diff options
Diffstat (limited to 'drivers/char')
-rw-r--r-- | drivers/char/random.c | 395 |
1 files changed, 229 insertions, 166 deletions
diff --git a/drivers/char/random.c b/drivers/char/random.c index f3179c67010b..538eaa469f5e 100644 --- a/drivers/char/random.c +++ b/drivers/char/random.c @@ -67,63 +67,19 @@ * Exported interfaces ---- kernel output * -------------------------------------- * - * The primary kernel interface is + * The primary kernel interfaces are: * * void get_random_bytes(void *buf, int nbytes); - * - * This interface will return the requested number of random bytes, - * and place it in the requested buffer. This is equivalent to a - * read from /dev/urandom. - * - * For less critical applications, there are the functions: - * * u32 get_random_u32() * u64 get_random_u64() * unsigned int get_random_int() * unsigned long get_random_long() * - * These are produced by a cryptographic RNG seeded from get_random_bytes, - * and so do not deplete the entropy pool as much. These are recommended - * for most in-kernel operations *if the result is going to be stored in - * the kernel*. - * - * Specifically, the get_random_int() family do not attempt to do - * "anti-backtracking". If you capture the state of the kernel (e.g. - * by snapshotting the VM), you can figure out previous get_random_int() - * return values. But if the value is stored in the kernel anyway, - * this is not a problem. - * - * It *is* safe to expose get_random_int() output to attackers (e.g. as - * network cookies); given outputs 1..n, it's not feasible to predict - * outputs 0 or n+1. The only concern is an attacker who breaks into - * the kernel later; the get_random_int() engine is not reseeded as - * often as the get_random_bytes() one. - * - * get_random_bytes() is needed for keys that need to stay secret after - * they are erased from the kernel. For example, any key that will - * be wrapped and stored encrypted. And session encryption keys: we'd - * like to know that after the session is closed and the keys erased, - * the plaintext is unrecoverable to someone who recorded the ciphertext. - * - * But for network ports/cookies, stack canaries, PRNG seeds, address - * space layout randomization, session *authentication* keys, or other - * applications where the sensitive data is stored in the kernel in - * plaintext for as long as it's sensitive, the get_random_int() family - * is just fine. - * - * Consider ASLR. We want to keep the address space secret from an - * outside attacker while the process is running, but once the address - * space is torn down, it's of no use to an attacker any more. And it's - * stored in kernel data structures as long as it's alive, so worrying - * about an attacker's ability to extrapolate it from the get_random_int() - * CRNG is silly. - * - * Even some cryptographic keys are safe to generate with get_random_int(). - * In particular, keys for SipHash are generally fine. Here, knowledge - * of the key authorizes you to do something to a kernel object (inject - * packets to a network connection, or flood a hash table), and the - * key is stored with the object being protected. Once it goes away, - * we no longer care if anyone knows the key. + * These interfaces will return the requested number of random bytes + * into the given buffer or as a return value. This is equivalent to a + * read from /dev/urandom. The get_random_{u32,u64,int,long}() family + * of functions may be higher performance for one-off random integers, + * because they do a bit of buffering. * * prandom_u32() * ------------- @@ -300,20 +256,6 @@ static struct fasync_struct *fasync; static DEFINE_SPINLOCK(random_ready_list_lock); static LIST_HEAD(random_ready_list); -struct crng_state { - u32 state[16]; - unsigned long init_time; - spinlock_t lock; -}; - -static struct crng_state primary_crng = { - .