diff options
Diffstat (limited to 'arch/arm64/kvm/hyp/pgtable.c')
-rw-r--r-- | arch/arm64/kvm/hyp/pgtable.c | 333 |
1 files changed, 293 insertions, 40 deletions
diff --git a/arch/arm64/kvm/hyp/pgtable.c b/arch/arm64/kvm/hyp/pgtable.c index 3d61bd3e591d..f7a93ef29250 100644 --- a/arch/arm64/kvm/hyp/pgtable.c +++ b/arch/arm64/kvm/hyp/pgtable.c @@ -21,8 +21,10 @@ #define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2) #define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6) -#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3 -#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1 +#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO \ + ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 2 : 3; }) +#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW \ + ({ cpus_have_final_cap(ARM64_KVM_HVHE) ? 0 : 1; }) #define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8) #define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3 #define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10) @@ -34,7 +36,7 @@ #define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3 #define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10) -#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51) +#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 50) #define KVM_PTE_LEAF_ATTR_HI_SW GENMASK(58, 55) @@ -42,6 +44,8 @@ #define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54) +#define KVM_PTE_LEAF_ATTR_HI_S1_GP BIT(50) + #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \ KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \ KVM_PTE_LEAF_ATTR_HI_S2_XN) @@ -58,10 +62,21 @@ struct kvm_pgtable_walk_data { struct kvm_pgtable_walker *walker; + const u64 start; u64 addr; - u64 end; + const u64 end; }; +static bool kvm_pgtable_walk_skip_bbm_tlbi(const struct kvm_pgtable_visit_ctx *ctx) +{ + return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_BBM_TLBI); +} + +static bool kvm_pgtable_walk_skip_cmo(const struct kvm_pgtable_visit_ctx *ctx) +{ + return unlikely(ctx->flags & KVM_PGTABLE_WALK_SKIP_CMO); +} + static bool kvm_phys_is_valid(u64 phys) { return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX)); @@ -201,20 +216,33 @@ static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data, .old = READ_ONCE(*ptep), .arg = data->walker->arg, .mm_ops = mm_ops, + .start = data->start, .addr = data->addr, .end = data->end, .level = level, .flags = flags, }; int ret = 0; + bool reload = false; kvm_pteref_t childp; bool table = kvm_pte_table(ctx.old, level); - if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) + if (table && (ctx.flags & KVM_PGTABLE_WALK_TABLE_PRE)) { ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_TABLE_PRE); + reload = true; + } if (!table && (ctx.flags & KVM_PGTABLE_WALK_LEAF)) { ret = kvm_pgtable_visitor_cb(data, &ctx, KVM_PGTABLE_WALK_LEAF); + reload = true; + } + + /* + * Reload the page table after invoking the walker callback for leaf + * entries or after pre-order traversal, to allow the walker to descend + * into a newly installed or replaced table. + */ + if (reload) { ctx.old = READ_ONCE(*ptep); table = kvm_pte_table(ctx.old, level); } @@ -293,6 +321,7 @@ int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size, struct kvm_pgtable_walker *walker) { struct kvm_pgtable_walk_data walk_data = { + .start = ALIGN_DOWN(addr, PAGE_SIZE), .addr = ALIGN_DOWN(addr, PAGE_SIZE), .end = PAGE_ALIGN(walk_data.addr + size), .walker = walker, @@ -349,7 +378,7 @@ int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr, } struct hyp_map_data { - u64 phys; + const u64 phys; kvm_pte_t attr; }; @@ -371,6 +400,9 @@ static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep) if (device) return -EINVAL; + + if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) && system_supports_bti()) + attr |= KVM_PTE_LEAF_ATTR_HI_S1_GP; } else { attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN; } @@ -407,13 +439,12 @@ enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte) static bool hyp_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, struct