"probe - problem registering spi master\n"); +		goto err_spi_register; +	} +	dev_dbg(dev, "probe succeeded\n"); +	/* +	 * Disable the silicon block pclk and any voltage domain and just +	 * power it up and clock it when it's needed +	 */ +	amba_pclk_disable(adev); +	amba_vcore_disable(adev); +	return 0; + + err_spi_register: + err_start_queue: + err_init_queue: +	destroy_queue(pl022); +	pl022_dma_remove(pl022); +	free_irq(adev->irq[0], pl022); +	pm_runtime_disable(&adev->dev); + err_no_irq: +	clk_put(pl022->clk); + err_no_clk: +	iounmap(pl022->virtbase); + err_no_ioremap: +	amba_release_regions(adev); + err_no_ioregion: +	spi_master_put(master); + err_no_master: + err_no_pdata: +	return status; +} + +static int __devexit +pl022_remove(struct amba_device *adev) +{ +	struct pl022 *pl022 = amba_get_drvdata(adev); +	int status = 0; +	if (!pl022) +		return 0; + +	/* Remove the queue */ +	status = destroy_queue(pl022); +	if (status != 0) { +		dev_err(&adev->dev, +			"queue remove failed (%d)\n", status); +		return status; +	} +	load_ssp_default_config(pl022); +	pl022_dma_remove(pl022); +	free_irq(adev->irq[0], pl022); +	clk_disable(pl022->clk); +	clk_put(pl022->clk); +	iounmap(pl022->virtbase); +	amba_release_regions(adev); +	tasklet_disable(&pl022->pump_transfers); +	spi_unregister_master(pl022->master); +	spi_master_put(pl022->master); +	amba_set_drvdata(adev, NULL); +	dev_dbg(&adev->dev, "remove succeeded\n"); +	return 0; +} + +#ifdef CONFIG_PM +static int pl022_suspend(struct amba_device *adev, pm_message_t state) +{ +	struct pl022 *pl022 = amba_get_drvdata(adev); +	int status = 0; + +	status = stop_queue(pl022); +	if (status) { +		dev_warn(&adev->dev, "suspend cannot stop queue\n"); +		return status; +	} + +	amba_vcore_enable(adev); +	amba_pclk_enable(adev); +	load_ssp_default_config(pl022); +	amba_pclk_disable(adev); +	amba_vcore_disable(adev); +	dev_dbg(&adev->dev, "suspended\n"); +	return 0; +} + +static int pl022_resume(struct amba_device *adev) +{ +	struct pl022 *pl022 = amba_get_drvdata(adev); +	int status = 0; + +	/* Start the queue running */ +	status = start_queue(pl022); +	if (status) +		dev_err(&adev->dev, "problem starting queue (%d)\n", status); +	else +		dev_dbg(&adev->dev, "resumed\n"); + +	return status; +} +#else +#define pl022_suspend NULL +#define pl022_resume NULL +#endif	/* CONFIG_PM */ + +static struct vendor_data vendor_arm = { +	.fifodepth = 8, +	.max_bpw = 16, +	.unidir = false, +	.extended_cr = false, +	.pl023 = false, +	.loopback = true, +}; + + +static struct vendor_data vendor_st = { +	.fifodepth = 32, +	.max_bpw = 32, +	.unidir = false, +	.extended_cr = true, +	.pl023 = false, +	.loopback = true, +}; + +static struct vendor_data vendor_st_pl023 = { +	.fifodepth = 32, +	.max_bpw = 32, +	.unidir = false, +	.extended_cr = true, +	.pl023 = true, +	.loopback = false, +}; + +static struct vendor_data vendor_db5500_pl023 = { +	.fifodepth = 32, +	.max_bpw = 32, +	.unidir = false, +	.extended_cr = true, +	.pl023 = true, +	.loopback = true, +}; + +static struct amba_id pl022_ids[] = { +	{ +		/* +		 * ARM PL022 variant, this has a 16bit wide +		 * and 8 locations deep TX/RX FIFO +		 */ +		.id	= 0x00041022, +		.mask	= 0x000fffff, +		.data	= &vendor_arm, +	}, +	{ +		/* +		 * ST Micro derivative, this has 32bit wide +		 * and 32 locations deep TX/RX FIFO +		 */ +		.id	= 0x01080022, +		.mask	= 0xffffffff, +		.data	= &vendor_st, +	}, +	{ +		/* +		 * ST-Ericsson derivative "PL023" (this is not +		 * an official ARM number), this is a PL022 SSP block +		 * stripped to SPI mode only, it has 32bit wide +		 * and 32 locations deep TX/RX FIFO but no extended +		 * CR0/CR1 register +		 */ +		.id     = 0x00080023, +		.mask   = 0xffffffff, +		.data   = &vendor_st_pl023, +	}, +	{ +		.id	= 0x10080023, +		.mask	= 0xffffffff, +		.data	= &vendor_db5500_pl023, +	}, +	{ 0, 0 }, +}; + +static struct amba_driver pl022_driver = { +	.drv = { +		.name	= "ssp-pl022", +	}, +	.id_table	= pl022_ids, +	.probe		= pl022_probe, +	.remove		= __devexit_p(pl022_remove), +	.suspend        = pl022_suspend, +	.resume         = pl022_resume, +}; + + +static int __init pl022_init(void) +{ +	return amba_driver_register(&pl022_driver); +} + +subsys_initcall(pl022_init); + +static void __exit pl022_exit(void) +{ +	amba_driver_unregister(&pl022_driver); +} + +module_exit(pl022_exit); + +MODULE_AUTHOR("Linus Walleij <[email protected]>"); +MODULE_DESCRIPTION("PL022 SSP Controller Driver"); +MODULE_LICENSE("GPL");  |