aboutsummaryrefslogtreecommitdiff
path: root/drivers/cpufreq/cpufreq.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/cpufreq/cpufreq.c')
-rw-r--r--drivers/cpufreq/cpufreq.c27
1 files changed, 4 insertions, 23 deletions
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c
index 04fc786dd2c0..f98c9438760c 100644
--- a/drivers/cpufreq/cpufreq.c
+++ b/drivers/cpufreq/cpufreq.c
@@ -575,30 +575,11 @@ unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
return policy->transition_delay_us;
latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
- if (latency) {
- unsigned int max_delay_us = 2 * MSEC_PER_SEC;
+ if (latency)
+ /* Give a 50% breathing room between updates */
+ return latency + (latency >> 1);
- /*
- * If the platform already has high transition_latency, use it
- * as-is.
- */
- if (latency > max_delay_us)
- return latency;
-
- /*
- * For platforms that can change the frequency very fast (< 2
- * us), the above formula gives a decent transition delay. But
- * for platforms where transition_latency is in milliseconds, it
- * ends up giving unrealistic values.
- *
- * Cap the default transition delay to 2 ms, which seems to be
- * a reasonable amount of time after which we should reevaluate
- * the frequency.
- */
- return min(latency * LATENCY_MULTIPLIER, max_delay_us);
- }
-
- return LATENCY_MULTIPLIER;
+ return USEC_PER_MSEC;
}
EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);