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), - .state[0] = CHACHA_CONSTANT_EXPA, - .state[1] = CHACHA_CONSTANT_ND_3, - .state[2] = CHACHA_CONSTANT_2_BY, - .state[3] = CHACHA_CONSTANT_TE_K, -}; - /* * crng_init = 0 --> Uninitialized * 1 --> Initialized @@ -325,9 +267,6 @@ static struct crng_state primary_crng = { static int crng_init = 0; #define crng_ready() (likely(crng_init > 1)) static int crng_init_cnt = 0; -#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE) -static void extract_crng(u8 out[CHACHA_BLOCK_SIZE]); -static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used); static void process_random_ready_list(void); static void _get_random_bytes(void *buf, int nbytes); @@ -470,7 +409,30 @@ static void credit_entropy_bits(int nbits) * *********************************************************************/ -#define CRNG_RESEED_INTERVAL (300 * HZ) +enum { + CRNG_RESEED_INTERVAL = 300 * HZ, + CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE +}; + +static struct { + u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); + unsigned long birth; + unsigned long generation; + spinlock_t lock; +} base_crng = { + .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) +}; + +struct crng { + u8 key[CHACHA_KEY_SIZE]; + unsigned long generation; + local_lock_t lock; +}; + +static DEFINE_PER_CPU(struct crng, crngs) = { + .generation = ULONG_MAX, + .lock = INIT_LOCAL_LOCK(crngs.lock), +}; static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); @@ -487,22 +449,22 @@ static size_t crng_fast_load(const u8 *cp, size_t len) u8 *p; size_t ret = 0; - if (!spin_trylock_irqsave(&primary_crng.lock, flags)) + if (!spin_trylock_irqsave(&base_crng.lock, flags)) return 0; if (crng_init != 0) { - spin_unlock_irqrestore(&primary_crng.lock, flags); + spin_unlock_irqrestore(&base_crng.lock, flags); return 0; } - p = (u8 *)&primary_crng.state[4]; + p = base_crng.key; while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { - p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; + p[crng_init_cnt % sizeof(base_crng.key)] ^= *cp; cp++; crng_init_cnt++; len--; ret++; } if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { invalidate_batched_entropy(); crng_init = 1; } - spin_unlock_irqrestore(&primary_crng.lock, flags); + spin_unlock_irqrestore(&base_crng.lock, flags); if (crng_init == 1) pr_notice("fast init done\n"); return ret; @@ -527,14 +489,14 @@ static int crng_slow_load(const u8 *cp, size_t len) unsigned long flags; static u8 lfsr = 1; u8 tmp; - unsigned int i, max = CHACHA_KEY_SIZE; + unsigned int i, max = sizeof(base_crng.key); const u8 *src_buf = cp; - u8 *dest_buf = (u8 *)&primary_crng.state[4]; + u8 *dest_buf = base_crng.key; - if (!spin_trylock_irqsave(&primary_crng.lock, flags)) + if (!spin_trylock_irqsave(&base_crng.lock, flags)) return 0; if (crng_init != 0) { - spin_unlock_irqrestore(&primary_crng.lock, flags); + spin_unlock_irqrestore(&base_crng.lock, flags); return 0; } if (len > max) @@ -545,38 +507,50 @@ static int crng_slow_load(const u8 *cp, size_t len) lfsr >>= 1; if (tmp & 1) lfsr ^= 0xE1; - tmp = dest_buf[i % CHACHA_KEY_SIZE]; - dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; + tmp = dest_buf[i % sizeof(base_crng.key)]; + dest_buf[i % sizeof(base_crng.key)] ^= src_buf[i % len] ^ lfsr; lfsr += (tmp << 3) | (tmp >> 5); } - spin_unlock_irqrestore(&primary_crng.lock, flags); + spin_unlock_irqrestore(&base_crng.lock, flags); return 1; } static void crng_reseed(void) { unsigned long flags; - int i, entropy_count; - union { - u8 block[CHACHA_BLOCK_SIZE]; - u32 key[8]; - } buf; + int entropy_count; + unsigned long next_gen; + u8 key[CHACHA_KEY_SIZE]; + /* + * First we make sure we have POOL_MIN_BITS of entropy in the pool, + * and then we drain all of it. Only then can we extract a new key. + */ do { entropy_count = READ_ONCE(input_pool.entropy_count); if (entropy_count < POOL_MIN_BITS) return; } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count); - extract_entropy(buf.key, sizeof(buf.key)); + extract_entropy(key, sizeof(key)); wake_up_interruptible(&random_write_wait); kill_fasync(&fasync, SIGIO, POLL_OUT); - spin_lock_irqsave(&primary_crng.lock, flags); - for (i = 0; i < 8; i++) - primary_crng.state[i + 4] ^= buf.key[i]; - memzero_explicit(&buf, sizeof(buf)); - WRITE_ONCE(primary_crng.init_time, jiffies); - spin_unlock_irqrestore(&primary_crng.lock, flags); + /* + * We copy the new key into the base_crng, overwriting the old one, + * and update the generation counter. We avoid hitting ULONG_MAX, + * because the per-cpu crngs are initialized to ULONG_MAX, so this + * forces new CPUs that come online to always initialize. + */ + spin_lock_irqsave(&base_crng.lock, flags); + memcpy(base_crng.key, key, sizeof(base_crng.key)); + next_gen = base_crng.generation + 1; + if (next_gen == ULONG_MAX) + ++next_gen; + WRITE_ONCE(base_crng.generation, next_gen); + WRITE_ONCE(base_crng.birth, jiffies); + spin_unlock_irqrestore(&base_crng.lock, flags); + memzero_explicit(key, sizeof(key)); + if (crng_init < 2) { invalidate_batched_entropy(); crng_init = 2; @@ -597,77 +571,143 @@ static void crng_reseed(void) } } -static void extract_crng(u8 out[CHACHA_BLOCK_SIZE]) +/* + * The general form here is based on a "fast key erasure RNG" from + * <https://blog.cr.yp.to/20170723-random.html>. It generates a ChaCha + * block using the provided key, and then immediately overwites that + * key with half the block. It returns the resultant ChaCha state to the + * user, along with the second half of the block containing 32 bytes of + * random data that may be used; random_data_len may not be greater than + * 32. + */ +static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], + u32 chacha_state[CHACHA_STATE_WORDS], + u8 *random_data, size_t random_data_len) { - unsigned long flags, init_time; + u8 first_block[CHACHA_BLOCK_SIZE]; - if (crng_ready()) { - init_time = READ_ONCE(primary_crng.init_time); - if (time_after(jiffies, init_time + CRNG_RESEED_INTERVAL)) - crng_reseed(); - } - spin_lock_irqsave(&primary_crng.lock, flags); - chacha20_block(&primary_crng.state[0], out); - if (primary_crng.state[12] == 0) - primary_crng.state[13]++; - spin_unlock_irqrestore(&primary_crng.lock, flags); + BUG_ON(random_data_len > 32); + + chacha_init_consts(chacha_state); + memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); + memset(&chacha_state[12], 0, sizeof(u32) * 4); + chacha20_block(chacha_state, first_block); + + memcpy(key, first_block, CHACHA_KEY_SIZE); + memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); + memzero_explicit(first_block, sizeof(first_block)); } /* - * Use the leftover bytes from the CRNG block output (if there is - * enough) to mutate the CRNG key to provide backtracking protection. + * This function returns a ChaCha state that you may use for generating + * random data. It also returns up to 32 bytes on its own of random data + * that may be used; random_data_len may not be greater than 32. */ -static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used) +static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], + u8 *random_data, size_t random_data_len) { unsigned long flags; - u32 *s, *d; - int i; + struct crng *crng; - used = round_up(used, sizeof(u32)); - if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { - extract_crng(tmp); - used = 0; + BUG_ON(random_data_len > 32); + + /* + * For the fast path, we check whether we're ready, unlocked first, and + * then re-check once locked later. In the case where we're really not + * ready, we do fast key erasure with the base_crng directly, because + * this is what crng_{fast,slow}_load mutate during early init. + */ + if (unlikely(!crng_ready())) { + bool ready; + + spin_lock_irqsave(&base_crng.lock, flags); + ready = crng_ready(); + if (!ready) + crng_fast_key_erasure(base_crng.key, chacha_state, + random_data, random_data_len); + spin_unlock_irqrestore(&base_crng.lock, flags); + if (!ready) + return; } - spin_lock_irqsave(&primary_crng.lock, flags); - s = (u32 *)&tmp[used]; - d = &primary_crng.state[4]; - for (i = 0; i < 8; i++) - *d++ ^= *s++; - spin_unlock_irqrestore(&primary_crng.lock, flags); + + /* + * If