diff options
Diffstat (limited to 'drivers/char/random.c')
| -rw-r--r-- | drivers/char/random.c | 2987 | 
1 files changed, 1221 insertions, 1766 deletions
diff --git a/drivers/char/random.c b/drivers/char/random.c index 227fb7802738..66ce7c03a142 100644 --- a/drivers/char/random.c +++ b/drivers/char/random.c @@ -1,320 +1,28 @@ +// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)  /* - * random.c -- A strong random number generator - *   * Copyright (C) 2017-2022 Jason A. Donenfeld <[email protected]>. All Rights Reserved. - *   * Copyright Matt Mackall <[email protected]>, 2003, 2004, 2005 - * - * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All - * rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - *    notice, and the entire permission notice in its entirety, - *    including the disclaimer of warranties. - * 2. Redistributions in binary form must reproduce the above copyright - *    notice, this list of conditions and the following disclaimer in the - *    documentation and/or other materials provided with the distribution. - * 3. The name of the author may not be used to endorse or promote - *    products derived from this software without specific prior - *    written permission. - * - * ALTERNATIVELY, this product may be distributed under the terms of - * the GNU General Public License, in which case the provisions of the GPL are - * required INSTEAD OF the above restrictions.  (This clause is - * necessary due to a potential bad interaction between the GPL and - * the restrictions contained in a BSD-style copyright.) - * - * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED - * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF - * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT - * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR - * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF - * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE - * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH - * DAMAGE. - */ - -/* - * (now, with legal B.S. out of the way.....) - * - * This routine gathers environmental noise from device drivers, etc., - * and returns good random numbers, suitable for cryptographic use. - * Besides the obvious cryptographic uses, these numbers are also good - * for seeding TCP sequence numbers, and other places where it is - * desirable to have numbers which are not only random, but hard to - * predict by an attacker. - * - * Theory of operation - * =================== - * - * Computers are very predictable devices.  Hence it is extremely hard - * to produce truly random numbers on a computer --- as opposed to - * pseudo-random numbers, which can easily generated by using a - * algorithm.  Unfortunately, it is very easy for attackers to guess - * the sequence of pseudo-random number generators, and for some - * applications this is not acceptable.  So instead, we must try to - * gather "environmental noise" from the computer's environment, which - * must be hard for outside attackers to observe, and use that to - * generate random numbers.  In a Unix environment, this is best done - * from inside the kernel. - * - * Sources of randomness from the environment include inter-keyboard - * timings, inter-interrupt timings from some interrupts, and other - * events which are both (a) non-deterministic and (b) hard for an - * outside observer to measure.  Randomness from these sources are - * added to an "entropy pool", which is mixed using a CRC-like function. - * This is not cryptographically strong, but it is adequate assuming - * the randomness is not chosen maliciously, and it is fast enough that - * the overhead of doing it on every interrupt is very reasonable. - * As random bytes are mixed into the entropy pool, the routines keep - * an *estimate* of how many bits of randomness have been stored into - * the random number generator's internal state. - * - * When random bytes are desired, they are obtained by taking the BLAKE2s - * hash of the contents of the "entropy pool".  The BLAKE2s hash avoids - * exposing the internal state of the entropy pool.  It is believed to - * be computationally infeasible to derive any useful information - * about the input of BLAKE2s from its output.  Even if it is possible to - * analyze BLAKE2s in some clever way, as long as the amount of data - * returned from the generator is less than the inherent entropy in - * the pool, the output data is totally unpredictable.  For this - * reason, the routine decreases its internal estimate of how many - * bits of "true randomness" are contained in the entropy pool as it - * outputs random numbers. - * - * If this estimate goes to zero, the routine can still generate - * random numbers; however, an attacker may (at least in theory) be - * able to infer the future output of the generator from prior - * outputs.  This requires successful cryptanalysis of BLAKE2s, which is - * not believed to be feasible, but there is a remote possibility. - * Nonetheless, these numbers should be useful for the vast majority - * of purposes. - * - * Exported interfaces ---- output - * =============================== - * - * There are four exported interfaces; two for use within the kernel, - * and two or use from userspace. - * - * Exported interfaces ---- userspace output - * ----------------------------------------- - * - * The userspace interfaces are two character devices /dev/random and - * /dev/urandom.  /dev/random is suitable for use when very high - * quality randomness is desired (for example, for key generation or - * one-time pads), as it will only return a maximum of the number of - * bits of randomness (as estimated by the random number generator) - * contained in the entropy pool. - * - * The /dev/urandom device does not have this limit, and will return - * as many bytes as are requested.  As more and more random bytes are - * requested without giving time for the entropy pool to recharge, - * this will result in random numbers that are merely cryptographically - * strong.  For many applications, however, this is acceptable. - * - * Exported interfaces ---- kernel output - * -------------------------------------- - * - * The primary kernel interface is - * - * 	void get_random_bytes(void *buf, int nbytes); - * - * This interface will return the requested number of random bytes, - * and place it in the requested buffer.  This is equivalent to a - * read from /dev/urandom. - * - * For less critical applications, there are the functions: - * - * 	u32 get_random_u32() - * 	u64 get_random_u64() - * 	unsigned int get_random_int() - * 	unsigned long get_random_long() - * - * These are produced by a cryptographic RNG seeded from get_random_bytes, - * and so do not deplete the entropy pool as much.  These are recommended - * for most in-kernel operations *if the result is going to be stored in - * the kernel*. - * - * Specifically, the get_random_int() family do not attempt to do - * "anti-backtracking".  If you capture the state of the kernel (e.g. - * by snapshotting the VM), you can figure out previous get_random_int() - * return values.  But if the value is stored in the kernel anyway, - * this is not a problem. - * - * It *is* safe to expose get_random_int() output to attackers (e.g. as - * network cookies); given outputs 1..n, it's not feasible to predict - * outputs 0 or n+1.  The only concern is an attacker who breaks into - * the kernel later; the get_random_int() engine is not reseeded as - * often as the get_random_bytes() one. - * - * get_random_bytes() is needed for keys that need to stay secret after - * they are erased from the kernel.  For example, any key that will - * be wrapped and stored encrypted.  And session encryption keys: we'd - * like to know that after the session is closed and the keys erased, - * the plaintext is unrecoverable to someone who recorded the ciphertext. - * - * But for network ports/cookies, stack canaries, PRNG seeds, address - * space layout randomization, session *authentication* keys, or other - * applications where the sensitive data is stored in the kernel in - * plaintext for as long as it's sensitive, the get_random_int() family - * is just fine. - * - * Consider ASLR.  We want to keep the address space secret from an - * outside attacker while the process is running, but once the address - * space is torn down, it's of no use to an attacker any more.  And it's - * stored in kernel data structures as long as it's alive, so worrying - * about an attacker's ability to extrapolate it from the get_random_int() - * CRNG is silly. - * - * Even some cryptographic keys are safe to generate with get_random_int(). - * In particular, keys for SipHash are generally fine.  Here, knowledge - * of the key authorizes you to do something to a kernel object (inject - * packets to a network connection, or flood a hash table), and the - * key is stored with the object being protected.  Once it goes away, - * we no longer care if anyone knows the key. - * - * prandom_u32() - * ------------- - * - * For even weaker applications, see the pseudorandom generator - * prandom_u32(), prandom_max(), and prandom_bytes().  If the random - * numbers aren't security-critical at all, these are *far* cheaper. - * Useful for self-tests, random error simulation, randomized backoffs, - * and any other application where you trust that nobody is trying to - * maliciously mess with you by guessing the "random" numbers. - * - * Exported interfaces ---- input - * ============================== - * - * The current exported interfaces for gathering environmental noise - * from the devices are: - * - *	void add_device_randomness(const void *buf, unsigned int size); - * 	void add_input_randomness(unsigned int type, unsigned int code, - *                                unsigned int value); - *	void add_interrupt_randomness(int irq); - * 	void add_disk_randomness(struct gendisk *disk); - *	void add_hwgenerator_randomness(const char *buffer, size_t count, - *					size_t entropy); - *	void add_bootloader_randomness(const void *buf, unsigned int size); - * - * add_device_randomness() is for adding data to the random pool that - * is likely to differ between two devices (or possibly even per boot). - * This would be things like MAC addresses or serial numbers, or the - * read-out of the RTC. This does *not* add any actual entropy to the - * pool, but it initializes the pool to different values for devices - * that might otherwise be identical and have very little entropy - * available to them (particularly common in the embedded world). - * - * add_input_randomness() uses the input layer interrupt timing, as well as - * the event type information from the hardware. - * - * add_interrupt_randomness() uses the interrupt timing as random - * inputs to the entropy pool. Using the cycle counters and the irq source - * as inputs, it feeds the randomness roughly once a second. - * - * add_disk_randomness() uses what amounts to the seek time of block - * layer request events, on a per-disk_devt basis, as input to the - * entropy pool. Note that high-speed solid state drives with very low - * seek times do not make for good sources of entropy, as their seek - * times are usually fairly consistent. - * - * All of these routines try to estimate how many bits of randomness a - * particular randomness source.  They do this by keeping track of the - * first and second order deltas of the event timings. - * - * add_hwgenerator_randomness() is for true hardware RNGs, and will credit - * entropy as specified by the caller. If the entropy pool is full it will - * block until more entropy is needed. - * - * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or - * add_device_randomness(), depending on whether or not the configuration - * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. - * - * Ensuring unpredictability at system startup - * ============================================ - * - * When any operating system starts up, it will go through a sequence - * of actions that are fairly predictable by an adversary, especially - * if the start-up does not involve interaction with a human operator. - * This reduces the actual number of bits of unpredictability in the - * entropy pool below the value in entropy_count.  In order to - * counteract this effect, it helps to carry information in the - * entropy pool across shut-downs and start-ups.  To do this, put the - * following lines an appropriate script which is run during the boot - * sequence: - * - *	echo "Initializing random number generator..." - *	random_seed=/var/run/random-seed - *	# Carry a random seed from start-up to start-up - *	# Load and then save the whole entropy pool - *	if [ -f $random_seed ]; then - *		cat $random_seed >/dev/urandom - *	else - *		touch $random_seed - *	fi - *	chmod 600 $random_seed - *	dd if=/dev/urandom of=$random_seed count=1 bs=512 - * - * and the following lines in an appropriate script which is run as - * the system is shutdown: - * - *	# Carry a random seed from shut-down to start-up - *	# Save the whole entropy pool - *	echo "Saving random seed..." - *	random_seed=/var/run/random-seed - *	touch $random_seed - *	chmod 600 $random_seed - *	dd if=/dev/urandom of=$random_seed count=1 bs=512 - * - * For example, on most modern systems using the System V init - * scripts, such code fragments would be found in - * /etc/rc.d/init.d/random.  On older Linux systems, the correct script - * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. - * - * Effectively, these commands cause the contents of the entropy pool - * to be saved at shut-down time and reloaded into the entropy pool at - * start-up.  (The 'dd' in the addition to the bootup script is to - * make sure that /etc/random-seed is different for every start-up, - * even if the system crashes without executing rc.0.)  Even with - * complete knowledge of the start-up activities, predicting the state - * of the entropy pool requires knowledge of the previous history of - * the system. - * - * Configuring the /dev/random driver under Linux - * ============================================== - * - * The /dev/random driver under Linux uses minor numbers 8 and 9 of - * the /dev/mem major number (#1).  