diff options
Diffstat (limited to 'arch/x86/kvm/mmu/mmu.c')
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 194 |
1 files changed, 175 insertions, 19 deletions
diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index 662f62dfb2aa..4e0e9963066f 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -336,16 +336,19 @@ static int is_cpuid_PSE36(void) #ifdef CONFIG_X86_64 static void __set_spte(u64 *sptep, u64 spte) { + KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); WRITE_ONCE(*sptep, spte); } static void __update_clear_spte_fast(u64 *sptep, u64 spte) { + KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); WRITE_ONCE(*sptep, spte); } static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) { + KVM_MMU_WARN_ON(is_ept_ve_possible(spte)); return xchg(sptep, spte); } @@ -3305,7 +3308,7 @@ static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu, return RET_PF_CONTINUE; } -static bool page_fault_can_be_fast(struct kvm_page_fault *fault) +static bool page_fault_can_be_fast(struct kvm *kvm, struct kvm_page_fault *fault) { /* * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only @@ -3317,6 +3320,26 @@ static bool page_fault_can_be_fast(struct kvm_page_fault *fault) return false; /* + * For hardware-protected VMs, certain conditions like attempting to + * perform a write to a page which is not in the state that the guest + * expects it to be in can result in a nested/extended #PF. In this + * case, the below code might misconstrue this situation as being the + * result of a write-protected access, and treat it as a spurious case + * rather than taking any action to satisfy the real source of the #PF + * such as generating a KVM_EXIT_MEMORY_FAULT. This can lead to the + * guest spinning on a #PF indefinitely, so don't attempt the fast path + * in this case. + * + * Note that the kvm_mem_is_private() check might race with an + * attribute update, but this will either result in the guest spinning + * on RET_PF_SPURIOUS until the update completes, or an actual spurious + * case might go down the slow path. Either case will resolve itself. + */ + if (kvm->arch.has_private_mem && + fault->is_private != kvm_mem_is_private(kvm, fault->gfn)) + return false; + + /* * #PF can be fast if: * * 1. The shadow page table entry is not present and A/D bits are @@ -3416,7 +3439,7 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) u64 *sptep; uint retry_count = 0; - if (!page_fault_can_be_fast(fault)) + if (!page_fault_can_be_fast(vcpu->kvm, fault)) return ret; walk_shadow_page_lockless_begin(vcpu); @@ -3425,7 +3448,7 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) u64 new_spte; if (tdp_mmu_enabled) - sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte); + sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->gfn, &spte); else sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); @@ -3435,7 +3458,7 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) * available as the vCPU holds a reference to its root(s). */ if (WARN_ON_ONCE(!sptep)) - spte = REMOVED_SPTE; + spte = FROZEN_SPTE; if (!is_shadow_present_pte(spte)) break; @@ -4101,23 +4124,31 @@ static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level return leaf; } -/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ -static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) +static int get_sptes_lockless(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, + int *root_level) { - u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; - struct rsvd_bits_validate *rsvd_check; - int root, leaf, level; - bool reserved = false; + int leaf; walk_shadow_page_lockless_begin(vcpu); if (is_tdp_mmu_active(vcpu)) - leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); + leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level); else - leaf = get_walk(vcpu, addr, sptes, &root); + leaf = get_walk(vcpu, addr, sptes, root_level); walk_shadow_page_lockless_end(vcpu); + return leaf; +} + +/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ +static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) +{ + u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; + struct rsvd_bits_validate *rsvd_check; + int root, leaf, level; + bool reserved = false; + leaf = get_sptes_lockless(vcpu, addr, sptes, &root); if (unlikely(leaf < 0)) { *sptep = 0ull; return reserved; @@ -4260,7 +4291,16 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, vcpu->arch.mmu)) return; - kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, true, NULL); + r = kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, work->arch.error_code, + true, NULL, NULL); + + /* + * Account fixed page faults, otherwise they'll never be counted, but + * ignore stats for all other return times. Page-ready "faults" aren't + * truly spurious and