diff options
Diffstat (limited to 'arch/x86/mm/mem_encrypt.c')
| -rw-r--r-- | arch/x86/mm/mem_encrypt.c | 303 | 
1 files changed, 290 insertions, 13 deletions
| diff --git a/arch/x86/mm/mem_encrypt.c b/arch/x86/mm/mem_encrypt.c index 16c5f37933a2..391b13402e40 100644 --- a/arch/x86/mm/mem_encrypt.c +++ b/arch/x86/mm/mem_encrypt.c @@ -30,6 +30,8 @@  #include <asm/msr.h>  #include <asm/cmdline.h> +#include "mm_internal.h" +  static char sme_cmdline_arg[] __initdata = "mem_encrypt";  static char sme_cmdline_on[]  __initdata = "on";  static char sme_cmdline_off[] __initdata = "off"; @@ -40,7 +42,11 @@ static char sme_cmdline_off[] __initdata = "off";   * section is later cleared.   */  u64 sme_me_mask __section(.data) = 0; -EXPORT_SYMBOL_GPL(sme_me_mask); +EXPORT_SYMBOL(sme_me_mask); +DEFINE_STATIC_KEY_FALSE(sev_enable_key); +EXPORT_SYMBOL_GPL(sev_enable_key); + +static bool sev_enabled __section(.data);  /* Buffer used for early in-place encryption by BSP, no locking needed */  static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE); @@ -63,7 +69,6 @@ static void __init __sme_early_enc_dec(resource_size_t paddr,  	if (!sme_me_mask)  		return; -	local_flush_tlb();  	wbinvd();  	/* @@ -190,8 +195,238 @@ void __init sme_early_init(void)  	/* Update the protection map with memory encryption mask */  	for (i = 0; i < ARRAY_SIZE(protection_map); i++)  		protection_map[i] = pgprot_encrypted(protection_map[i]); + +	if (sev_active()) +		swiotlb_force = SWIOTLB_FORCE; +} + +static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, +		       gfp_t gfp, unsigned long attrs) +{ +	unsigned long dma_mask; +	unsigned int order; +	struct page *page; +	void *vaddr = NULL; + +	dma_mask = dma_alloc_coherent_mask(dev, gfp); +	order = get_order(size); + +	/* +	 * Memory will be memset to zero after marking decrypted, so don't +	 * bother clearing it before. +	 */ +	gfp &= ~__GFP_ZERO; + +	page = alloc_pages_node(dev_to_node(dev), gfp, order); +	if (page) { +		dma_addr_t addr; + +		/* +		 * Since we will be clearing the encryption bit, check the +		 * mask with it already cleared. +		 */ +		addr = __sme_clr(phys_to_dma(dev, page_to_phys(page))); +		if ((addr + size) > dma_mask) { +			__free_pages(page, get_order(size)); +		} else { +			vaddr = page_address(page); +			*dma_handle = addr; +		} +	} + +	if (!vaddr) +		vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp); + +	if (!vaddr) +		return NULL; + +	/* Clear the SME encryption bit for DMA use if not swiotlb area */ +	if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) { +		set_memory_decrypted((unsigned long)vaddr, 1 << order); +		memset(vaddr, 0, PAGE_SIZE << order); +		*dma_handle = __sme_clr(*dma_handle); +	} + +	return vaddr;  } +static void sev_free(struct device *dev, size_t size, void *vaddr, +		     dma_addr_t dma_handle, unsigned long attrs) +{ +	/* Set the SME encryption bit for re-use if not swiotlb area */ +	if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle))) +		set_memory_encrypted((unsigned long)vaddr, +				     1 << get_order(size)); + +	swiotlb_free_coherent(dev, size, vaddr, dma_handle); +} + +static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) +{ +	pgprot_t old_prot, new_prot; +	unsigned long pfn, pa, size; +	pte_t new_pte; + +	switch (level) { +	case PG_LEVEL_4K: +		pfn = pte_pfn(*kpte); +		old_prot = pte_pgprot(*kpte); +		break; +	case PG_LEVEL_2M: +		pfn = pmd_pfn(*(pmd_t *)kpte); +		old_prot = pmd_pgprot(*(pmd_t *)kpte); +		break; +	case PG_LEVEL_1G: +		pfn = pud_pfn(*(pud_t *)kpte); +		old_prot = pud_pgprot(*(pud_t *)kpte); +		break; +	