So if your system does not have - * /dev/random and /dev/urandom created already, they can be created - * by using the commands: - * - * 	mknod /dev/random c 1 8 - * 	mknod /dev/urandom c 1 9 - * - * Acknowledgements: - * ================= - * - * Ideas for constructing this random number generator were derived - * from Pretty Good Privacy's random number generator, and from private - * discussions with Phil Karn.  Colin Plumb provided a faster random - * number generator, which speed up the mixing function of the entropy - * pool, taken from PGPfone.  Dale Worley has also contributed many - * useful ideas and suggestions to improve this driver. - * - * Any flaws in the design are solely my responsibility, and should - * not be attributed to the Phil, Colin, or any of authors of PGP. - * - * Further background information on this topic may be obtained from - * RFC 1750, "Randomness Recommendations for Security", by Donald - * Eastlake, Steve Crocker, and Jeff Schiller. + * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. + * + * This driver produces cryptographically secure pseudorandom data. It is divided + * into roughly six sections, each with a section header: + * + *   - Initialization and readiness waiting. + *   - Fast key erasure RNG, the "crng". + *   - Entropy accumulation and extraction routines. + *   - Entropy collection routines. + *   - Userspace reader/writer interfaces. + *   - Sysctl interface. + * + * The high level overview is that there is one input pool, into which + * various pieces of data are hashed. Some of that data is then "credited" as + * having a certain number of bits of entropy. When enough bits of entropy are + * available, the hash is finalized and handed as a key to a stream cipher that + * expands it indefinitely for various consumers. This key is periodically + * refreshed as the various entropy collectors, described below, add data to the + * input pool and credit it. There is currently no Fortuna-like scheduler + * involved, which can lead to malicious entropy sources causing a premature + * reseed, and the entropy estimates are, at best, conservative guesses.   */  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt @@ -330,14 +38,13 @@  #include <linux/poll.h>  #include <linux/init.h>  #include <linux/fs.h> -#include <linux/genhd.h> +#include <linux/blkdev.h>  #include <linux/interrupt.h>  #include <linux/mm.h>  #include <linux/nodemask.h>  #include <linux/spinlock.h>  #include <linux/kthread.h>  #include <linux/percpu.h> -#include <linux/fips.h>  #include <linux/ptrace.h>  #include <linux/workqueue.h>  #include <linux/irq.h> @@ -345,783 +52,947 @@  #include <linux/syscalls.h>  #include <linux/completion.h>  #include <linux/uuid.h> +#include <linux/uaccess.h>  #include <crypto/chacha.h>  #include <crypto/blake2s.h> -  #include <asm/processor.h> -#include <linux/uaccess.h>  #include <asm/irq.h>  #include <asm/irq_regs.h>  #include <asm/io.h> -#define CREATE_TRACE_POINTS -#include <trace/events/random.h> - -/* #define ADD_INTERRUPT_BENCH */ - -/* - * Configuration information - */ -#define INPUT_POOL_SHIFT	12 -#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5)) -#define OUTPUT_POOL_SHIFT	10 -#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5)) -#define EXTRACT_SIZE		(BLAKE2S_HASH_SIZE / 2) - -/* - * To allow fractional bits to be tracked, the entropy_count field is - * denominated in units of 1/8th bits. - * - * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in - * credit_entropy_bits() needs to be 64 bits wide. - */ -#define ENTROPY_SHIFT 3 -#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) - -/* - * If the entropy count falls under this number of bits, then we - * should wake up processes which are selecting or polling on write - * access to /dev/random. - */ -static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; - -/* - * Originally, we used a primitive polynomial of degree .poolwords - * over GF(2).  The taps for various sizes are defined below.  They - * were chosen to be evenly spaced except for the last tap, which is 1 - * to get the twisting happening as fast as possible. - * - * For the purposes of better mixing, we use the CRC-32 polynomial as - * well to make a (modified) twisted Generalized Feedback Shift - * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR - * generators.  ACM Transactions on Modeling and Computer Simulation - * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted - * GFSR generators II.  ACM Transactions on Modeling and Computer - * Simulation 4:254-266) +/*********************************************************************   * - * Thanks to Colin Plumb for suggesting this. + * Initialization and readiness waiting.   * - * The mixing operation is much less sensitive than the output hash, - * where we use BLAKE2s.  All that we want of mixing operation is that - * it be a good non-cryptographic hash; i.e. it not produce collisions - * when fed "random" data of the sort we expect to see.  As long as - * the pool state differs for different inputs, we have preserved the - * input entropy and done a good job.  The fact that an intelligent - * attacker can construct inputs that will produce controlled - * alterations to the pool's state is not important because we don't - * consider such inputs to contribute any randomness.  The only - * property we need with respect to them is that the attacker can't - * increase his/her knowledge of the pool's state.  Since all - * additions are reversible (knowing the final state and the input, - * you can reconstruct the initial state), if an attacker has any - * uncertainty about the initial state, he/she can only shuffle that - * uncertainty about, but never cause any collisions (which would - * decrease the uncertainty). + * Much of the RNG infrastructure is devoted to various dependencies + * being able to wait until the RNG has collected enough entropy and + * is ready for safe consumption.   * - * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and - * Videau in their paper, "The Linux Pseudorandom Number Generator - * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their - * paper, they point out that we are not using a true Twisted GFSR, - * since Matsumoto & Kurita used a trinomial feedback polynomial (that - * is, with only three taps, instead of the six that we are using). - * As a result, the resulting polynomial is neither primitive nor - * irreducible, and hence does not have a maximal period over - * GF(2**32).  They suggest a slight change to the generator - * polynomial which improves the resulting TGFSR polynomial to be - * irreducible, which we have made here. - */ -static const struct poolinfo { -	int poolbitshift, poolwords, poolbytes, poolfracbits; -#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) -	int tap1, tap2, tap3, tap4, tap5; -} poolinfo_table[] = { -	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ -	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ -	{ S(128),	104,	76,	51,	25,	1 }, -}; - -/* - * Static global variables - */ -static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); -static struct fasync_struct *fasync; - -static DEFINE_SPINLOCK(random_ready_list_lock); -static LIST_HEAD(random_ready_list); - -struct crng_state { -	__u32		state[16]; -	unsigned long	init_time; -	spinlock_t	lock; -}; - -static struct crng_state primary_crng = { -	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), -	.state[0] = CHACHA_CONSTANT_EXPA, -	.state[1] = CHACHA_CONSTANT_ND_3, -	.state[2] = CHACHA_CONSTANT_2_BY, -	.state[3] = CHACHA_CONSTANT_TE_K, -}; + *********************************************************************/  /*   * crng_init =  0 --> Uninitialized   *		1 --> Initialized   *		2 --> Initialized from input_pool   * - * crng_init is protected by primary_crng->lock, and only increases + * crng_init is protected by base_crng->lock, and only increases   * its value (from 0->1->2).   */  static int crng_init = 0; -static bool crng_need_final_init = false;  #define crng_ready() (likely(crng_init > 1)) -static int crng_init_cnt = 0; -static unsigned long crng_global_init_time = 0; -#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) -static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); -static void _crng_backtrack_protect(struct crng_state *crng, -				    __u8 tmp[CHACHA_BLOCK_SIZE], int used); -static void process_random_ready_list(void); -static void _get_random_bytes(void *buf, int nbytes); +/* Various types of waiters for crng_init->2 transition. */ +static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); +static struct fasync_struct *fasync; +static DEFINE_SPINLOCK(random_ready_chain_lock); +static RAW_NOTIFIER_HEAD(random_ready_chain); +/* Control how we warn userspace. */  static struct ratelimit_state unseeded_warning =  	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);  static struct ratelimit_state urandom_warning =  	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); -  static int ratelimit_disable __read_mostly; -  module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);  MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); -/********************************************************************** - * - * OS independent entropy store.   Here are the functions which handle - * storing entropy in an entropy pool. +/* + * Returns whether or not the input pool has been seeded and thus guaranteed + * to supply cryptographically secure random numbers. This applies to: the + * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, + * ,u64,int,long} family of functions.   * - **********************************************************************/ - -struct entropy_store; -struct entropy_store { -	/* read-only data: */ -	const struct poolinfo *poolinfo; -	__u32 *pool; -	const char *name; - -	/* read-write data: */ -	spinlock_t lock; -	unsigned short add_ptr; -	unsigned short input_rotate; -	int entropy_count; -	unsigned int last_data_init:1; -	__u8 last_data[EXTRACT_SIZE]; -}; - -static ssize_t extract_entropy(struct entropy_store *r, void *buf, -			       size_t nbytes, int min, int rsvd); -static ssize_t _extract_entropy(struct entropy_store *r, void *buf, -				size_t nbytes, int fips); + * Returns: true if the input pool has been seeded. + *          false if the input pool has not been seeded. + */ +bool rng_is_initialized(void) +{ +	return crng_ready(); +} +EXPORT_SYMBOL(rng_is_initialized); -static void crng_reseed(struct crng_state *crng, struct entropy_store *r); -static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; +/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ +static void try_to_generate_entropy(void); -static struct entropy_store input_pool = { -	.poolinfo = &poolinfo_table[0], -	.name = "input", -	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), -	.pool = input_pool_data -}; +/* + * Wait for the input pool to be seeded and thus guaranteed to supply + * cryptographically secure random numbers. This applies to: the /dev/urandom + * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} + * family of functions. Using any of these functions without first calling + * this function forfeits the guarantee of security. + * + * Returns: 0 if the input pool has been seeded. + *          -ERESTARTSYS if the function was interrupted by a signal. + */ +int wait_for_random_bytes(void) +{ +	while (!crng_ready()) { +		int ret; -static __u32 const twist_table[8] = { -	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, -	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; +		try_to_generate_entropy(); +		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); +		if (ret) +			return ret > 0 ? 0 : ret; +	} +	return 0; +} +EXPORT_SYMBOL(wait_for_random_bytes);  /* - * This function adds bytes into the entropy "pool".  It does not - * update the entropy estimate.  The caller should call - * credit_entropy_bits if this is appropriate. + * Add a callback function that will be invoked when the input + * pool is initialised.   * - * The pool is stirred with a primitive polynomial of the appropriate - * degree, and then twisted.  We twist by three bits at a time because - * it's cheap to do so and helps slightly in the expected case where - * the entropy is concentrated in the low-order bits. + * returns: 0 if callback is successfully added + *	    -EALREADY if pool is already initialised (callback not called)   */ -static void _mix_pool_bytes(struct entropy_store *r, const void *in, -			    int nbytes) +int register_random_ready_notifier(struct notifier_block *nb)  { -	unsigned long i, tap1, tap2, tap3, tap4, tap5; -	int input_rotate; -	int wordmask = r->poolinfo->poolwords - 1; -	const unsigned char *bytes = in; -	__u32 w; - -	tap1 = r->poolinfo->tap1; -	tap2 = r->poolinfo->tap2; -	tap3 = r->poolinfo->tap3; -	tap4 = r->poolinfo->tap4; -	tap5 = r->poolinfo->tap5; - -	input_rotate = r->input_rotate; -	i = r->add_ptr; - -	/* mix one byte at a time to simplify size handling and churn faster */ -	while (nbytes--) { -		w = rol32(*bytes++, input_rotate); -		i = (i - 1) & wordmask; - -		/* XOR in the various taps */ -		w ^= r->pool[i]; -		w ^= r->pool[(i + tap1) & wordmask]; -		w ^= r->pool[(i + tap2) & wordmask]; -		w ^= r->pool[(i + tap3) & wordmask]; -		w ^= r->pool[(i + tap4) & wordmask]; -		w ^= r->pool[(i + tap5) & wordmask]; - -		/* Mix the result back in with a twist */ -		r->pool[i] = (w >> 3) ^ twist_table[w & 7]; +	unsigned long flags; +	int ret = -EALREADY; -		/* -		 * Normally, we add 7 bits of rotation to the pool. -		 * At the beginning of the pool, add an extra 7 bits -		 * rotation, so that successive passes spread the -		 * input bits across the pool evenly. -		 */ -		input_rotate = (input_rotate + (i ? 