never trigger emulation + */ + if (r == RET_PF_FIXED) + vcpu->stat.pf_fixed++; } static inline u8 kvm_max_level_for_order(int order) @@ -4280,6 +4320,25 @@ static inline u8 kvm_max_level_for_order(int order) return PG_LEVEL_4K; } +static u8 kvm_max_private_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, + u8 max_level, int gmem_order) +{ + u8 req_max_level; + + if (max_level == PG_LEVEL_4K) + return PG_LEVEL_4K; + + max_level = min(kvm_max_level_for_order(gmem_order), max_level); + if (max_level == PG_LEVEL_4K) + return PG_LEVEL_4K; + + req_max_level = static_call(kvm_x86_private_max_mapping_level)(kvm, pfn); + if (req_max_level) + max_level = min(max_level, req_max_level); + + return req_max_level; +} + static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { @@ -4297,9 +4356,9 @@ static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu, return r; } - fault->max_level = min(kvm_max_level_for_order(max_order), - fault->max_level); fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY); + fault->max_level = kvm_max_private_mapping_level(vcpu->kvm, fault->pfn, + fault->max_level, max_order); return RET_PF_CONTINUE; } @@ -4400,9 +4459,6 @@ static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, return RET_PF_EMULATE; } - fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq; - smp_rmb(); - /* * Check for a relevant mmu_notifier invalidation event before getting * the pfn from the primary MMU, and before acquiring mmu_lock. @@ -4653,6 +4709,79 @@ int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) return direct_page_fault(vcpu, fault); } +static int kvm_tdp_map_page(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code, + u8 *level) +{ + int r; + + /* + * Restrict to TDP page fault, since that's the only case where the MMU + * is indexed by GPA. + */ + if (vcpu->arch.mmu->page_fault != kvm_tdp_page_fault) + return -EOPNOTSUPP; + + do { + if (signal_pending(current)) + return -EINTR; + cond_resched(); + r = kvm_mmu_do_page_fault(vcpu, gpa, error_code, true, NULL, level); + } while (r == RET_PF_RETRY); + + if (r < 0) + return r; + + switch (r) { + case RET_PF_FIXED: + case RET_PF_SPURIOUS: + return 0; + + case RET_PF_EMULATE: + return -ENOENT; + + case RET_PF_RETRY: + case RET_PF_CONTINUE: + case RET_PF_INVALID: + default: + WARN_ONCE(1, "could not fix page fault during prefault"); + return -EIO; + } +} + +long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu, + struct kvm_pre_fault_memory *range) +{ + u64 error_code = PFERR_GUEST_FINAL_MASK; + u8 level = PG_LEVEL_4K; + u64 end; + int r; + + /* + * reload is efficient when called repeatedly, so we can do it on + * every iteration. + */ + kvm_mmu_reload(vcpu); + + if (kvm_arch_has_private_mem(vcpu->kvm) && + kvm_mem_is_private(vcpu->kvm, gpa_to_gfn(range->gpa))) + error_code |= PFERR_PRIVATE_ACCESS; + + /* + * Shadow paging uses GVA for kvm page fault, so restrict to + * two-dimensional paging. + */ + r = kvm_tdp_map_page(vcpu, range->gpa, error_code, &level); + if (r < 0) + return r; + + /* + * If the mapping that covers range->gpa can use a huge page, it + * may start below it or end after range->gpa + range->size. + */ + end = (range->gpa & KVM_HPAGE_MASK(level)) + KVM_HPAGE_SIZE(level); + return min(range->size, end - range->gpa); +} + static void nonpaging_init_context(struct kvm_mmu *context) { context->page_fault = nonpaging_page_fault; @@ -5878,14 +6007,24 @@ int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 err } if (r == RET_PF_INVALID) { + vcpu->stat.pf_taken++; + r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, error_code, false, - &emulation_type); + &emulation_type, NULL); if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm)) return -EIO; } if (r < 0) return r; + + if (r == RET_PF_FIXED) + vcpu->stat.pf_fixed++; + else if (r == RET_PF_EMULATE) + vcpu->stat.pf_emulate++; + else if (r == RET_PF_SPURIOUS) + vcpu->stat.pf_spurious++; + if (r != RET_PF_EMULATE) return 1; @@ -5921,6 +6060,22 @@ emulate: } EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); +void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg) +{ + u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; + int root_level, leaf, level; + + leaf = get_sptes_lockless(vcpu, gpa, sptes, &root_level); + if (unlikely(leaf < 0)) + return; + + pr_err("%s %llx", msg, gpa); + for (level = root_level; level >= leaf; level--) + pr_cont(", spte[%d] = 0x%llx", level, sptes[level]); + pr_cont("\n"); +} +EXPORT_SYMBOL_GPL(kvm_mmu_print_sptes); + static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, u64 addr, hpa_t root_hpa) { @@ -6763,6 +6918,7 @@ restart: return need_tlb_flush; } +EXPORT_SYMBOL_GPL(kvm_zap_gfn_range); static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm, const struct kvm_memory_slot *slot) |