hyp_map_data *data) { + u64 phys = data->phys + (ctx->addr - ctx->start); kvm_pte_t new; - u64 granule = kvm_granule_size(ctx->level), phys = data->phys; if (!kvm_block_mapping_supported(ctx, phys)) return false; - data->phys += granule; new = kvm_init_valid_leaf_pte(phys, data->attr, ctx->level); if (ctx->old == new) return true; @@ -576,7 +607,7 @@ void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt) } struct stage2_map_data { - u64 phys; + const u64 phys; kvm_pte_t attr; u8 owner_id; @@ -609,10 +640,18 @@ u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift) #ifdef CONFIG_ARM64_HW_AFDBM /* * Enable the Hardware Access Flag management, unconditionally - * on all CPUs. The features is RES0 on CPUs without the support - * and must be ignored by the CPUs. + * on all CPUs. In systems that have asymmetric support for the feature + * this allows KVM to leverage hardware support on the subset of cores + * that implement the feature. + * + * The architecture requires VTCR_EL2.HA to be RES0 (thus ignored by + * hardware) on implementations that do not advertise support for the + * feature. As such, setting HA unconditionally is safe, unless you + * happen to be running on a design that has unadvertised support for + * HAFDBS. Here be dragons. */ - vtcr |= VTCR_EL2_HA; + if (!cpus_have_final_cap(ARM64_WORKAROUND_AMPERE_AC03_CPU_38)) + vtcr |= VTCR_EL2_HA; #endif /* CONFIG_ARM64_HW_AFDBM */ /* Set the vmid bits */ @@ -741,14 +780,17 @@ static bool stage2_try_break_pte(const struct kvm_pgtable_visit_ctx *ctx, if (!stage2_try_set_pte(ctx, KVM_INVALID_PTE_LOCKED)) return false; - /* - * Perform the appropriate TLB invalidation based on the evicted pte - * value (if any). - */ - if (kvm_pte_table(ctx->old, ctx->level)) - kvm_call_hyp(__kvm_tlb_flush_vmid, mmu); - else if (kvm_pte_valid(ctx->old)) - kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, ctx->addr, ctx->level); + if (!kvm_pgtable_walk_skip_bbm_tlbi(ctx)) { + /* + * Perform the appropriate TLB invalidation based on the + * evicted pte value (if any). + */ + if (kvm_pte_table(ctx->old, ctx->level)) + kvm_call_hyp(__kvm_tlb_flush_vmid, mmu); + else if (kvm_pte_valid(ctx->old)) + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, + ctx->addr, ctx->level); + } if (stage2_pte_is_counted(ctx->old)) mm_ops->put_page(ctx->ptep); @@ -794,20 +836,43 @@ static bool stage2_pte_executable(kvm_pte_t pte) return !(pte & KVM_PTE_LEAF_ATTR_HI_S2_XN); } +static u64 stage2_map_walker_phys_addr(const struct kvm_pgtable_visit_ctx *ctx, + const struct stage2_map_data *data) +{ + u64 phys = data->phys; + + /* + * Stage-2 walks to update ownership data are communicated to the map + * walker using an invalid PA. Avoid offsetting an already invalid PA, + * which could overflow and make the address valid again. + */ + if (!kvm_phys_is_valid(phys)) + return phys; + + /* + * Otherwise, work out the correct PA based on how far the walk has + * gotten. + */ + return phys + (ctx->addr - ctx->start); +} + static bool stage2_leaf_mapping_allowed(const struct kvm_pgtable_visit_ctx *ctx, struct stage2_map_data *data) { + u64 phys = stage2_map_walker_phys_addr(ctx, data); + if (data->force_pte && (ctx->level < (KVM_PGTABLE_MAX_LEVELS - 1))) return false; - return kvm_block_mapping_supported(ctx, data->phys); + return kvm_block_mapping_supported(ctx, phys); } static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, struct stage2_map_data *data) { kvm_pte_t new; - u64 granule = kvm_granule_size(ctx->level), phys = data->phys; + u64 phys = stage2_map_walker_phys_addr(ctx, data); + u64 granule = kvm_granule_size(ctx->level); struct kvm_pgtable *pgt = data->mmu->pgt; struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; @@ -832,17 +897,17 @@ static int stage2_map_walker_try_leaf(const struct kvm_pgtable_visit_ctx *ctx, return -EAGAIN; /* Perform CMOs before installation of the guest stage-2 PTE */ - if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new)) + if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->dcache_clean_inval_poc && + stage2_pte_cacheable(pgt, new)) mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops), - granule); + granule); - if (mm_ops->icache_inval_pou && stage2_pte_executable(new)) + if (!kvm_pgtable_walk_skip_cmo(ctx) && mm_ops->icache_inval_pou && + stage2_pte_executable(new)) mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule); stage2_make_pte(ctx, new); - if (kvm_phys_is_valid(phys)) - data->phys += granule; return 0; } @@ -860,7 +925,7 @@ static int stage2_map_walk_table_pre(const struct kvm_pgtable_visit_ctx *ctx, if (ret) return ret; - mm_ops->free_removed_table(childp, ctx->level); + mm_ops->free_unlinked_table(childp, ctx->level); return 0; } @@ -905,7 +970,7 @@ static int stage2_map_walk_leaf(const struct kvm_pgtable_visit_ctx *ctx, * The TABLE_PRE callback runs for table entries on the way down, looking * for table entries which we could conceivably replace with a block entry * for this mapping. If it finds one it replaces the entry and calls - * kvm_pgtable_mm_ops::free_removed_table() to tear down the detached table. + * kvm_pgtable_mm_ops::free_unlinked_table() to tear down the detached table. * * Otherwise, the LEAF callback performs the mapping at the existing leaves * instead. @@ -1130,25 +1195,54 @@ kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr) return pte; } -kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr) +struct stage2_age_data { + bool mkold; + bool young; +}; + +static int stage2_age_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) { - kvm_pte_t pte = 0; - stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF, - &pte, NULL, 0); + kvm_pte_t new = ctx->old & ~KVM_PTE_LEAF_ATTR_LO_S2_AF; + struct stage2_age_data *data = ctx->arg; + + if (!kvm_pte_valid(ctx->old) || new == ctx->old) + return 0; + + data->young = true; + + /* + * stage2_age_walker() is always called while holding the MMU lock for + * write, so this will always succeed. Nonetheless, this deliberately + * follows the race detection pattern of the other stage-2 walkers in + * case the locking mechanics of the MMU notifiers is ever changed. + */ + if (data->mkold && !stage2_try_set_pte(ctx, new)) + return -EAGAIN; + /* * "But where's the TLBI?!", you scream. * "Over in the core code", I sigh. * * See the '->clear_flush_young()' callback on the KVM mmu notifier. */ - return pte; + return 0; } -bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr) +bool kvm_pgtable_stage2_test_clear_young(struct kvm_pgtable *pgt, u64 addr, + u64 size, bool mkold) { - kvm_pte_t pte = 0; - stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL, 0); - return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF; + struct stage2_age_data data = { + .mkold = mkold, + }; + struct kvm_pgtable_walker walker = { + .cb = stage2_age_walker, + .arg = &data, + .flags = KVM_PGTABLE_WALK_LEAF, + }; + + WARN_ON(kvm_pgtable_walk(pgt, addr, size, &walker)); + return data.young; } int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, @@ -1174,7 +1268,7 @@ int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr, KVM_PGTABLE_WALK_HANDLE_FAULT | KVM_PGTABLE_WALK_SHARED); if (!ret) - kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level); + kvm_call_hyp(__kvm_tlb_flush_vmid_ipa_nsh, pgt->mmu, addr, level); return ret; } @@ -1207,6 +1301,162 @@ int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size) return kvm_pgtable_walk(pgt, addr, size, &walker); } +kvm_pte_t *kvm_pgtable_stage2_create_unlinked(struct kvm_pgtable *pgt, + u64 phys, u32 level, + enum kvm_pgtable_prot prot, + void *mc, bool force_pte) +{ + struct stage2_map_data map_data = { + .phys = phys, + .mmu = pgt->mmu, + .memcache = mc, + .force_pte = force_pte, + }; + struct kvm_pgtable_walker walker = { + .cb = stage2_map_walker, + .flags = KVM_PGTABLE_WALK_LEAF | + KVM_PGTABLE_WALK_SKIP_BBM_TLBI | + KVM_PGTABLE_WALK_SKIP_CMO, + .arg = &map_data, + }; + /* + * The input address (.addr) is irrelevant for walking an + * unlinked table. Construct an ambiguous IA range to map + * kvm_granule_size(level) worth of memory. + */ + struct