the base_crng is more than 5 minutes old, we reseed, which + * in turn bumps the generation counter that we check below. + */ + if (unlikely(time_after(jiffies, READ_ONCE(base_crng.birth) + CRNG_RESEED_INTERVAL))) + crng_reseed(); + + local_lock_irqsave(&crngs.lock, flags); + crng = raw_cpu_ptr(&crngs); + + /* + * If our per-cpu crng is older than the base_crng, then it means + * somebody reseeded the base_crng. In that case, we do fast key + * erasure on the base_crng, and use its output as the new key + * for our per-cpu crng. This brings us up to date with base_crng. + */ + if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { + spin_lock(&base_crng.lock); + crng_fast_key_erasure(base_crng.key, chacha_state, + crng->key, sizeof(crng->key)); + crng->generation = base_crng.generation; + spin_unlock(&base_crng.lock); + } + + /* + * Finally, when we've made it this far, our per-cpu crng has an up + * to date key, and we can do fast key erasure with it to produce + * some random data and a ChaCha state for the caller. All other + * branches of this function are "unlikely", so most of the time we + * should wind up here immediately. + */ + crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); + local_unlock_irqrestore(&crngs.lock, flags); } -static ssize_t extract_crng_user(void __user *buf, size_t nbytes) +static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes) { - ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; - u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); - int large_request = (nbytes > 256); + bool large_request = nbytes > 256; + ssize_t ret = 0, len; + u32 chacha_state[CHACHA_STATE_WORDS]; + u8 output[CHACHA_BLOCK_SIZE]; + + if (!nbytes) + return 0; + + len = min_t(ssize_t, 32, nbytes); + crng_make_state(chacha_state, output, len); + + if (copy_to_user(buf, output, len)) + return -EFAULT; + nbytes -= len; + buf += len; + ret += len; while (nbytes) { if (large_request && need_resched()) { - if (signal_pending(current)) { - if (ret == 0) - ret = -ERESTARTSYS; + if (signal_pending(current)) break; - } schedule(); } - extract_crng(tmp); - i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); - if (copy_to_user(buf, tmp, i)) { + chacha20_block(chacha_state, output); + if (unlikely(chacha_state[12] == 0)) + ++chacha_state[13]; + + len = min_t(ssize_t, nbytes, CHACHA_BLOCK_SIZE); + if (copy_to_user(buf, output, len)) { ret = -EFAULT; break; } - nbytes -= i; - buf += i; - ret += i; + nbytes -= len; + buf += len; + ret += len; } - crng_backtrack_protect(tmp, i); - - /* Wipe data just written to memory */ - memzero_explicit(tmp, sizeof(tmp)); + memzero_explicit(chacha_state, sizeof(chacha_state)); + memzero_explicit(output, sizeof(output)); return ret; } @@ -976,23 +1016,36 @@ static void _warn_unseeded_randomness(const char *func_name, void *caller, void */ static void _get_random_bytes(void *buf, int nbytes) { - u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); + u32 chacha_state[CHACHA_STATE_WORDS]; + u8 tmp[CHACHA_BLOCK_SIZE]; + ssize_t len; trace_get_random_bytes(nbytes, _RET_IP_); - while (nbytes >= CHACHA_BLOCK_SIZE) { - extract_crng(buf); - buf += CHACHA_BLOCK_SIZE; + if (!nbytes) + return; + + len = min_t(ssize_t, 32, nbytes); + crng_make_state(chacha_state, buf, len); + nbytes -= len; + buf += len; + + while (nbytes) { + if (nbytes < CHACHA_BLOCK_SIZE) { + chacha20_block(chacha_state, tmp); + memcpy(buf, tmp, nbytes); + memzero_explicit(tmp, sizeof(tmp)); + break; + } + + chacha20_block(chacha_state, buf); + if (unlikely(chacha_state[12] == 0)) + ++chacha_state[13]; nbytes -= CHACHA_BLOCK_SIZE; + buf += CHACHA_BLOCK_SIZE; } - if (nbytes > 0) { - extract_crng(tmp); - memcpy(buf, tmp, nbytes); - crng_backtrack_protect(tmp, nbytes); - } else - crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); - memzero_explicit(tmp, sizeof(tmp)); + memzero_explicit(chacha_state, sizeof(chacha_state)); } void get_random_bytes(void *buf, int nbytes) @@ -1223,13 +1276,12 @@ int __init