7 : 14)) & 31; -	} +	if (crng_ready()) +		return ret; -	r->input_rotate = input_rotate; -	r->add_ptr = i; +	spin_lock_irqsave(&random_ready_chain_lock, flags); +	if (!crng_ready()) +		ret = raw_notifier_chain_register(&random_ready_chain, nb); +	spin_unlock_irqrestore(&random_ready_chain_lock, flags); +	return ret;  } -static void __mix_pool_bytes(struct entropy_store *r, const void *in, -			     int nbytes) +/* + * Delete a previously registered readiness callback function. + */ +int unregister_random_ready_notifier(struct notifier_block *nb)  { -	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); -	_mix_pool_bytes(r, in, nbytes); +	unsigned long flags; +	int ret; + +	spin_lock_irqsave(&random_ready_chain_lock, flags); +	ret = raw_notifier_chain_unregister(&random_ready_chain, nb); +	spin_unlock_irqrestore(&random_ready_chain_lock, flags); +	return ret;  } -static void mix_pool_bytes(struct entropy_store *r, const void *in, -			   int nbytes) +static void process_random_ready_list(void)  {  	unsigned long flags; -	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); -	spin_lock_irqsave(&r->lock, flags); -	_mix_pool_bytes(r, in, nbytes); -	spin_unlock_irqrestore(&r->lock, flags); +	spin_lock_irqsave(&random_ready_chain_lock, flags); +	raw_notifier_call_chain(&random_ready_chain, 0, NULL); +	spin_unlock_irqrestore(&random_ready_chain_lock, flags);  } -struct fast_pool { -	__u32		pool[4]; -	unsigned long	last; -	unsigned short	reg_idx; -	unsigned char	count; -}; +#define warn_unseeded_randomness(previous) \ +	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous)) -/* - * This is a fast mixing routine used by the interrupt randomness - * collector.  It's hardcoded for an 128 bit pool and assumes that any - * locks that might be needed are taken by the caller. - */ -static void fast_mix(struct fast_pool *f) +static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)  { -	__u32 a = f->pool[0],	b = f->pool[1]; -	__u32 c = f->pool[2],	d = f->pool[3]; +#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM +	const bool print_once = false; +#else +	static bool print_once __read_mostly; +#endif -	a += b;			c += d; -	b = rol32(b, 6);	d = rol32(d, 27); -	d ^= a;			b ^= c; +	if (print_once || crng_ready() || +	    (previous && (caller == READ_ONCE(*previous)))) +		return; +	WRITE_ONCE(*previous, caller); +#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM +	print_once = true; +#endif +	if (__ratelimit(&unseeded_warning)) +		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", +				func_name, caller, crng_init); +} -	a += b;			c += d; -	b = rol32(b, 16);	d = rol32(d, 14); -	d ^= a;			b ^= c; -	a += b;			c += d; -	b = rol32(b, 6);	d = rol32(d, 27); -	d ^= a;			b ^= c; +/********************************************************************* + * + * Fast key erasure RNG, the "crng". + * + * These functions expand entropy from the entropy extractor into + * long streams for external consumption using the "fast key erasure" + * RNG described at <https://blog.cr.yp.to/20170723-random.html>. + * + * There are a few exported interfaces for use by other drivers: + * + *	void get_random_bytes(void *buf, size_t nbytes) + *	u32 get_random_u32() + *	u64 get_random_u64() + *	unsigned int get_random_int() + *	unsigned long get_random_long() + * + * These interfaces will return the requested number of random bytes + * into the given buffer or as a return value. This is equivalent to + * a read from /dev/urandom. The integer family of functions may be + * higher performance for one-off random integers, because they do a + * bit of buffering. + * + *********************************************************************/ -	a += b;			c += d; -	b = rol32(b, 16);	d = rol32(d, 14); -	d ^= a;			b ^= c; +enum { +	CRNG_RESEED_INTERVAL = 300 * HZ, +	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE +}; -	f->pool[0] = a;  f->pool[1] = b; -	f->pool[2] = c;  f->pool[3] = d; -	f->count++; -} +static struct { +	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); +	unsigned long birth; +	unsigned long generation; +	spinlock_t lock; +} base_crng = { +	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) +}; -static void process_random_ready_list(void) -{ -	unsigned long flags; -	struct random_ready_callback *rdy, *tmp; +struct crng { +	u8 key[CHACHA_KEY_SIZE]; +	unsigned long generation; +	local_lock_t lock; +}; -	spin_lock_irqsave(&random_ready_list_lock, flags); -	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { -		struct module *owner = rdy->owner; +static DEFINE_PER_CPU(struct crng, crngs) = { +	.generation = ULONG_MAX, +	.lock = INIT_LOCAL_LOCK(crngs.lock), +}; -		list_del_init(&rdy->list); -		rdy->func(rdy); -		module_put(owner); -	} -	spin_unlock_irqrestore(&random_ready_list_lock, flags); -} +/* Used by crng_reseed() to extract a new seed from the input pool. */ +static bool drain_entropy(void *buf, size_t nbytes, bool force);  /* - * Credit (or debit) the entropy store with n bits of entropy. - * Use credit_entropy_bits_safe() if the value comes from userspace - * or otherwise should be checked for extreme values. + * This extracts a new crng key from the input pool, but only if there is a + * sufficient amount of entropy available or force is true, in order to + * mitigate bruteforcing of newly added bits.   */ -static void credit_entropy_bits(struct entropy_store *r, int nbits) +static void crng_reseed(bool force)  { -	int entropy_count, orig; -	const int pool_size = r->poolinfo->poolfracbits; -	int nfrac = nbits << ENTROPY_SHIFT; +	unsigned long flags; +	unsigned long next_gen; +	u8 key[CHACHA_KEY_SIZE]; +	bool finalize_init = false; -	if (!nbits) +	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */ +	if (!drain_entropy(key, sizeof(key), force))  		return; -retry: -	entropy_count = orig = READ_ONCE(r->entropy_count); -	if (nfrac < 0) { -		/* Debit */ -		entropy_count += nfrac; -	} else { -		/* -		 * Credit: we have to account for the possibility of -		 * overwriting already present entropy.	 Even in the -		 * ideal case of pure Shannon entropy, new contributions -		 * approach the full value asymptotically: -		 * -		 * entropy <- entropy + (pool_size - entropy) * -		 *	(1 - exp(-add_entropy/pool_size)) -		 * -		 * For add_entropy <= pool_size/2 then -		 * (1 - exp(-add_entropy/pool_size)) >= -		 *    (add_entropy/pool_size)*0.7869... -		 * so we can approximate the exponential with -		 * 3/4*add_entropy/pool_size and still be on the -		 * safe side by adding at most pool_size/2 at a time. -		 * -		 * The use of pool_size-2 in the while statement is to -		 * prevent rounding artifacts from making the loop -		 * arbitrarily long; this limits the loop to log2(pool_size)*2 -		 * turns no matter how large nbits is. -		 */ -		int pnfrac = nfrac; -		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; -		/* The +2 corresponds to the /4 in the denominator */ - -		do { -			unsigned int anfrac = min(pnfrac, pool_size/2); -			unsigned int add = -				((pool_size - entropy_count)*anfrac*3) >> s; - -			entropy_count += add; -			pnfrac -= anfrac; -		} while (unlikely(entropy_count < pool_size-2 && pnfrac)); +	/* +	 * We copy the new key into the base_crng, overwriting the old one, +	 * and update the generation counter. We avoid hitting ULONG_MAX, +	 * because the per-cpu crngs are initialized to ULONG_MAX, so this +	 * forces new CPUs that come online to always initialize. +	 */ +	spin_lock_irqsave(&base_crng.lock, flags); +	memcpy(base_crng.key, key, sizeof(base_crng.key)); +	next_gen = base_crng.generation + 1; +	if (next_gen == ULONG_MAX) +		++next_gen; +	WRITE_ONCE(base_crng.generation, next_gen); +	WRITE_ONCE(base_crng.birth, jiffies); +	if (!crng_ready()) { +		crng_init = 2; +		finalize_init = true;  	} +	spin_unlock_irqrestore(&base_crng.lock, flags); +	memzero_explicit(key, sizeof(key)); +	if (finalize_init) { +		process_random_ready_list(); +		wake_up_interruptible(&crng_init_wait); +		kill_fasync(&fasync, SIGIO, POLL_IN); +		pr_notice("crng init done\n"); +		if (unseeded_warning.missed) { +			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", +				  unseeded_warning.missed); +			unseeded_warning.missed = 0; +		} +		if (urandom_warning.missed) { +			pr_notice("%d urandom warning(s) missed due to ratelimiting\n", +				  urandom_warning.missed); +			urandom_warning.missed = 0; +		} +	} +} -	if (WARN_ON(entropy_count < 0)) { -		pr_warn("negative entropy/overflow: pool %s count %d\n", -			r->name, entropy_count); -		entropy_count = 0; -	} else if (entropy_count > pool_size) -		entropy_count = pool_size; -	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) -		goto retry; +/* + * This generates a ChaCha block using the provided key, and then + * immediately overwites that key with half the block. It returns + * the resultant ChaCha state to the user, along with the second + * half of the block containing 32 bytes of random data that may + * be used; random_data_len may not be greater than 32. + */ +static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], +				  u32 chacha_state[CHACHA_STATE_WORDS], +				  u8 *random_data, size_t random_data_len) +{ +	u8 first_block[CHACHA_BLOCK_SIZE]; -	trace_credit_entropy_bits(r->name, nbits, -				  entropy_count >> ENTROPY_SHIFT, _RET_IP_); +	BUG_ON(random_data_len > 32); -	if (r == &input_pool) { -		int entropy_bits = entropy_count >> ENTROPY_SHIFT; +	chacha_init_consts(chacha_state); +	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); +	memset(&chacha_state[12], 0, sizeof(u32) * 4); +	chacha20_block(chacha_state, first_block); + +	memcpy(key, first_block, CHACHA_KEY_SIZE); +	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); +	memzero_explicit(first_block, sizeof(first_block)); +} -		if (crng_init < 2 && entropy_bits >= 128) -			crng_reseed(&primary_crng, r); +/* + * Return whether the crng seed is considered to be sufficiently + * old that a reseeding might be attempted. This happens if the last + * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at + * an interval proportional to the uptime. + */ +static bool crng_has_old_seed(void) +{ +	static bool early_boot = true; +	unsigned long interval = CRNG_RESEED_INTERVAL; + +	if (unlikely(READ_ONCE(early_boot))) { +		time64_t uptime = ktime_get_seconds(); +		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) +			WRITE_ONCE(early_boot, false); +		else +			interval = max_t(unsigned int, 5 * HZ, +					 (unsigned int)uptime / 2 * HZ);  	} +	return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);  } -static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) +/* + * This function returns a ChaCha state that you may use for generating + * random data. It also returns up to 32 bytes on its own of random data + * that may be used; random_data_len may not be greater than 32. + */ +static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], +			    u8 *random_data, size_t random_data_len)  { -	const int nbits_max = r->poolinfo->poolwords * 32; +	unsigned long flags; +	struct crng *crng; -	if (nbits < 0) -		return -EINVAL; +	BUG_ON(random_data_len > 32); -	/* Cap the value to avoid overflows */ -	nbits = min(nbits,  nbits_max); +	/* +	 * For the fast path, we check whether we're ready, unlocked first, and +	 * then re-check once locked later. In the case where we're really not +	 * ready, we do fast key erasure with the base_crng directly, because +	 * this is what crng_pre_init_inject() mutates during early init. +	 */ +	if (!crng_ready()) { +		bool ready; + +		spin_lock_irqsave(&base_crng.lock, flags); +		ready = crng_ready(); +		if (!ready) +			crng_fast_key_erasure(base_crng.key, chacha_state, +					      random_data, random_data_len); +		spin_unlock_irqrestore(&base_crng.lock, flags); +		if (!ready) +			return; +	} -	credit_entropy_bits(r, nbits); -	return 0; -} +	/* +	 * If the base_crng is old enough, we try to reseed, which in turn +	 * bumps the generation counter that we check below. +	 */ +	if (unlikely(crng_has_old_seed())) +		crng_reseed(false); -/********************************************************************* - * - * CRNG using CHACHA20 - * - *********************************************************************/ +	local_lock_irqsave(&crngs.lock, flags); +	crng = raw_cpu_ptr(&crngs); -#define CRNG_RESEED_INTERVAL (300*HZ) +	/* +	 * If our per-cpu crng is older than the base_crng, then it means +	 * somebody reseeded the base_crng. In that case, we do fast key +	 * erasure on the base_crng, and use its output as the new key +	 * for our per-cpu crng. This brings us up to date with base_crng. +	 */ +	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { +		spin_lock(&base_crng.lock); +		crng_fast_key_erasure(base_crng.key, chacha_state, +				      crng->key, sizeof(crng->key)); +		crng->generation = base_crng.generation; +		spin_unlock(&base_crng.lock); +	} -static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); +	/* +	 * Finally, when we've made it this far, our per-cpu crng has an up +	 * to date key, and we can do fast key erasure with it to produce +	 * some random data and a ChaCha state for the caller. All other +	 * branches of this function are "unlikely", so most of the time we +	 * should wind up here immediately. +	 */ +	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); +	local_unlock_irqrestore(&crngs.lock, flags); +}  /* - * Hack to deal with crazy userspace progams when they are all trying - * to access /dev/urandom in parallel.  The programs are almost - * certainly doing something terribly wrong, but we'll work around - * their brain damage. + * This function is for crng_init == 0 only. It loads entropy directly + * into the crng's key, without going through the input pool. It is, + * generally speaking, not very safe, but we use this only at early + * boot time when it's better to have something there rather than + * nothing. + * + * If account is set, then the crng_init_cnt counter is incremented. + * This shouldn't be set by functions like add_device_randomness(), + * where we can't trust the buffer passed to it is guaranteed to be + * unpredictable (so it might not have any entropy at all). + * + * Returns the number of bytes processed from input, which is bounded + * by CRNG_INIT_CNT_THRESH if account is true.   */ -static struct crng_state **crng_node_pool __read_mostly; +static size_t crng_pre_init_inject(const void *input, size_t len, bool account) +{ +	static int crng_init_cnt = 0; +	struct blake2s_state hash; +	unsigned long flags; -static void invalidate_batched_entropy(void); -static void numa_crng_init(void); +	blake2s_init(&hash, sizeof(base_crng.key)); -static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); -static int __init parse_trust_cpu(char *arg) -{ -	return kstrtobool(arg, &trust_cpu); -} -early_param("random.trust_cpu", parse_trust_cpu); +	spin_lock_irqsave(&base_crng.lock, flags); +	if (crng_init != 0) { +		spin_unlock_irqrestore(&base_crng.lock, flags); +		return 0; +	} -static bool crng_init_try_arch(struct crng_state *crng) -{ -	int		i; -	bool		arch_init = true; -	unsigned long	rv; +	if (account) +		len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt); -	for (i = 4; i < 16; i++) { -		if (!arch_get_random_seed_long(&rv) && -		    !arch_get_random_long(&rv)) { -			rv = random_get_entropy(); -			arch_init = false; +	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key)); +	blake2s_update(&hash, input, len); +	blake2s_final(&hash, base_crng.key); + +	if (account) { +		crng_init_cnt += len; +		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { +			++base_crng.generation; +			crng_init = 1;  		} -		crng->state[i] ^= rv;  	} -	return arch_init; +	spin_unlock_irqrestore(&base_crng.lock, flags); + +	if (crng_init == 1) +		pr_notice("fast init done\n"); + +	return len;  } -static bool __init crng_init_try_arch_early(struct crng_state *crng) +static void _get_random_bytes(void *buf, size_t nbytes)  { -	int		i; -	bool		arch_init = true; -	unsigned long	rv; +	u32 chacha_state[CHACHA_STATE_WORDS]; +	u8 tmp[CHACHA_BLOCK_SIZE]; +	size_t len; -	for (i = 4; i < 16; i++) { -		if (!arch_get_random_seed_long_early(&rv) && -		    !arch_get_random_long_early(&rv)) { -			rv = random_get_entropy(); -			arch_init = false; +	if (!nbytes) +		return; + +	len = min_t(size_t, 32, nbytes); +	crng_make_state(chacha_state, buf, len); +	nbytes -= len; +	buf += len; + +	while (nbytes) { +		if (nbytes < CHACHA_BLOCK_SIZE) { +			chacha20_block(chacha_state, tmp); +			memcpy(buf, tmp, nbytes); +			memzero_explicit(tmp, sizeof(tmp)); +			break;  		} -		crng->state[i] ^= rv; + +		chacha20_block(chacha_state, buf); +		if (unlikely(chacha_state[12] == 0)) +			++chacha_state[13]; +		nbytes -= CHACHA_BLOCK_SIZE; +		buf += CHACHA_BLOCK_SIZE;  	} -	return arch_init; +	memzero_explicit(chacha_state, sizeof(chacha_state));  } -static void crng_initialize_secondary(struct crng_state *crng) +/* + * This function is the exported kernel interface.  It returns some + * number of good random numbers, suitable for key generation, seeding + * TCP sequence numbers, etc.  It does not rely on the hardware random + * number generator.  For random bytes direct from the hardware RNG + * (when available), use get_random_bytes_arch(). In order to ensure + * that the randomness provided by this function is okay, the function + * wait_for_random_bytes() should be called and return 0 at least once + * at any point prior. + */ +void get_random_bytes(void *buf, size_t nbytes)  { -	chacha_init_consts(crng->state); -	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12); -	crng_init_try_arch(crng); -	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; -} +	static void *previous; -static void __init crng_initialize_primary(struct crng_state *crng) -{ -	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0); -	if (crng_init_try_arch_early(crng) && trust_cpu && crng_init < 2) { -		invalidate_batched_entropy(); -		numa_crng_init(); -		crng_init = 2; -		pr_notice("crng init done (trusting CPU's manufacturer)\n"); -	} -	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; +	warn_unseeded_randomness(&previous); +	_get_random_bytes(buf, nbytes);  } +EXPORT_SYMBOL(get_random_bytes); -static void crng_finalize_init(struct crng_state *crng) +static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)  { -	if (crng != &primary_crng || crng_init >= 2) -		return; -	if (!system_wq) { -		/* We can't call numa_crng_init until we have workqueues, -		 * so mark this for processing later. */ -		crng_need_final_init = true; -		return; -	} +	bool large_request = nbytes > 256; +	ssize_t ret = 0; +	size_t len; +	u32 chacha_state[CHACHA_STATE_WORDS]; +	u8 output[CHACHA_BLOCK_SIZE]; -	invalidate_batched_entropy(); -	numa_crng_init(); -	crng_init = 2; -	process_random_ready_list(); -	wake_up_interruptible(&crng_init_wait); -	kill_fasync(&fasync, SIGIO, POLL_IN); -	pr_notice("crng init done\n"); -	if (unseeded_warning.missed) { -		pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", -			  unseeded_warning.missed); -		unseeded_warning.missed = 0; -	} -	if (urandom_warning.missed) { -		pr_notice("%d urandom warning(s) missed due to ratelimiting\n", -			  urandom_warning.missed); -		urandom_warning.missed = 0; -	} -} +	if (!nbytes) +		return 0; -static void do_numa_crng_init(struct work_struct *work) -{ -	int i; -	struct crng_state *crng; -	struct crng_state **pool; - -	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); -	for_each_online_node(i) { -		crng = kmalloc_node(sizeof(struct crng_state), -				    GFP_KERNEL | __GFP_NOFAIL, i); -		spin_lock_init(&crng->lock); -		crng_initialize_secondary(crng); -		pool[i] = crng; -	} -	/* pairs with READ_ONCE() in select_crng() */ -	if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) { -		for_each_node(i) -			kfree(pool[i]); -		kfree(pool); -	} -} +	len = min_t(size_t, 32, nbytes); +	crng_make_state(chacha_state, output, len); -static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); +	if (copy_to_user(buf, output, len)) +		return -EFAULT; +	nbytes -= len; +	buf += len; +	ret += len; -static void numa_crng_init(void) -{ -	if (IS_ENABLED(CONFIG_NUMA)) -		schedule_work(&numa_crng_init_work); -} +	while (nbytes) { +		if (large_request && need_resched()) { +			if (signal_pending(current)) +				break; +			schedule(); +		} -static struct crng_state *select_crng(void) -{ -	if (IS_ENABLED(CONFIG_NUMA)) { -		struct crng_state **pool; -		int nid = numa_node_id(); - -		/* pairs with cmpxchg_release() in do_numa_crng_init() */ -		pool = READ_ONCE(crng_node_pool); -		if (pool && pool[nid]) -			return pool[nid]; +		chacha20_block(chacha_state, output); +		if (unlikely(chacha_state[12] == 0)) +			++chacha_state[13]; + +		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE); +		if (copy_to_user(buf, output, len)) { +			ret = -EFAULT; +			break; +		} + +		nbytes -= len; +		buf += len; +		ret += len;  	} -	return &primary_crng; +	memzero_explicit(chacha_state, sizeof(chacha_state)); +	memzero_explicit(output, sizeof(output)); +	return ret;  }  /* - * crng_fast_load() can be called by code in the interrupt service - * path.  So we can't afford to dilly-dally. Returns the number of - * bytes processed from cp. + * Batched entropy returns random integers. The quality of the random + * number is good as /dev/urandom. In order to ensure that the randomness + * provided by this function is okay, the function wait_for_random_bytes() + * should be called and return 0 at least once at any point prior.   */ -static size_t crng_fast_load(const char *cp, size_t len) +struct batched_entropy { +	union { +		/* +		 * We make this 1.5x a ChaCha block, so that we get the +		 * remaining 32 bytes from fast key erasure, plus one full +		 * block from the detached ChaCha state. We can increase +		 * the size of this later if needed so long as we keep the +		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. +		 */ +		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))]; +		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))]; +	}; +	local_lock_t lock; +	unsigned long generation; +	unsigned int position; +}; + + +static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { +	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock), +	.position = UINT_MAX +}; + +u64 get_random_u64(void)  { +	u64 ret;  	unsigned long flags; -	char *p; -	size_t ret = 0; +	struct batched_entropy *batch; +	static void *previous; +	unsigned long next_gen; -	if (!spin_trylock_irqsave(&primary_crng.lock, flags)) -		return 0; -	if (crng_init != 0) { -		spin_unlock_irqrestore(&primary_crng.lock, flags); -		return 0; -	} -	p = (unsigned char *) &primary_crng.state[4]; -	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { -		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; -		cp++; crng_init_cnt++; len--; ret++; +	warn_unseeded_randomness(&previous); + +	local_lock_irqsave(&batched_entropy_u64.lock, flags); +	batch = raw_cpu_ptr(&batched_entropy_u64); + +	next_gen = READ_ONCE(base_crng.generation); +	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) || +	    next_gen != batch->generation) { +		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64)); +		batch->position = 0; +		batch->generation = next_gen;  	} -	spin_unlock_irqrestore(&primary_crng.lock, flags); -	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { -		invalidate_batched_entropy(); -		crng_init = 1; -		pr_notice("fast init done\n"); + +	ret = batch->entropy_u64[batch->position]; +	batch->entropy_u64[batch->position] = 0; +	++batch->position; +	local_unlock_irqrestore(&batched_entropy_u64.lock, flags); +	return ret; +} +EXPORT_SYMBOL(get_random_u64); + +static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { +	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock), +	.position = UINT_MAX +}; + +u32 get_random_u32(void) +{ +	u32 ret; +	unsigned long flags; +	struct batched_entropy *batch; +	static void *previous; +	unsigned long next_gen; + +	warn_unseeded_randomness(&previous); + +	local_lock_irqsave(&batched_entropy_u32.lock, flags); +	batch = raw_cpu_ptr(&batched_entropy_u32); + +	next_gen = READ_ONCE(base_crng.generation); +	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) || +	    next_gen != batch->generation) { +		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32)); +		batch->position = 0; +		batch->generation = next_gen;  	} + +	ret = batch->entropy_u32[batch->position]; +	batch->entropy_u32[batch->position] = 0; +	++batch->position; +	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);  	return ret;  } +EXPORT_SYMBOL(get_random_u32); +#ifdef CONFIG_SMP  /* - * crng_slow_load() is called by add_device_randomness, which has two - * attributes.  (1) We can't trust the buffer passed to it is - * guaranteed to be unpredictable (so it might not have any entropy at - * all), and (2) it doesn't have the performance constraints of - * crng_fast_load(). - * - * So we do something more comprehensive which is guaranteed to touch - * all of the primary_crng's state, and which uses a LFSR with a - * period of 255 as part of the mixing algorithm.  Finally, we do - * *not* advance crng_init_cnt since buffer we may get may be something - * like a fixed DMI table (for example), which might very well be - * unique to the machine, but is otherwise unvarying. + * This function is called when the CPU is coming up, with entry + * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.   */ -static int crng_slow_load(const char *cp, size_t len) +int random_prepare_cpu(unsigned int cpu)  { -	unsigned long		flags; -	static unsigned char	lfsr = 1; -	unsigned char		tmp; -	unsigned		i, max = CHACHA_KEY_SIZE; -	const char *		src_buf = cp; -	char *			dest_buf = (char *) &primary_crng.state[4]; - -	if (!spin_trylock_irqsave(&primary_crng.lock, flags)) -		return 0; -	if (crng_init != 0) { -		spin_unlock_irqrestore(&primary_crng.lock, flags); -		return 0; -	} -	if (len > max) -		max = len; - -	for (i = 0; i < max ; i++) { -		tmp = lfsr; -		lfsr >>= 1; -		if (tmp & 1) -			lfsr ^= 0xE1; -		tmp = dest_buf[i % CHACHA_KEY_SIZE]; -		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; -		lfsr += (tmp << 3) | (tmp >> 5); -	} -	spin_unlock_irqrestore(&primary_crng.lock, flags); -	return 1; +	/* +	 * When the cpu comes back online, immediately invalidate both +	 * the per-cpu crng and all batches, so that we serve fresh +	 * randomness. +	 */ +	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; +	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; +	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; +	return 0;  } +#endif -static void crng_reseed(struct crng_state *crng, struct entropy_store *r) +/** + * randomize_page - Generate a random, page aligned address + * @start:	The smallest acceptable address the caller will take. + * @range:	The size of the area, starting at @start, within which the + *		random address must fall. + * + * If @start + @range would overflow, @range is capped. + * + * NOTE: Historical use of randomize_range, which this replaces, presumed that + * @start was already page aligned.  We now align it regardless. + * + * Return: A page aligned address within [start, start + range).  On error, + * @start is returned. + */ +unsigned long randomize_page(unsigned long start, unsigned long range)  { -	unsigned long	flags; -	int		i, num; -	union { -		__u8	block[CHACHA_BLOCK_SIZE]; -		__u32	key[8]; -	} buf; - -	if (r) { -		num = extract_entropy(r, &buf, 32, 16, 0); -		if (num == 0) -			return; -	} else { -		_extract_crng(&primary_crng, buf.block); -		_crng_backtrack_protect(&primary_crng, buf.block, -					CHACHA_KEY_SIZE); -	} -	spin_lock_irqsave(&crng->lock, flags); -	for (i = 0; i < 8; i++) { -		unsigned long	rv; -		if (!arch_get_random_seed_long(&rv) && -		    !arch_get_random_long(&rv)) -			rv = random_get_entropy(); -		crng->state[i+4] ^= buf.key[i] ^ rv; +	if (!PAGE_ALIGNED(start)) { +		range -= PAGE_ALIGN(start) - start; +		start = PAGE_ALIGN(start);  	} -	memzero_explicit(&buf, sizeof(buf)); -	WRITE_ONCE(crng->init_time, jiffies); -	spin_unlock_irqrestore(&crng->lock, flags); -	crng_finalize_init(crng); + +	if (start > ULONG_MAX - range) +		range = ULONG_MAX - start; + +	range >>= PAGE_SHIFT; + +	if (range == 0) +		return start; + +	return start + (get_random_long() % range << PAGE_SHIFT);  } -static void _extract_crng(struct crng_state *crng, -			  __u8 out[CHACHA_BLOCK_SIZE]) +/* + * This function will use the architecture-specific hardware random + * number generator if it is available. It is not recommended for + * use. Use get_random_bytes() instead. It returns the number of + * bytes filled in. + */ +size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)  { -	unsigned long flags, init_time; +	size_t left = nbytes; +	u8 *p = buf; -	if (crng_ready()) { -		init_time = READ_ONCE(crng->init_time); -		if (time_after(READ_ONCE(crng_global_init_time), init_time) || -		    time_after(jiffies, init_time + CRNG_RESEED_INTERVAL)) -			crng_reseed(crng, crng == &primary_crng ? -				    &input_pool : NULL); +	while (left) { +		unsigned long v; +		size_t chunk = min_t(size_t, left, sizeof(unsigned long)); + +		if (!arch_get_random_long(&v)) +			break; + +		memcpy(p, &v, chunk); +		p += chunk; +		left -= chunk;  	} -	spin_lock_irqsave(&crng->lock, flags); -	chacha20_block(&crng->state[0], out); -	if (crng->state[12] == 0) -		crng->state[13]++; -	spin_unlock_irqrestore(&crng->lock, flags); + +	return nbytes - left;  } +EXPORT_SYMBOL(get_random_bytes_arch); + + +/********************************************************************** + * + * Entropy accumulation and extraction routines. + * + * Callers may add entropy via: + * + *     static void mix_pool_bytes(const void *in, size_t nbytes) + * + * After which, if added entropy should be credited: + * + *     static void credit_entropy_bits(size_t nbits) + * + * Finally, extract entropy via these two, with the latter one + * setting the entropy count to zero and extracting only if there + * is POOL_MIN_BITS entropy credited prior or force is true: + * + *     static void extract_entropy(void *buf, size_t nbytes) + *     static bool drain_entropy(void *buf, size_t nbytes, bool force) + * + **********************************************************************/ + +enum { +	POOL_BITS = BLAKE2S_HASH_SIZE * 8, +	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */ +}; + +/* For notifying userspace should write into /dev/random. */ +static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); + +static struct { +	struct blake2s_state hash; +	spinlock_t lock; +	unsigned int entropy_count; +} input_pool = { +	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), +		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, +		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, +	.hash.outlen = BLAKE2S_HASH_SIZE, +	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), +}; -static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) +static void _mix_pool_bytes(const void *in, size_t nbytes)  { -	_extract_crng(select_crng(), out); +	blake2s_update(&input_pool.hash, in, nbytes);  }  /* - * Use the leftover bytes from the CRNG block output (if there is - * enough) to mutate the CRNG key to provide backtracking protection. + * This function adds bytes into the entropy "pool".  