kvm_pgtable_walk_data data = { + .walker = &walker, + .addr = 0, + .end = kvm_granule_size(level), + }; + struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops; + kvm_pte_t *pgtable; + int ret; + + if (!IS_ALIGNED(phys, kvm_granule_size(level))) + return ERR_PTR(-EINVAL); + + ret = stage2_set_prot_attr(pgt, prot, &map_data.attr); + if (ret) + return ERR_PTR(ret); + + pgtable = mm_ops->zalloc_page(mc); + if (!pgtable) + return ERR_PTR(-ENOMEM); + + ret = __kvm_pgtable_walk(&data, mm_ops, (kvm_pteref_t)pgtable, + level + 1); + if (ret) { + kvm_pgtable_stage2_free_unlinked(mm_ops, pgtable, level); + mm_ops->put_page(pgtable); + return ERR_PTR(ret); + } + + return pgtable; +} + +/* + * Get the number of page-tables needed to replace a block with a + * fully populated tree up to the PTE entries. Note that @level is + * interpreted as in "level @level entry". + */ +static int stage2_block_get_nr_page_tables(u32 level) +{ + switch (level) { + case 1: + return PTRS_PER_PTE + 1; + case 2: + return 1; + case 3: + return 0; + default: + WARN_ON_ONCE(level < KVM_PGTABLE_MIN_BLOCK_LEVEL || + level >= KVM_PGTABLE_MAX_LEVELS); + return -EINVAL; + }; +} + +static int stage2_split_walker(const struct kvm_pgtable_visit_ctx *ctx, + enum kvm_pgtable_walk_flags visit) +{ + struct kvm_pgtable_mm_ops *mm_ops = ctx->mm_ops; + struct kvm_mmu_memory_cache *mc = ctx->arg; + struct kvm_s2_mmu *mmu; + kvm_pte_t pte = ctx->old, new, *childp; + enum kvm_pgtable_prot prot; + u32 level = ctx->level; + bool force_pte; + int nr_pages; + u64 phys; + + /* No huge-pages exist at the last level */ + if (level == KVM_PGTABLE_MAX_LEVELS - 1) + return 0; + + /* We only split valid block mappings */ + if (!kvm_pte_valid(pte)) + return 0; + + nr_pages = stage2_block_get_nr_page_tables(level); + if (nr_pages < 0) + return nr_pages; + + if (mc->nobjs >= nr_pages) { + /* Build a tree mapped down to the PTE granularity. */ + force_pte = true; + } else { + /* + * Don't force PTEs, so create_unlinked() below does + * not populate the tree up to the PTE level. The + * consequence is that the call will require a single + * page of level 2 entries at level 1, or a single + * page of PTEs at level 2. If we are at level 1, the + * PTEs will be created recursively. + */ + force_pte = false; + nr_pages = 1; + } + + if (mc->nobjs < nr_pages) + return -ENOMEM; + + mmu = container_of(mc, struct kvm_s2_mmu, split_page_cache); + phys = kvm_pte_to_phys(pte); + prot = kvm_pgtable_stage2_pte_prot(pte); + + childp = kvm_pgtable_stage2_create_unlinked(mmu->pgt, phys, + level, prot, mc, force_pte); + if (IS_ERR(childp)) + return PTR_ERR(childp); + + if (!stage2_try_break_pte(ctx, mmu)) { + kvm_pgtable_stage2_free_unlinked(mm_ops, childp, level); + mm_ops->put_page(childp); + return -EAGAIN; + } + + /* + * Note, the contents of the page table are guaranteed to be made + * visible before the new PTE is assigned because stage2_make_pte() + * writes the PTE using smp_store_release(). + */ + new = kvm_init_table_pte(childp, mm_ops); + stage2_make_pte(ctx, new); + dsb(ishst); + return 0; +} + +int kvm_pgtable_stage2_split(struct kvm_pgtable *pgt, u64 addr, u64 size, + struct kvm_mmu_memory_cache *mc) +{ + struct kvm_pgtable_walker walker = { + .cb = stage2_split_walker, + .flags = KVM_PGTABLE_WALK_LEAF, + .arg = mc, + }; + + return kvm_pgtable_walk(pgt, addr, size, &walker); +} int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu, struct kvm_pgtable_mm_ops *mm_ops, @@ -1276,7 +1526,7 @@ void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt) pgt->pgd = NULL; } -void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level) +void kvm_pgtable_stage2_free_unlinked(struct kvm_pgtable_mm_ops *mm_ops, void *pgtable, u32 level) { kvm_pteref_t ptep = (kvm_pteref_t)pgtable; struct kvm_pgtable_walker walker = { @@ -1297,4 +1547,7 @@ void kvm_pgtable_stage2_free_removed(struct kvm_pgtable_mm_ops *mm_ops, void *pg }; WARN_ON(__kvm_pgtable_walk(&data, mm_ops, ptep, level + 1)); + + WARN_ON(mm_ops->page_count(pgtable) != 1); + mm_ops->put_page(pgtable); } |