rand_initialize(void) mix_pool_bytes(&now, sizeof(now)); mix_pool_bytes(utsname(), sizeof(*(utsname()))); - extract_entropy(&primary_crng.state[4], sizeof(u32) * 12); + extract_entropy(base_crng.key, sizeof(base_crng.key)); if (arch_init && trust_cpu && crng_init < 2) { invalidate_batched_entropy(); crng_init = 2; pr_notice("crng init done (trusting CPU's manufacturer)\n"); } - primary_crng.init_time = jiffies - CRNG_RESEED_INTERVAL - 1; if (ratelimit_disable) { urandom_warning.interval = 0; @@ -1261,7 +1313,7 @@ static ssize_t urandom_read_nowarn(struct file *file, char __user *buf, int ret; nbytes = min_t(size_t, nbytes, INT_MAX >> 6); - ret = extract_crng_user(buf, nbytes); + ret = get_random_bytes_user(buf, nbytes); trace_urandom_read(8 * nbytes, 0, input_pool.entropy_count); return ret; } @@ -1577,8 +1629,15 @@ static atomic_t batch_generation = ATOMIC_INIT(0); struct batched_entropy { union { - u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; - u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; + /* + * We make this 1.5x a ChaCha block, so that we get the + * remaining 32 bytes from fast key erasure, plus one full + * block from the detached ChaCha state. We can increase + * the size of this later if needed so long as we keep the + * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. + */ + u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))]; + u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))]; }; local_lock_t lock; unsigned int position; @@ -1587,14 +1646,13 @@ struct batched_entropy { /* * Get a random word for internal kernel use only. The quality of the random - * number is good as /dev/urandom, but there is no backtrack protection, with - * the goal of being quite fast and not depleting entropy. In order to ensure - * that the randomness provided by this function is okay, the function - * wait_for_random_bytes() should be called and return 0 at least once at any - * point prior. + * number is good as /dev/urandom. In order to ensure that the randomness + * provided by this function is okay, the function wait_for_random_bytes() + * should be called and return 0 at least once at any point prior. */ static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { - .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock) + .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock), + .position = UINT_MAX }; u64 get_random_u64(void) @@ -1611,21 +1669,24 @@ u64 get_random_u64(void) batch = raw_cpu_ptr(&batched_entropy_u64); next_gen = atomic_read(&batch_generation); - if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0 || + if (batch->position >= ARRAY_SIZE(batch->entropy_u64) || next_gen != batch->generation) { - extract_crng((u8 *)batch->entropy_u64); + _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64)); batch->position = 0; batch->generation = next_gen; } - ret = batch->entropy_u64[batch->position++]; + ret = batch->entropy_u64[batch->position]; + batch->entropy_u64[batch->position] = 0; + ++batch->position; local_unlock_irqrestore(&batched_entropy_u64.lock, flags); return ret; } EXPORT_SYMBOL(get_random_u64); static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { - .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock) + .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock), + .position = UINT_MAX }; u32 get_random_u32(void) @@ -1642,14 +1703,16 @@ u32 get_random_u32(void) batch = raw_cpu_ptr(&batched_entropy_u32); next_gen = atomic_read(&batch_generation); - if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0 || + if (batch->position >= ARRAY_SIZE(batch->entropy_u32) || next_gen != batch->generation) { - extract_crng((u8 *)batch->entropy_u32); + _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32)); batch->position = 0; batch->generation = next_gen; } - ret = batch->entropy_u32[batch->position++]; + ret = batch->entropy_u32[batch->position]; + batch->entropy_u32[batch->position] = 0; + ++batch->position; local_unlock_irqrestore(&batched_entropy_u32.lock, flags); return ret; } |