It does not + * update the entropy estimate.  The caller should call + * credit_entropy_bits if this is appropriate.   */ -static void _crng_backtrack_protect(struct crng_state *crng, -				    __u8 tmp[CHACHA_BLOCK_SIZE], int used) +static void mix_pool_bytes(const void *in, size_t nbytes)  { -	unsigned long	flags; -	__u32		*s, *d; -	int		i; - -	used = round_up(used, sizeof(__u32)); -	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { -		extract_crng(tmp); -		used = 0; -	} -	spin_lock_irqsave(&crng->lock, flags); -	s = (__u32 *) &tmp[used]; -	d = &crng->state[4]; -	for (i=0; i < 8; i++) -		*d++ ^= *s++; -	spin_unlock_irqrestore(&crng->lock, flags); +	unsigned long flags; + +	spin_lock_irqsave(&input_pool.lock, flags); +	_mix_pool_bytes(in, nbytes); +	spin_unlock_irqrestore(&input_pool.lock, flags);  } -static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) +static void credit_entropy_bits(size_t nbits)  { -	_crng_backtrack_protect(select_crng(), tmp, used); +	unsigned int entropy_count, orig, add; + +	if (!nbits) +		return; + +	add = min_t(size_t, nbits, POOL_BITS); + +	do { +		orig = READ_ONCE(input_pool.entropy_count); +		entropy_count = min_t(unsigned int, POOL_BITS, orig + add); +	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig); + +	if (!crng_ready() && entropy_count >= POOL_MIN_BITS) +		crng_reseed(false);  } -static ssize_t extract_crng_user(void __user *buf, size_t nbytes) +/* + * This is an HKDF-like construction for using the hashed collected entropy + * as a PRF key, that's then expanded block-by-block. + */ +static void extract_entropy(void *buf, size_t nbytes)  { -	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; -	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); -	int large_request = (nbytes > 256); +	unsigned long flags; +	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; +	struct { +		unsigned long rdseed[32 / sizeof(long)]; +		size_t counter; +	} block; +	size_t i; + +	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { +		if (!arch_get_random_seed_long(&block.rdseed[i]) && +		    !arch_get_random_long(&block.rdseed[i])) +			block.rdseed[i] = random_get_entropy(); +	} -	while (nbytes) { -		if (large_request && need_resched()) { -			if (signal_pending(current)) { -				if (ret == 0) -					ret = -ERESTARTSYS; -				break; -			} -			schedule(); -		} +	spin_lock_irqsave(&input_pool.lock, flags); -		extract_crng(tmp); -		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); -		if (copy_to_user(buf, tmp, i)) { -			ret = -EFAULT; -			break; -		} +	/* seed = HASHPRF(last_key, entropy_input) */ +	blake2s_final(&input_pool.hash, seed); + +	/* next_key = HASHPRF(seed, RDSEED || 0) */ +	block.counter = 0; +	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); +	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); + +	spin_unlock_irqrestore(&input_pool.lock, flags); +	memzero_explicit(next_key, sizeof(next_key)); +	while (nbytes) { +		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE); +		/* output = HASHPRF(seed, RDSEED || ++counter) */ +		++block.counter; +		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));  		nbytes -= i;  		buf += i; -		ret += i;  	} -	crng_backtrack_protect(tmp, i); -	/* Wipe data just written to memory */ -	memzero_explicit(tmp, sizeof(tmp)); +	memzero_explicit(seed, sizeof(seed)); +	memzero_explicit(&block, sizeof(block)); +} -	return ret; +/* + * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force + * is true, and then we set the entropy count to zero (but don't actually touch + * any data). Only then can we extract a new key with extract_entropy(). + */ +static bool drain_entropy(void *buf, size_t nbytes, bool force) +{ +	unsigned int entropy_count; +	do { +		entropy_count = READ_ONCE(input_pool.entropy_count); +		if (!force && entropy_count < POOL_MIN_BITS) +			return false; +	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count); +	extract_entropy(buf, nbytes); +	wake_up_interruptible(&random_write_wait); +	kill_fasync(&fasync, SIGIO, POLL_OUT); +	return true;  } -/********************************************************************* +/**********************************************************************   * - * Entropy input management + * Entropy collection routines.   * - *********************************************************************/ + * The following exported functions are used for pushing entropy into + * the above entropy accumulation routines: + * + *	void add_device_randomness(const void *buf, size_t size); + *	void add_input_randomness(unsigned int type, unsigned int code, + *	                          unsigned int value); + *	void add_disk_randomness(struct gendisk *disk); + *	void add_hwgenerator_randomness(const void *buffer, size_t count, + *					size_t entropy); + *	void add_bootloader_randomness(const void *buf, size_t size); + *	void add_vmfork_randomness(const void *unique_vm_id, size_t size); + *	void add_interrupt_randomness(int irq); + * + * add_device_randomness() adds data to the input pool that + * is likely to differ between two devices (or possibly even per boot). + * This would be things like MAC addresses or serial numbers, or the + * read-out of the RTC. This does *not* credit any actual entropy to + * the pool, but it initializes the pool to different values for devices + * that might otherwise be identical and have very little entropy + * available to them (particularly common in the embedded world). + * + * add_input_randomness() uses the input layer interrupt timing, as well + * as the event type information from the hardware. + * + * add_disk_randomness() uses what amounts to the seek time of block + * layer request events, on a per-disk_devt basis, as input to the + * entropy pool. Note that high-speed solid state drives with very low + * seek times do not make for good sources of entropy, as their seek + * times are usually fairly consistent. + * + * The above two routines try to estimate how many bits of entropy + * to credit. They do this by keeping track of the first and second + * order deltas of the event timings. + * + * add_hwgenerator_randomness() is for true hardware RNGs, and will credit + * entropy as specified by the caller. If the entropy pool is full it will + * block until more entropy is needed. + * + * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or + * add_device_randomness(), depending on whether or not the configuration + * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. + * + * add_vmfork_randomness() adds a unique (but not necessarily secret) ID + * representing the current instance of a VM to the pool, without crediting, + * and then force-reseeds the crng so that it takes effect immediately. + * + * add_interrupt_randomness() uses the interrupt timing as random + * inputs to the entropy pool. Using the cycle counters and the irq source + * as inputs, it feeds the input pool roughly once a second or after 64 + * interrupts, crediting 1 bit of entropy for whichever comes first. + * + **********************************************************************/ -/* There is one of these per entropy source */ -struct timer_rand_state { -	cycles_t last_time; -	long last_delta, last_delta2; -}; +static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); +static int __init parse_trust_cpu(char *arg) +{ +	return kstrtobool(arg, &trust_cpu); +} +early_param("random.trust_cpu", parse_trust_cpu); + +/* + * The first collection of entropy occurs at system boot while interrupts + * are still turned off. Here we push in RDSEED, a timestamp, and utsname(). + * Depending on the above configuration knob, RDSEED may be considered + * sufficient for initialization. Note that much earlier setup may already + * have pushed entropy into the input pool by the time we get here. + */ +int __init rand_initialize(void) +{ +	size_t i; +	ktime_t now = ktime_get_real(); +	bool arch_init = true; +	unsigned long rv; + +	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) { +		if (!arch_get_random_seed_long_early(&rv) && +		    !arch_get_random_long_early(&rv)) { +			rv = random_get_entropy(); +			arch_init = false; +		} +		_mix_pool_bytes(&rv, sizeof(rv)); +	} +	_mix_pool_bytes(&now, sizeof(now)); +	_mix_pool_bytes(utsname(), sizeof(*(utsname()))); -#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; +	extract_entropy(base_crng.key, sizeof(base_crng.key)); +	++base_crng.generation; + +	if (arch_init && trust_cpu && !crng_ready()) { +		crng_init = 2; +		pr_notice("crng init done (trusting CPU's manufacturer)\n"); +	} + +	if (ratelimit_disable) { +		urandom_warning.interval = 0; +		unseeded_warning.interval = 0; +	} +	return 0; +}  /*   * Add device- or boot-specific data to the input pool to help @@ -1131,23 +1002,27 @@ struct timer_rand_state {   * the entropy pool having similar initial state across largely   * identical devices.   */ -void add_device_randomness(const void *buf, unsigned int size) +void add_device_randomness(const void *buf, size_t size)  { -	unsigned long time = random_get_entropy() ^ jiffies; -	unsigned long flags; +	cycles_t cycles = random_get_entropy(); +	unsigned long flags, now = jiffies; -	if (!crng_ready() && size) -		crng_slow_load(buf, size); +	if (crng_init == 0 && size) +		crng_pre_init_inject(buf, size, false); -	trace_add_device_randomness(size, _RET_IP_);  	spin_lock_irqsave(&input_pool.lock, flags); -	_mix_pool_bytes(&input_pool, buf, size); -	_mix_pool_bytes(&input_pool, &time, sizeof(time)); +	_mix_pool_bytes(&cycles, sizeof(cycles)); +	_mix_pool_bytes(&now, sizeof(now)); +	_mix_pool_bytes(buf, size);  	spin_unlock_irqrestore(&input_pool.lock, flags);  }  EXPORT_SYMBOL(add_device_randomness); -static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; +/* There is one of these per entropy source */ +struct timer_rand_state { +	unsigned long last_time; +	long last_delta, last_delta2; +};  /*   * This function adds entropy to the entropy "pool" by using timing @@ -1157,31 +1032,26 @@ static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;   * The number "num" is also added to the pool - it should somehow describe   * the type of event which just happened.  This is currently 0-255 for   * keyboard scan codes, and 256 upwards for interrupts. - *   */ -static void add_timer_randomness(struct timer_rand_state *state, unsigned num) +static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)  { -	struct entropy_store	*r; -	struct { -		long jiffies; -		unsigned cycles; -		unsigned num; -	} sample; +	cycles_t cycles = random_get_entropy(); +	unsigned long flags, now = jiffies;  	long delta, delta2, delta3; -	sample.jiffies = jiffies; -	sample.cycles = random_get_entropy(); -	sample.num = num; -	r = &input_pool; -	mix_pool_bytes(r, &sample, sizeof(sample)); +	spin_lock_irqsave(&input_pool.lock, flags); +	_mix_pool_bytes(&cycles, sizeof(cycles)); +	_mix_pool_bytes(&now, sizeof(now)); +	_mix_pool_bytes(&num, sizeof(num)); +	spin_unlock_irqrestore(&input_pool.lock, flags);  	/*  	 * Calculate number of bits of randomness we probably added.  	 * We take into account the first, second and third-order deltas  	 * in order to make our estimate.  	 */ -	delta = sample.jiffies - READ_ONCE(state->last_time); -	WRITE_ONCE(state->last_time, sample.jiffies); +	delta = now - READ_ONCE(state->last_time); +	WRITE_ONCE(state->last_time, now);  	delta2 = delta - READ_ONCE(state->last_delta);  	WRITE_ONCE(state->last_delta, delta); @@ -1205,366 +1075,303 @@ static void add_timer_randomness(struct timer_rand_state *state, unsigned num)  	 * Round down by 1 bit on general principles,  	 * and limit entropy estimate to 12 bits.  	 */ -	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); +	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));  }  void add_input_randomness(unsigned int type, unsigned int code, -				 unsigned int value) +			  unsigned int value)  {  	static unsigned char last_value; +	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; -	/* ignore autorepeat and the like */ +	/* Ignore autorepeat and the like. */  	if (value == last_value)  		return;  	last_value = value;  	add_timer_randomness(&input_timer_state,  			     (type << 4) ^ code ^ (code >> 4) ^ value); -	trace_add_input_randomness(ENTROPY_BITS(&input_pool));  }  EXPORT_SYMBOL_GPL(add_input_randomness); -static DEFINE_PER_CPU(struct fast_pool, irq_randomness); - -#ifdef ADD_INTERRUPT_BENCH -static unsigned long avg_cycles, avg_deviation; - -#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */ -#define FIXED_1_2 (1 << (AVG_SHIFT-1)) - -static void add_interrupt_bench(cycles_t start) +#ifdef CONFIG_BLOCK +void add_disk_randomness(struct gendisk *disk)  { -        long delta = random_get_entropy() - start; - -        /* Use a weighted moving average */ -        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); -        avg_cycles += delta; -        /* And average deviation */ -        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); -        avg_deviation += delta; +	if (!disk || !disk->random) +		return; +	/* First major is 1, so we get >= 0x200 here. */ +	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));  } -#else -#define add_interrupt_bench(x) -#endif +EXPORT_SYMBOL_GPL(add_disk_randomness); -static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) +void rand_initialize_disk(struct gendisk *disk)  { -	__u32 *ptr = (__u32 *) regs; -	unsigned int idx; +	struct timer_rand_state *state; -	if (regs == NULL) -		return 0; -	idx = READ_ONCE(f->reg_idx); -	if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) -		idx = 0; -	ptr += idx++; -	WRITE_ONCE(f->reg_idx, idx); -	return *ptr; +	/* +	 * If kzalloc returns null, we just won't use that entropy +	 * source. +	 */ +	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); +	if (state) { +		state->last_time = INITIAL_JIFFIES; +		disk->random = state; +	}  } +#endif -void add_interrupt_randomness(int irq) +/* + * Interface for in-kernel drivers of true hardware RNGs. + * Those devices may produce endless random bits and will be throttled + * when our pool is full. + */ +void add_hwgenerator_randomness(const void *buffer, size_t count, +				size_t entropy)  { -	struct entropy_store	*r; -	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness); -	struct pt_regs		*regs = get_irq_regs(); -	unsigned long		now = jiffies; -	cycles_t		cycles = random_get_entropy(); -	__u32			c_high, j_high; -	__u64			ip; - -	if (cycles == 0) -		cycles = get_reg(fast_pool, regs); -	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; -	j_high = (sizeof(now) > 4) ? now >> 32 : 0; -	fast_pool->pool[0] ^= cycles ^ j_high ^ irq; -	fast_pool->pool[1] ^= now ^ c_high; -	ip = regs ? instruction_pointer(regs) : _RET_IP_; -	fast_pool->pool[2] ^= ip; -	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : -		get_reg(fast_pool, regs); - -	fast_mix(fast_pool); -	add_interrupt_bench(cycles); -  	if (unlikely(crng_init == 0)) { -		if ((fast_pool->count >= 64) && -		    crng_fast_load((char *) fast_pool->pool, -				   sizeof(fast_pool->pool)) > 0) { -			fast_pool->count = 0; -			fast_pool->last = now; -		} -		return; +		size_t ret = crng_pre_init_inject(buffer, count, true); +		mix_pool_bytes(buffer, ret); +		count -= ret; +		buffer += ret; +		if (!count || crng_init == 0) +			return;  	} -	if ((fast_pool->count < 64) && -	    !time_after(now, fast_pool->last + HZ)) -		return; +	/* +	 * Throttle writing if we're above the trickle threshold. +	 * We'll be woken up again once below POOL_MIN_BITS, when +	 * the calling thread is about to terminate, or once +	 * CRNG_RESEED_INTERVAL has elapsed. +	 */ +	wait_event_interruptible_timeout(random_write_wait, +			!system_wq || kthread_should_stop() || +			input_pool.entropy_count < POOL_MIN_BITS, +			CRNG_RESEED_INTERVAL); +	mix_pool_bytes(buffer, count); +	credit_entropy_bits(entropy); +} +EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); -	r = &input_pool; -	if (!spin_trylock(&r->lock)) -		return; +/* + * Handle random seed passed by bootloader. + * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise + * it would be regarded as device data. + * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. + */ +void add_bootloader_randomness(const void *buf, size_t size) +{ +	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) +		add_hwgenerator_randomness(buf, size, size * 8); +	else +		add_device_randomness(buf, size); +} +EXPORT_SYMBOL_GPL(add_bootloader_randomness); -	fast_pool->last = now; -	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); -	spin_unlock(&r->lock); +#if IS_ENABLED(CONFIG_VMGENID) +static BLOCKING_NOTIFIER_HEAD(vmfork_chain); -	fast_pool->count = 0; +/* + * Handle a new unique VM ID, which is unique, not secret, so we + * don't credit it, but we do immediately force a reseed after so + * that it's used by the crng posthaste. + */ +void add_vmfork_randomness(const void *unique_vm_id, size_t size) +{ +	add_device_randomness(unique_vm_id, size); +	if (crng_ready()) { +		crng_reseed(true); +		pr_notice("crng reseeded due to virtual machine fork\n"); +	} +	blocking_notifier_call_chain(&vmfork_chain, 0, NULL); +} +#if IS_MODULE(CONFIG_VMGENID) +EXPORT_SYMBOL_GPL(add_vmfork_randomness); +#endif -	/* award one bit for the contents of the fast pool */ -	credit_entropy_bits(r, 1); +int register_random_vmfork_notifier(struct notifier_block *nb) +{ +	return blocking_notifier_chain_register(&vmfork_chain, nb);  } -EXPORT_SYMBOL_GPL(add_interrupt_randomness); +EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); -#ifdef CONFIG_BLOCK -void add_disk_randomness(struct gendisk *disk) +int unregister_random_vmfork_notifier(struct notifier_block *nb)  { -	if (!disk || !disk->random) -		return; -	/* first major is 1, so we get >= 0x200 here */ -	add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); -	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); +	return blocking_notifier_chain_unregister(&vmfork_chain, nb);  } -EXPORT_SYMBOL_GPL(add_disk_randomness); +EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);  #endif -/********************************************************************* - * - * Entropy extraction routines - * - *********************************************************************/ +struct fast_pool { +	struct work_struct mix; +	unsigned long pool[4]; +	unsigned long last; +	unsigned int count; +	u16 reg_idx; +}; + +static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { +#ifdef CONFIG_64BIT +	/* SipHash constants */ +	.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL, +		  0x6c7967656e657261UL, 0x7465646279746573UL } +#else +	/* HalfSipHash constants */ +	.pool = { 0, 0, 0x6c796765U, 0x74656462U } +#endif +};  /* - * This function decides how many bytes to actually take from the - * given pool, and also debits the entropy count accordingly. + * This is [Half]SipHash-1-x, starting from an empty key. Because + * the key is fixed, it assumes that its inputs are non-malicious, + * and therefore this has no security on its own. s represents the + * 128 or 256-bit SipHash state, while v represents a 128-bit input.   */ -static size_t account(struct entropy_store *r, size_t nbytes, int min, -		      int reserved) +static void fast_mix(unsigned long s[4], const unsigned long *v)  { -	int entropy_count, orig, have_bytes; -	size_t ibytes, nfrac; - -	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); - -	/* Can we pull enough? */ -retry: -	entropy_count = orig = READ_ONCE(r->entropy_count); -	ibytes = nbytes; -	/* never pull more than available */ -	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); - -	if ((have_bytes -= reserved) < 0) -		have_bytes = 0; -	ibytes = min_t(size_t, ibytes, have_bytes); -	if (ibytes < min) -		ibytes = 0; - -	if (WARN_ON(entropy_count < 0)) { -		pr_warn("negative entropy count: pool %s count %d\n", -			r->name, entropy_count); -		entropy_count = 0; -	} -	nfrac = ibytes << (ENTROPY_SHIFT + 3); -	if ((size_t) entropy_count > nfrac) -		entropy_count -= nfrac; -	else -		entropy_count = 0; - -	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) -		goto retry; +	size_t i; -	trace_debit_entropy(r->name, 8 * ibytes); -	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) { -		wake_up_interruptible(&random_write_wait); -		kill_fasync(&fasync, SIGIO, POLL_OUT); +	for (i = 0; i < 16 / sizeof(long); ++i) { +		s[3] ^= v[i]; +#ifdef CONFIG_64BIT +		s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32); +		s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2]; +		s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0]; +		s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32); +#else +		s[0] += s[1]; s[1] = rol32(s[1],  5); s[1] ^= s[0]; s[0] = rol32(s[0], 16); +		s[2] += s[3]; s[3] = rol32(s[3],  8); s[3] ^= s[2]; +		s[0] += s[3]; s[3] = rol32(s[3],  7); s[3] ^= s[0]; +		s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16); +#endif +		s[0] ^= v[i];  	} - -	return ibytes;  } +#ifdef CONFIG_SMP  /* - * This function does the actual extraction for extract_entropy. - * - * Note: we assume that .poolwords is a multiple of 16 words. + * This function is called when the CPU has just come online, with + * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.   */ -static void extract_buf(struct entropy_store *r, __u8 *out) +int random_online_cpu(unsigned int cpu)  { -	struct blake2s_state state __aligned(__alignof__(unsigned long)); -	u8 hash[BLAKE2S_HASH_SIZE]; -	unsigned long *salt; -	unsigned long flags; - -	blake2s_init(&state, sizeof(hash)); -  	/* -	 * If we have an architectural hardware random number -	 * generator, use it for BLAKE2's salt & personal fields. +	 * During CPU shutdown and before CPU onlining, add_interrupt_ +	 * randomness() may schedule mix_interrupt_randomness(), and +	 * set the MIX_INFLIGHT flag. However, because the worker can +	 * be scheduled on a different CPU during this period, that +	 * flag will never be cleared. For that reason, we zero out +	 * the flag here, which runs just after workqueues are onlined +	 * for the CPU again. This also has the effect of setting the +	 * irq randomness count to zero so that new accumulated irqs +	 * are fresh.  	 */ -	for (salt = (unsigned long *)&state.h[4]; -	     salt < (unsigned long *)&state.h[8]; ++salt) { -		unsigned long v; -		if (!arch_get_random_long(&v)) -			break; -		*salt ^= v; -	} - -	/* Generate a hash across the pool */ -	spin_lock_irqsave(&r->lock, flags); -	blake2s_update(&state, (const u8 *)r->pool, -		       r->poolinfo->poolwords * sizeof(*r->pool)); -	blake2s_final(&state, hash); /* final zeros out state */ - -	/* -	 * We mix the hash back into the pool to prevent backtracking -	 * attacks (where the attacker knows the state of the pool -	 * plus the current outputs, and attempts to find previous -	 * outputs), unless the hash function can be inverted. By -	 * mixing at least a hash worth of hash data back, we make -	 * brute-forcing the feedback as hard as brute-forcing the -	 * hash. -	 */ -	__mix_pool_bytes(r, hash, sizeof(hash)); -	spin_unlock_irqrestore(&r->lock, flags); - -	/* Note that EXTRACT_SIZE is half of hash size here, because above -	 * we've dumped the full length back into mixer. By reducing the -	 * amount that we emit, we retain a level of forward secrecy. -	 */ -	memcpy(out, hash, EXTRACT_SIZE); -	memzero_explicit(hash, sizeof(hash)); +	per_cpu_ptr(&irq_randomness, cpu)->count = 0; +	return 0;  } +#endif -static ssize_t _extract_entropy(struct entropy_store *r, void *buf, -				size_t nbytes, int fips) +static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)  { -	ssize_t ret = 0, i; -	__u8 tmp[EXTRACT_SIZE]; -	unsigned long flags; - -	while (nbytes) { -		extract_buf(r, tmp); - -		if (fips) { -			spin_lock_irqsave(&r->lock, flags); -			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) -				panic("Hardware RNG duplicated output!\n"); -			memcpy(r->last_data, tmp, EXTRACT_SIZE); -			spin_unlock_irqrestore(&r->lock, flags); -		} -		i = min_t(int, nbytes, EXTRACT_SIZE); -		memcpy(buf, tmp, i); -		nbytes -= i; -		buf += i; -		ret += i; -	} - -	/* Wipe data just returned from memory */ -	memzero_explicit(tmp, sizeof(tmp)); +	unsigned long *ptr = (unsigned long *)regs; +	unsigned int idx; -	return ret; +	if (regs == NULL) +		return 0; +	idx = READ_ONCE(f->reg_idx); +	if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long)) +		idx = 0; +	ptr += idx++; +	WRITE_ONCE(f->reg_idx, idx); +	return *ptr;  } -/* - * This function extracts randomness from the "entropy pool", and - * returns it in a buffer. - * - * The min parameter specifies the minimum amount we can pull before - * failing to avoid races that defeat catastrophic reseeding while the - * reserved parameter indicates how much entropy we must leave in the - * pool after each pull to avoid starving other readers. - */ -static ssize_t extract_entropy(struct entropy_store *r, void *buf, -				 size_t nbytes, int min, int reserved) +static void mix_interrupt_randomness(struct work_struct *work)  { -	__u8 tmp[EXTRACT_SIZE]; -	unsigned long flags; +	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); +	/* +	 * The size of the copied stack pool is explicitly 16 bytes so that we +	 * tax mix_pool_byte()'s compression function the same amount on all +	 * platforms. This means on 64-bit we copy half the pool into this, +	 * while on 32-bit we copy all of it. The entropy is supposed to be +	 * sufficiently dispersed between bits that in the sponge-like +	 * half case, on average we don't wind up "losing" some. +	 */ +	u8 pool[16]; -	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ -	if (fips_enabled) { -		spin_lock_irqsave(&r->lock, flags); -		if (!r->last_data_init) { -			r->last_data_init = 1; -			spin_unlock_irqrestore(&r->lock, flags); -			trace_extract_entropy(r->name, EXTRACT_SIZE, -					      ENTROPY_BITS(r), _RET_IP_); -			extract_buf(r, tmp); -			spin_lock_irqsave(&r->lock, flags); -			memcpy(r->last_data, tmp, EXTRACT_SIZE); -		} -		spin_unlock_irqrestore(&r->lock, flags); +	/* Check to see if we're running on the wrong CPU due to hotplug. */ +	local_irq_disable(); +	if (fast_pool != this_cpu_ptr(&irq_randomness)) { +		local_irq_enable(); +		return;  	} -	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); -	nbytes = account(r, nbytes, min, reserved); - -	return _extract_entropy(r, buf, nbytes, fips_enabled); -} - -#define warn_unseeded_randomness(previous) \ -	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) +	/* +	 * Copy the pool to the stack so that the mixer always has a +	 * consistent view, before we reenable irqs again. +	 */ +	memcpy(pool, fast_pool->pool, sizeof(pool)); +	fast_pool->count = 0; +	fast_pool->last = jiffies; +	local_irq_enable(); -static void _warn_unseeded_randomness(const char *func_name, void *caller, -				      void **previous) -{ -#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM -	const bool print_once = false; -#else -	static bool print_once __read_mostly; -#endif +	if (unlikely(crng_init == 0)) { +		crng_pre_init_inject(pool, sizeof(pool), true); +		mix_pool_bytes(pool, sizeof(pool)); +	} else { +		mix_pool_bytes(pool, sizeof(pool)); +		credit_entropy_bits(1); +	} -	if (print_once || -	    crng_ready() || -	    (previous && (caller == READ_ONCE(*previous)))) -		return; -	WRITE_ONCE(*previous, caller); -#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM -	print_once = true; -#endif -	if (__ratelimit(&unseeded_warning)) -		printk_deferred(KERN_NOTICE "random: %s called from %pS " -				"with crng_init=%d\n", func_name, caller, -				crng_init); +	memzero_explicit(pool, sizeof(pool));  } -/* - * This function is the exported kernel interface.  