default: +		return; +	} + +	new_prot = old_prot; +	if (enc) +		pgprot_val(new_prot) |= _PAGE_ENC; +	else +		pgprot_val(new_prot) &= ~_PAGE_ENC; + +	/* If prot is same then do nothing. */ +	if (pgprot_val(old_prot) == pgprot_val(new_prot)) +		return; + +	pa = pfn << page_level_shift(level); +	size = page_level_size(level); + +	/* +	 * We are going to perform in-place en-/decryption and change the +	 * physical page attribute from C=1 to C=0 or vice versa. Flush the +	 * caches to ensure that data gets accessed with the correct C-bit. +	 */ +	clflush_cache_range(__va(pa), size); + +	/* Encrypt/decrypt the contents in-place */ +	if (enc) +		sme_early_encrypt(pa, size); +	else +		sme_early_decrypt(pa, size); + +	/* Change the page encryption mask. */ +	new_pte = pfn_pte(pfn, new_prot); +	set_pte_atomic(kpte, new_pte); +} + +static int __init early_set_memory_enc_dec(unsigned long vaddr, +					   unsigned long size, bool enc) +{ +	unsigned long vaddr_end, vaddr_next; +	unsigned long psize, pmask; +	int split_page_size_mask; +	int level, ret; +	pte_t *kpte; + +	vaddr_next = vaddr; +	vaddr_end = vaddr + size; + +	for (; vaddr < vaddr_end; vaddr = vaddr_next) { +		kpte = lookup_address(vaddr, &level); +		if (!kpte || pte_none(*kpte)) { +			ret = 1; +			goto out; +		} + +		if (level == PG_LEVEL_4K) { +			__set_clr_pte_enc(kpte, level, enc); +			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; +			continue; +		} + +		psize = page_level_size(level); +		pmask = page_level_mask(level); + +		/* +		 * Check whether we can change the large page in one go. +		 * We request a split when the address is not aligned and +		 * the number of pages to set/clear encryption bit is smaller +		 * than the number of pages in the large page. +		 */ +		if (vaddr == (vaddr & pmask) && +		    ((vaddr_end - vaddr) >= psize)) { +			__set_clr_pte_enc(kpte, level, enc); +			vaddr_next = (vaddr & pmask) + psize; +			continue; +		} + +		/* +		 * The virtual address is part of a larger page, create the next +		 * level page table mapping (4K or 2M). If it is part of a 2M +		 * page then we request a split of the large page into 4K +		 * chunks. A 1GB large page is split into 2M pages, resp. +		 */ +		if (level == PG_LEVEL_2M) +			split_page_size_mask = 0; +		else +			split_page_size_mask = 1 << PG_LEVEL_2M; + +		kernel_physical_mapping_init(__pa(vaddr & pmask), +					     __pa((vaddr_end & pmask) + psize), +					     split_page_size_mask); +	} + +	ret = 0; + +out: +	__flush_tlb_all(); +	return ret; +} + +int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) +{ +	return early_set_memory_enc_dec(vaddr, size, false); +} + +int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) +{ +	return early_set_memory_enc_dec(vaddr, size, true); +} + +/* + * SME and SEV are very similar but they are not the same, so there are + * times that the kernel will need to distinguish between SME and SEV. The + * sme_active() and sev_active() functions are used for this.  When a + * distinction isn't needed, the mem_encrypt_active() function can be used. + * + * The trampoline code is a good example for this requirement.  Before + * paging is activated, SME will access all memory as decrypted, but SEV + * will access all memory as encrypted.  