It returns some - * number of good random numbers, suitable for key generation, seeding - * TCP sequence numbers, etc.  It does not rely on the hardware random - * number generator.  For random bytes direct from the hardware RNG - * (when available), use get_random_bytes_arch(). In order to ensure - * that the randomness provided by this function is okay, the function - * wait_for_random_bytes() should be called and return 0 at least once - * at any point prior. - */ -static void _get_random_bytes(void *buf, int nbytes) +void add_interrupt_randomness(int irq)  { -	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); +	enum { MIX_INFLIGHT = 1U << 31 }; +	cycles_t cycles = random_get_entropy(); +	unsigned long now = jiffies; +	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); +	struct pt_regs *regs = get_irq_regs(); +	unsigned int new_count; +	union { +		u32 u32[4]; +		u64 u64[2]; +		unsigned long longs[16 / sizeof(long)]; +	} irq_data; -	trace_get_random_bytes(nbytes, _RET_IP_); +	if (cycles == 0) +		cycles = get_reg(fast_pool, regs); -	while (nbytes >= CHACHA_BLOCK_SIZE) { -		extract_crng(buf); -		buf += CHACHA_BLOCK_SIZE; -		nbytes -= CHACHA_BLOCK_SIZE; +	if (sizeof(cycles) == 8) +		irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq; +	else { +		irq_data.u32[0] = cycles ^ irq; +		irq_data.u32[1] = now;  	} -	if (nbytes > 0) { -		extract_crng(tmp); -		memcpy(buf, tmp, nbytes); -		crng_backtrack_protect(tmp, nbytes); -	} else -		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); -	memzero_explicit(tmp, sizeof(tmp)); -} +	if (sizeof(unsigned long) == 8) +		irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_; +	else { +		irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_; +		irq_data.u32[3] = get_reg(fast_pool, regs); +	} -void get_random_bytes(void *buf, int nbytes) -{ -	static void *previous; +	fast_mix(fast_pool->pool, irq_data.longs); +	new_count = ++fast_pool->count; -	warn_unseeded_randomness(&previous); -	_get_random_bytes(buf, nbytes); -} -EXPORT_SYMBOL(get_random_bytes); +	if (new_count & MIX_INFLIGHT) +		return; +	if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) || +			       unlikely(crng_init == 0))) +		return; + +	if (unlikely(!fast_pool->mix.func)) +		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness); +	fast_pool->count |= MIX_INFLIGHT; +	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix); +} +EXPORT_SYMBOL_GPL(add_interrupt_randomness);  /*   * Each time the timer fires, we expect that we got an unpredictable @@ -1581,7 +1388,7 @@ EXPORT_SYMBOL(get_random_bytes);   */  static void entropy_timer(struct timer_list *t)  { -	credit_entropy_bits(&input_pool, 1); +	credit_entropy_bits(1);  }  /* @@ -1591,271 +1398,88 @@ static void entropy_timer(struct timer_list *t)  static void try_to_generate_entropy(void)  {  	struct { -		unsigned long now; +		cycles_t cycles;  		struct timer_list timer;  	} stack; -	stack.now = random_get_entropy(); +	stack.cycles = random_get_entropy();  	/* Slow counter - or none. Don't even bother */ -	if (stack.now == random_get_entropy()) +	if (stack.cycles == random_get_entropy())  		return;  	timer_setup_on_stack(&stack.timer, entropy_timer, 0); -	while (!crng_ready()) { +	while (!crng_ready() && !signal_pending(current)) {  		if (!timer_pending(&stack.timer)) -			mod_timer(&stack.timer, jiffies+1); -		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); +			mod_timer(&stack.timer, jiffies + 1); +		mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));  		schedule(); -		stack.now = random_get_entropy(); +		stack.cycles = random_get_entropy();  	}  	del_timer_sync(&stack.timer);  	destroy_timer_on_stack(&stack.timer); -	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); +	mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));  } -/* - * Wait for the urandom pool to be seeded and thus guaranteed to supply - * cryptographically secure random numbers. This applies to: the /dev/urandom - * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} - * family of functions. Using any of these functions without first calling - * this function forfeits the guarantee of security. - * - * Returns: 0 if the urandom pool has been seeded. - *          -ERESTARTSYS if the function was interrupted by a signal. - */ -int wait_for_random_bytes(void) -{ -	if (likely(crng_ready())) -		return 0; - -	do { -		int ret; -		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); -		if (ret) -			return ret > 0 ? 0 : ret; -		try_to_generate_entropy(); -	} while (!crng_ready()); - -	return 0; -} -EXPORT_SYMBOL(wait_for_random_bytes); - -/* - * Returns whether or not the urandom pool has been seeded and thus guaranteed - * to supply cryptographically secure random numbers. This applies to: the - * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, - * ,u64,int,long} family of functions. +/**********************************************************************   * - * Returns: true if the urandom pool has been seeded. - *          false if the urandom pool has not been seeded. - */ -bool rng_is_initialized(void) -{ -	return crng_ready(); -} -EXPORT_SYMBOL(rng_is_initialized); - -/* - * Add a callback function that will be invoked when the nonblocking - * pool is initialised. + * Userspace reader/writer interfaces.   * - * returns: 0 if callback is successfully added - *	    -EALREADY if pool is already initialised (callback not called) - *	    -ENOENT if module for callback is not alive - */ -int add_random_ready_callback(struct random_ready_callback *rdy) -{ -	struct module *owner; -	unsigned long flags; -	int err = -EALREADY; - -	if (crng_ready()) -		return err; - -	owner = rdy->owner; -	if (!try_module_get(owner)) -		return -ENOENT; - -	spin_lock_irqsave(&random_ready_list_lock, flags); -	if (crng_ready()) -		goto out; - -	owner = NULL; - -	list_add(&rdy->list, &random_ready_list); -	err = 0; - -out: -	spin_unlock_irqrestore(&random_ready_list_lock, flags); - -	module_put(owner); - -	return err; -} -EXPORT_SYMBOL(add_random_ready_callback); - -/* - * Delete a previously registered readiness callback function. - */ -void del_random_ready_callback(struct random_ready_callback *rdy) -{ -	unsigned long flags; -	struct module *owner = NULL; - -	spin_lock_irqsave(&random_ready_list_lock, flags); -	if (!list_empty(&rdy->list)) { -		list_del_init(&rdy->list); -		owner = rdy->owner; -	} -	spin_unlock_irqrestore(&random_ready_list_lock, flags); - -	module_put(owner); -} -EXPORT_SYMBOL(del_random_ready_callback); - -/* - * This function will use the architecture-specific hardware random - * number generator if it is available.  The arch-specific hw RNG will - * almost certainly be faster than what we can do in software, but it - * is impossible to verify that it is implemented securely (as - * opposed, to, say, the AES encryption of a sequence number using a - * key known by the NSA).  So it's useful if we need the speed, but - * only if we're willing to trust the hardware manufacturer not to - * have put in a back door. + * getrandom(2) is the primary modern interface into the RNG and should + * be used in preference to anything else.   * - * Return number of bytes filled in. - */ -int __must_check get_random_bytes_arch(void *buf, int nbytes) -{ -	int left = nbytes; -	char *p = buf; - -	trace_get_random_bytes_arch(left, _RET_IP_); -	while (left) { -		unsigned long v; -		int chunk = min_t(int, left, sizeof(unsigned long)); - -		if (!arch_get_random_long(&v)) -			break; - -		memcpy(p, &v, chunk); -		p += chunk; -		left -= chunk; -	} - -	return nbytes - left; -} -EXPORT_SYMBOL(get_random_bytes_arch); - -/* - * init_std_data - initialize pool with system data + * Reading from /dev/random has the same functionality as calling + * getrandom(2) with flags=0. In earlier versions, however, it had + * vastly different semantics and should therefore be avoided, to + * prevent backwards compatibility issues.   * - * @r: pool to initialize + * Reading from /dev/urandom has the same functionality as calling + * getrandom(2) with flags=GRND_INSECURE. Because it does not block + * waiting for the RNG to be ready, it should not be used.   * - * This function clears the pool's entropy count and mixes some system - * data into the pool to prepare it for use. The pool is not cleared - * as that can only decrease the entropy in the pool. - */ -static void __init init_std_data(struct entropy_store *r) -{ -	int i; -	ktime_t now = ktime_get_real(); -	unsigned long rv; - -	mix_pool_bytes(r, &now, sizeof(now)); -	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { -		if (!arch_get_random_seed_long(&rv) && -		    !arch_get_random_long(&rv)) -			rv = random_get_entropy(); -		mix_pool_bytes(r, &rv, sizeof(rv)); -	} -	mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); -} - -/* - * Note that setup_arch() may call add_device_randomness() - * long before we get here. This allows seeding of the pools - * with some platform dependent data very early in the boot - * process. But it limits our options here. We must use - * statically allocated structures that already have all - * initializations complete at compile time. We should also - * take care not to overwrite the precious per platform data - * we were given. - */ -int __init rand_initialize(void) -{ -	init_std_data(&input_pool); -	if (crng_need_final_init) -		crng_finalize_init(&primary_crng); -	crng_initialize_primary(&primary_crng); -	crng_global_init_time = jiffies; -	if (ratelimit_disable) { -		urandom_warning.interval = 0; -		unseeded_warning.interval = 0; -	} -	return 0; -} + * Writing to either /dev/random or /dev/urandom adds entropy to + * the input pool but does not credit it. + * + * Polling on /dev/random indicates when the RNG is initialized, on + * the read side, and when it wants new entropy, on the write side. + * + * Both /dev/random and /dev/urandom have the same set of ioctls for + * adding entropy, getting the entropy count, zeroing the count, and + * reseeding the crng. + * + **********************************************************************/ -#ifdef CONFIG_BLOCK -void rand_initialize_disk(struct gendisk *disk) +SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int, +		flags)  { -	struct timer_rand_state *state; +	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) +		return -EINVAL;  	/* -	 * If kzalloc returns null, we just won't use that entropy -	 * source. +	 * Requesting insecure and blocking randomness at the same time makes +	 * no sense.  	 */ -	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); -	if (state) { -		state->last_time = INITIAL_JIFFIES; -		disk->random = state; -	} -} -#endif - -static ssize_t -urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes, -		    loff_t *ppos) -{ -	int ret; +	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) +		return -EINVAL; -	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); -	ret = extract_crng_user(buf, nbytes); -	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); -	return ret; -} +	if (count > INT_MAX) +		count = INT_MAX; -static ssize_t -urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) -{ -	static int maxwarn = 10; +	if (!(flags & GRND_INSECURE) && !crng_ready()) { +		int ret; -	if (!crng_ready() && maxwarn > 0) { -		maxwarn--; -		if (__ratelimit(&urandom_warning)) -			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", -				  current->comm, nbytes); +		if (flags & GRND_NONBLOCK) +			return -EAGAIN; +		ret = wait_for_random_bytes(); +		if (unlikely(ret)) +			return ret;  	} - -	return urandom_read_nowarn(file, buf, nbytes, ppos); -} - -static ssize_t -random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) -{ -	int ret; - -	ret = wait_for_random_bytes(); -	if (ret != 0) -		return ret; -	return urandom_read_nowarn(file, buf, nbytes, ppos); +	return get_random_bytes_user(buf, count);  } -static __poll_t -random_poll(struct file *file, poll_table * wait) +static __poll_t random_poll(struct file *file, poll_table *wait)  {  	__poll_t mask; @@ -1864,53 +1488,72 @@ random_poll(struct file *file, poll_table * wait)  	mask = 0;  	if (crng_ready())  		mask |= EPOLLIN | EPOLLRDNORM; -	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) +	if (input_pool.entropy_count < POOL_MIN_BITS)  		mask |= EPOLLOUT | EPOLLWRNORM;  	return mask;  } -static int -write_pool(struct entropy_store *r, const char __user *buffer, size_t count) +static int write_pool(const char __user *ubuf, size_t count)  { -	size_t bytes; -	__u32 t, buf[16]; -	const char __user *p = buffer; - -	while (count > 0) { -		int b, i = 0; +	size_t len; +	int ret = 0; +	u8 block[BLAKE2S_BLOCK_SIZE]; -		bytes = min(count, sizeof(buf)); -		if (copy_from_user(&buf, p, bytes)) -			return -EFAULT; - -		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { -			if (!arch_get_random_int(&t)) -				break; -			buf[i] ^= t; +	while (count) { +		len = min(count, sizeof(block)); +		if (copy_from_user(block, ubuf, len)) { +			ret = -EFAULT; +			goto out;  		} - -		count -= bytes; -		p += bytes; - -		mix_pool_bytes(r, buf, bytes); +		count -= len; +		ubuf += len; +		mix_pool_bytes(block, len);  		cond_resched();  	} -	return 0; +out: +	memzero_explicit(block, sizeof(block)); +	return ret;  }  static ssize_t random_write(struct file *file, const char __user *buffer,  			    size_t count, loff_t *ppos)  { -	size_t ret; +	int ret; -	ret = write_pool(&input_pool, buffer, count); +	ret = write_pool(buffer, count);  	if (ret)  		return ret;  	return (ssize_t)count;  } +static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes, +			    loff_t *ppos) +{ +	static int maxwarn = 10; + +	if (!crng_ready() && maxwarn > 0) { +		maxwarn--; +		if (__ratelimit(&urandom_warning)) +			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", +				  current->comm, nbytes); +	} + +	return get_random_bytes_user(buf, nbytes); +} + +static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes, +			   loff_t *ppos) +{ +	int ret; + +	