So, when APs are being brought + * up under SME the trampoline area cannot be encrypted, whereas under SEV + * the trampoline area must be encrypted. + */ +bool sme_active(void) +{ +	return sme_me_mask && !sev_enabled; +} +EXPORT_SYMBOL(sme_active); + +bool sev_active(void) +{ +	return sme_me_mask && sev_enabled; +} +EXPORT_SYMBOL(sev_active); + +static const struct dma_map_ops sev_dma_ops = { +	.alloc                  = sev_alloc, +	.free                   = sev_free, +	.map_page               = swiotlb_map_page, +	.unmap_page             = swiotlb_unmap_page, +	.map_sg                 = swiotlb_map_sg_attrs, +	.unmap_sg               = swiotlb_unmap_sg_attrs, +	.sync_single_for_cpu    = swiotlb_sync_single_for_cpu, +	.sync_single_for_device = swiotlb_sync_single_for_device, +	.sync_sg_for_cpu        = swiotlb_sync_sg_for_cpu, +	.sync_sg_for_device     = swiotlb_sync_sg_for_device, +	.mapping_error          = swiotlb_dma_mapping_error, +}; +  /* Architecture __weak replacement functions */  void __init mem_encrypt_init(void)  { @@ -201,7 +436,23 @@ void __init mem_encrypt_init(void)  	/* Call into SWIOTLB to update the SWIOTLB DMA buffers */  	swiotlb_update_mem_attributes(); -	pr_info("AMD Secure Memory Encryption (SME) active\n"); +	/* +	 * With SEV, DMA operations cannot use encryption. New DMA ops +	 * are required in order to mark the DMA areas as decrypted or +	 * to use bounce buffers. +	 */ +	if (sev_active()) +		dma_ops = &sev_dma_ops; + +	/* +	 * With SEV, we need to unroll the rep string I/O instructions. +	 */ +	if (sev_active()) +		static_branch_enable(&sev_enable_key); + +	pr_info("AMD %s active\n", +		sev_active() ? "Secure Encrypted Virtualization (SEV)" +			     : "Secure Memory Encryption (SME)");  }  void swiotlb_set_mem_attributes(void *vaddr, unsigned long size) @@ -529,37 +780,63 @@ void __init __nostackprotector sme_enable(struct boot_params *bp)  {  	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;  	unsigned int eax, ebx, ecx, edx; +	unsigned long feature_mask;  	bool active_by_default;  	unsigned long me_mask;  	char buffer[16];  	u64 msr; -	/* Check for the SME support leaf */ +	/* Check for the SME/SEV support leaf */  	eax = 0x80000000;  	ecx = 0;  	native_cpuid(&eax, &ebx, &ecx, &edx);  	if (eax < 0x8000001f)  		return; +#define AMD_SME_BIT	BIT(0) +#define AMD_SEV_BIT	BIT(1)  	/* -	 * Check for the SME feature: -	 *   CPUID Fn8000_001F[EAX] - Bit 0 -	 *     Secure Memory Encryption support -	 *   CPUID Fn8000_001F[EBX] - Bits 5:0 -	 *     Pagetable bit position used to indicate encryption +	 * Set the feature mask (SME or SEV) based on whether we are +	 * running under a hypervisor. +	 */ +	eax = 1; +	ecx = 0; +	native_cpuid(&eax, &ebx, &ecx, &edx); +	feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT; + +	/* +	 * Check for the SME/SEV feature: +	 *   CPUID Fn8000_001F[EAX] +	 *   - Bit 0 - Secure Memory Encryption support +	 *   - Bit 1 - Secure Encrypted Virtualization support +	 *   CPUID Fn8000_001F[EBX] +	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption  	 */  	eax = 0x8000001f;  	ecx = 0;  	native_cpuid(&eax, &ebx, &ecx, &edx); -	if (!(eax & 1)) +	if (!(eax & feature_mask))  		return;  	me_mask = 1UL << (ebx & 0x3f); -	/* Check if SME is enabled */ -	msr = __rdmsr(MSR_K8_SYSCFG); -	if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) +	/* Check if memory encryption is enabled */ +	if (feature_mask == AMD_SME_BIT) { +		/* For SME, check the SYSCFG MSR */ +		msr = __rdmsr(MSR_K8_SYSCFG); +		if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) +			return; +	} else { +		/* For SEV, check the SEV MSR */ +		msr = __rdmsr(MSR_AMD64_SEV); +		if (!(msr & MSR_AMD64_SEV_ENABLED)) +			return; + +		/* SEV state cannot be controlled by a command line option */ +		sme_me_mask = me_mask; +		sev_enabled = true;  		return; +	}  	/*  	 * Fixups have not been applied to phys_base yet and we're running |