ret = wait_for_random_bytes(); +	if (ret != 0) +		return ret; +	return get_random_bytes_user(buf, nbytes); +} +  static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)  {  	int size, ent_count; @@ -1919,9 +1562,8 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)  	switch (cmd) {  	case RNDGETENTCNT: -		/* inherently racy, no point locking */ -		ent_count = ENTROPY_BITS(&input_pool); -		if (put_user(ent_count, p)) +		/* Inherently racy, no point locking. */ +		if (put_user(input_pool.entropy_count, p))  			return -EFAULT;  		return 0;  	case RNDADDTOENTCNT: @@ -1929,7 +1571,10 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)  			return -EPERM;  		if (get_user(ent_count, p))  			return -EFAULT; -		return credit_entropy_bits_safe(&input_pool, ent_count); +		if (ent_count < 0) +			return -EINVAL; +		credit_entropy_bits(ent_count); +		return 0;  	case RNDADDENTROPY:  		if (!capable(CAP_SYS_ADMIN))  			return -EPERM; @@ -1939,11 +1584,11 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)  			return -EINVAL;  		if (get_user(size, p++))  			return -EFAULT; -		retval = write_pool(&input_pool, (const char __user *)p, -				    size); +		retval = write_pool((const char __user *)p, size);  		if (retval < 0)  			return retval; -		return credit_entropy_bits_safe(&input_pool, ent_count); +		credit_entropy_bits(ent_count); +		return 0;  	case RNDZAPENTCNT:  	case RNDCLEARPOOL:  		/* @@ -1952,15 +1597,17 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)  		 */  		if (!capable(CAP_SYS_ADMIN))  			return -EPERM; -		input_pool.entropy_count = 0; +		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) { +			wake_up_interruptible(&random_write_wait); +			kill_fasync(&fasync, SIGIO, POLL_OUT); +		}  		return 0;  	case RNDRESEEDCRNG:  		if (!capable(CAP_SYS_ADMIN))  			return -EPERM; -		if (crng_init < 2) +		if (!crng_ready())  			return -ENODATA; -		crng_reseed(&primary_crng, &input_pool); -		WRITE_ONCE(crng_global_init_time, jiffies - 1); +		crng_reseed(false);  		return 0;  	default:  		return -EINVAL; @@ -1973,9 +1620,9 @@ static int random_fasync(int fd, struct file *filp, int on)  }  const struct file_operations random_fops = { -	.read  = random_read, +	.read = random_read,  	.write = random_write, -	.poll  = random_poll, +	.poll = random_poll,  	.unlocked_ioctl = random_ioctl,  	.compat_ioctl = compat_ptr_ioctl,  	.fasync = random_fasync, @@ -1983,7 +1630,7 @@ const struct file_operations random_fops = {  };  const struct file_operations urandom_fops = { -	.read  = urandom_read, +	.read = urandom_read,  	.write = random_write,  	.unlocked_ioctl = random_ioctl,  	.compat_ioctl = compat_ptr_ioctl, @@ -1991,37 +1638,34 @@ const struct file_operations urandom_fops = {  	.llseek = noop_llseek,  }; -SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, -		unsigned int, flags) -{ -	int ret; - -	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE)) -		return -EINVAL; - -	/* -	 * Requesting insecure and blocking randomness at the same time makes -	 * no sense. -	 */ -	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM)) -		return -EINVAL; - -	if (count > INT_MAX) -		count = INT_MAX; - -	if (!(flags & GRND_INSECURE) && !crng_ready()) { -		if (flags & GRND_NONBLOCK) -			return -EAGAIN; -		ret = wait_for_random_bytes(); -		if (unlikely(ret)) -			return ret; -	} -	return urandom_read_nowarn(NULL, buf, count, NULL); -}  /********************************************************************   * - * Sysctl interface + * Sysctl interface. + * + * These are partly unused legacy knobs with dummy values to not break + * userspace and partly still useful things. They are usually accessible + * in /proc/sys/kernel/random/ and are as follows: + * + * - boot_id - a UUID representing the current boot. + * + * - uuid - a random UUID, different each time the file is read. + * + * - poolsize - the number of bits of entropy that the input pool can + *   hold, tied to the POOL_BITS constant. + * + * - entropy_avail - the number of bits of entropy currently in the + *   input pool. Always <= poolsize. + * + * - write_wakeup_threshold - the amount of entropy in the input pool + *   below which write polls to /dev/random will unblock, requesting + *   more entropy, tied to the POOL_MIN_BITS constant. It is writable + *   to avoid breaking old userspaces, but writing to it does not + *   change any behavior of the RNG. + * + * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. + *   It is writable to avoid breaking old userspaces, but writing + *   to it does not change any behavior of the RNG.   *   ********************************************************************/ @@ -2029,25 +1673,28 @@ SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,  #include <linux/sysctl.h> -static int min_write_thresh; -static int max_write_thresh = INPUT_POOL_WORDS * 32; -static int random_min_urandom_seed = 60; -static char sysctl_bootid[16]; +static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; +static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS; +static int sysctl_poolsize = POOL_BITS; +static u8 sysctl_bootid[UUID_SIZE];  /*   * This function is used to return both the bootid UUID, and random - * UUID.  The difference is in whether table->data is NULL; if it is, + * UUID. The difference is in whether table->data is NULL; if it is,   * then a new UUID is generated and returned to the user. - * - * If the user accesses this via the proc interface, the UUID will be - * returned as an ASCII string in the standard UUID format; if via the - * sysctl system call, as 16 bytes of binary data.   */ -static int proc_do_uuid(struct ctl_table *table, int write, -			void *buffer, size_t *lenp, loff_t *ppos) -{ -	struct ctl_table fake_table; -	unsigned char buf[64], tmp_uuid[16], *uuid; +static int proc_do_uuid(struct ctl_table *table, int write, void *buffer, +			size_t *lenp, loff_t *ppos) +{ +	u8 tmp_uuid[UUID_SIZE], *uuid; +	char uuid_string[UUID_STRING_LEN + 1]; +	struct ctl_table fake_table = { +		.data = uuid_string, +		.maxlen = UUID_STRING_LEN +	}; + +	if (write) +		return -EPERM;  	uuid = table->data;  	if (!uuid) { @@ -2062,34 +1709,18 @@ static int proc_do_uuid(struct ctl_table *table, int write,  		spin_unlock(&bootid_spinlock);  	} -	sprintf(buf, "%pU", uuid); - -	fake_table.data = buf; -	fake_table.maxlen = sizeof(buf); - -	return proc_dostring(&fake_table, write, buffer, lenp, ppos); +	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); +	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);  } -/* - * Return entropy available scaled to integral bits - */ -static int proc_do_entropy(struct ctl_table *table, int write, -			   void *buffer, size_t *lenp, loff_t *ppos) +/* The same as proc_dointvec, but writes don't change anything. */ +static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer, +			    size_t *lenp, loff_t *ppos)  { -	struct ctl_table fake_table; -	int entropy_count; - -	entropy_count = *(int *)table->data >> ENTROPY_SHIFT; - -	fake_table.data = &entropy_count; -	fake_table.maxlen = sizeof(entropy_count); - -	return proc_dointvec(&fake_table, write, buffer, lenp, ppos); +	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);  } -static int sysctl_poolsize = INPUT_POOL_WORDS * 32; -extern struct ctl_table random_table[]; -struct ctl_table random_table[] = { +static struct ctl_table random_table[] = {  	{  		.procname	= "poolsize",  		.data		= &sysctl_poolsize, @@ -2099,223 +1730,47 @@ struct ctl_table random_table[] = {  	},  	{  		.procname	= "entropy_avail", +		.data		= &input_pool.entropy_count,  		.maxlen		= sizeof(int),  		.mode		= 0444, -		.proc_handler	= proc_do_entropy, -		.data		= &input_pool.entropy_count, +		.proc_handler	= proc_dointvec,  	},  	{  		.procname	= "write_wakeup_threshold", -		.data		= &random_write_wakeup_bits, +		.data		= &sysctl_random_write_wakeup_bits,  		.maxlen		= sizeof(int),  		.mode		= 0644, -		.proc_handler	= proc_dointvec_minmax, -		.extra1		= &min_write_thresh, -		.extra2		= &max_write_thresh, +		.proc_handler	= proc_do_rointvec,  	},  	{  		.procname	= "urandom_min_reseed_secs", -		.data		= &random_min_urandom_seed, +		.data		= &sysctl_random_min_urandom_seed,  		.maxlen		= sizeof(int),  		.mode		= 0644, -		.proc_handler	= proc_dointvec, +		.proc_handler	= proc_do_rointvec,  	},  	{  		.procname	= "boot_id",  		.data		= &sysctl_bootid, -		.maxlen		= 16,  		.mode		= 0444,  		.proc_handler	= proc_do_uuid,  	},  	{  		.procname	= "uuid", -		.maxlen		= 16,  		.mode		= 0444,  		.proc_handler	= proc_do_uuid,  	}, -#ifdef ADD_INTERRUPT_BENCH -	{ -		.procname	= "add_interrupt_avg_cycles", -		.data		= &avg_cycles, -		.maxlen		= sizeof(avg_cycles), -		.mode		= 0444, -		.proc_handler	= proc_doulongvec_minmax, -	}, -	{ -		.procname	= "add_interrupt_avg_deviation", -		.data		= &avg_deviation, -		.maxlen		= sizeof(avg_deviation), -		.mode		= 0444, -		.proc_handler	= proc_doulongvec_minmax, -	}, -#endif  	{ }  }; -#endif 	/* CONFIG_SYSCTL */ - -struct batched_entropy { -	union { -		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; -		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; -	}; -	unsigned int position; -	spinlock_t batch_lock; -};  /* - * Get a random word for internal kernel use only. The quality of the random - * number is good as /dev/urandom, but there is no backtrack protection, with - * the goal of being quite fast and not depleting entropy. In order to ensure - * that the randomness provided by this function is okay, the function - * wait_for_random_bytes() should be called and return 0 at least once at any - * point prior. + * rand_initialize() is called before sysctl_init(), + * so we cannot call register_sysctl_init() in rand_initialize()   */ -static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { -	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), -}; - -u64 get_random_u64(void) +static int __init random_sysctls_init(void)  { -	u64 ret; -	unsigned long flags; -	struct batched_entropy *batch; -	static void *previous; - -	warn_unseeded_randomness(&previous); - -	batch = raw_cpu_ptr(&batched_entropy_u64); -	spin_lock_irqsave(&batch->batch_lock, flags); -	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { -		extract_crng((u8 *)batch->entropy_u64); -		batch->position = 0; -	} -	ret = batch->entropy_u64[batch->position++]; -	spin_unlock_irqrestore(&batch->batch_lock, flags); -	return ret; -} -EXPORT_SYMBOL(get_random_u64); - -static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { -	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), -}; -u32 get_random_u32(void) -{ -	u32 ret; -	unsigned long flags; -	struct batched_entropy *batch; -	static void *previous; - -	warn_unseeded_randomness(&previous); - -	batch = raw_cpu_ptr(&batched_entropy_u32); -	spin_lock_irqsave(&batch->batch_lock, flags); -	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { -		extract_crng((u8 *)batch->entropy_u32); -		batch->position = 0; -	} -	ret = batch->entropy_u32[batch->position++]; -	spin_unlock_irqrestore(&batch->batch_lock, flags); -	return ret; -} -EXPORT_SYMBOL(get_random_u32); - -/* It's important to invalidate all potential batched entropy that might - * be stored before the crng is initialized, which we can do lazily by - * simply resetting the counter to zero so that it's re-extracted on the - * next usage. */ -static void invalidate_batched_entropy(void) -{ -	int cpu; -	unsigned long flags; - -	for_each_possible_cpu (cpu) { -		struct batched_entropy *batched_entropy; - -		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); -		spin_lock_irqsave(&batched_entropy->batch_lock, flags); -		batched_entropy->position = 0; -		spin_unlock(&batched_entropy->batch_lock); - -		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); -		spin_lock(&batched_entropy->batch_lock); -		batched_entropy->position = 0; -		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); -	} -} - -/** - * randomize_page - Generate a random, page aligned address - * @start:	The smallest acceptable address the caller will take. - * @range:	The size of the area, starting at @start, within which the - *		random address must fall. - * - * If @start + @range would overflow, @range is capped. - * - * NOTE: Historical use of randomize_range, which this replaces, presumed that - * @start was already page aligned.  We now align it regardless. - * - * Return: A page aligned address within [start, start + range).  On error, - * @start is returned. - */ -unsigned long -randomize_page(unsigned long start, unsigned long range) -{ -	if (!PAGE_ALIGNED(start)) { -		range -= PAGE_ALIGN(start) - start; -		start = PAGE_ALIGN(start); -	} - -	if (start > ULONG_MAX - range) -		range = ULONG_MAX - start; - -	range >>= PAGE_SHIFT; - -	if (range == 0) -		return start; - -	return start + (get_random_long() % range << PAGE_SHIFT); -} - -/* Interface for in-kernel drivers of true hardware RNGs. - * Those devices may produce endless random bits and will be throttled - * when our pool is full. - */ -void add_hwgenerator_randomness(const char *buffer, size_t count, -				size_t entropy) -{ -	struct entropy_store *poolp = &input_pool; - -	if (unlikely(crng_init == 0)) { -		size_t ret = crng_fast_load(buffer, count); -		mix_pool_bytes(poolp, buffer, ret); -		count -= ret; -		buffer += ret; -		if (!count || crng_init == 0) -			return; -	} - -	/* Suspend writing if we're above the trickle threshold. -	 * We'll be woken up again once below random_write_wakeup_thresh, -	 * or when the calling thread is about to terminate. -	 */ -	wait_event_interruptible(random_write_wait, -			!system_wq || kthread_should_stop() || -			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); -	mix_pool_bytes(poolp, buffer, count); -	credit_entropy_bits(poolp, entropy); -} -EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); - -/* Handle random seed passed by bootloader. - * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise - * it would be regarded as device data. - * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. - */ -void add_bootloader_randomness(const void *buf, unsigned int size) -{ -	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) -		add_hwgenerator_randomness(buf, size, size * 8); -	else -		add_device_randomness(buf, size); +	register_sysctl_init("kernel/random", random_table); +	return 0;  } -EXPORT_SYMBOL_GPL(add_bootloader_randomness); +device_initcall(random_sysctls_init); +#endif  |