diff options
Diffstat (limited to 'Documentation/sound/kernel-api')
| -rw-r--r-- | Documentation/sound/kernel-api/alsa-driver-api.rst | 134 | ||||
| -rw-r--r-- | Documentation/sound/kernel-api/index.rst | 8 | ||||
| -rw-r--r-- | Documentation/sound/kernel-api/writing-an-alsa-driver.rst | 4219 | 
3 files changed, 4361 insertions, 0 deletions
diff --git a/Documentation/sound/kernel-api/alsa-driver-api.rst b/Documentation/sound/kernel-api/alsa-driver-api.rst new file mode 100644 index 000000000000..14cd138989e3 --- /dev/null +++ b/Documentation/sound/kernel-api/alsa-driver-api.rst @@ -0,0 +1,134 @@ +=================== +The ALSA Driver API +=================== + +Management of Cards and Devices +=============================== + +Card Management +--------------- +.. kernel-doc:: sound/core/init.c + +Device Components +----------------- +.. kernel-doc:: sound/core/device.c + +Module requests and Device File Entries +--------------------------------------- +.. kernel-doc:: sound/core/sound.c + +Memory Management Helpers +------------------------- +.. kernel-doc:: sound/core/memory.c +.. kernel-doc:: sound/core/memalloc.c + + +PCM API +======= + +PCM Core +-------- +.. kernel-doc:: sound/core/pcm.c +.. kernel-doc:: sound/core/pcm_lib.c +.. kernel-doc:: sound/core/pcm_native.c +.. kernel-doc:: include/sound/pcm.h + +PCM Format Helpers +------------------ +.. kernel-doc:: sound/core/pcm_misc.c + +PCM Memory Management +--------------------- +.. kernel-doc:: sound/core/pcm_memory.c + +PCM DMA Engine API +------------------ +.. kernel-doc:: sound/core/pcm_dmaengine.c +.. kernel-doc:: include/sound/dmaengine_pcm.h + +Control/Mixer API +================= + +General Control Interface +------------------------- +.. kernel-doc:: sound/core/control.c + +AC97 Codec API +-------------- +.. kernel-doc:: sound/pci/ac97/ac97_codec.c +.. kernel-doc:: sound/pci/ac97/ac97_pcm.c + +Virtual Master Control API +-------------------------- +.. kernel-doc:: sound/core/vmaster.c +.. kernel-doc:: include/sound/control.h + +MIDI API +======== + +Raw MIDI API +------------ +.. kernel-doc:: sound/core/rawmidi.c + +MPU401-UART API +--------------- +.. kernel-doc:: sound/drivers/mpu401/mpu401_uart.c + +Proc Info API +============= + +Proc Info Interface +------------------- +.. kernel-doc:: sound/core/info.c + +Compress Offload +================ + +Compress Offload API +-------------------- +.. kernel-doc:: sound/core/compress_offload.c +.. kernel-doc:: include/uapi/sound/compress_offload.h +.. kernel-doc:: include/uapi/sound/compress_params.h +.. kernel-doc:: include/sound/compress_driver.h + +ASoC +==== + +ASoC Core API +------------- +.. kernel-doc:: include/sound/soc.h +.. kernel-doc:: sound/soc/soc-core.c +.. kernel-doc:: sound/soc/soc-devres.c +.. kernel-doc:: sound/soc/soc-io.c +.. kernel-doc:: sound/soc/soc-pcm.c +.. kernel-doc:: sound/soc/soc-ops.c +.. kernel-doc:: sound/soc/soc-compress.c + +ASoC DAPM API +------------- +.. kernel-doc:: sound/soc/soc-dapm.c + +ASoC DMA Engine API +------------------- +.. kernel-doc:: sound/soc/soc-generic-dmaengine-pcm.c + +Miscellaneous Functions +======================= + +Hardware-Dependent Devices API +------------------------------ +.. kernel-doc:: sound/core/hwdep.c + +Jack Abstraction Layer API +-------------------------- +.. kernel-doc:: include/sound/jack.h +.. kernel-doc:: sound/core/jack.c +.. kernel-doc:: sound/soc/soc-jack.c + +ISA DMA Helpers +--------------- +.. kernel-doc:: sound/core/isadma.c + +Other Helper Macros +------------------- +.. kernel-doc:: include/sound/core.h diff --git a/Documentation/sound/kernel-api/index.rst b/Documentation/sound/kernel-api/index.rst new file mode 100644 index 000000000000..d0e6df35b4b4 --- /dev/null +++ b/Documentation/sound/kernel-api/index.rst @@ -0,0 +1,8 @@ +ALSA Kernel API Documentation +============================= + +.. toctree:: +   :maxdepth: 2 + +   alsa-driver-api +   writing-an-alsa-driver diff --git a/Documentation/sound/kernel-api/writing-an-alsa-driver.rst b/Documentation/sound/kernel-api/writing-an-alsa-driver.rst new file mode 100644 index 000000000000..95c5443eff38 --- /dev/null +++ b/Documentation/sound/kernel-api/writing-an-alsa-driver.rst @@ -0,0 +1,4219 @@ +====================== +Writing an ALSA Driver +====================== + +:Author: Takashi Iwai <[email protected]> +:Date:   Oct 15, 2007 +:Edition: 0.3.7 + +Preface +======= + +This document describes how to write an `ALSA (Advanced Linux Sound +Architecture) <http://www.alsa-project.org/>`__ driver. The document +focuses mainly on PCI soundcards. In the case of other device types, the +API might be different, too. However, at least the ALSA kernel API is +consistent, and therefore it would be still a bit help for writing them. + +This document targets people who already have enough C language skills +and have basic linux kernel programming knowledge. This document doesn't +explain the general topic of linux kernel coding and doesn't cover +low-level driver implementation details. It only describes the standard +way to write a PCI sound driver on ALSA. + +If you are already familiar with the older ALSA ver.0.5.x API, you can +check the drivers such as ``sound/pci/es1938.c`` or +``sound/pci/maestro3.c`` which have also almost the same code-base in +the ALSA 0.5.x tree, so you can compare the differences. + +This document is still a draft version. Any feedback and corrections, +please!! + +File Tree Structure +=================== + +General +------- + +The ALSA drivers are provided in two ways. + +One is the trees provided as a tarball or via cvs from the ALSA's ftp +site, and another is the 2.6 (or later) Linux kernel tree. To +synchronize both, the ALSA driver tree is split into two different +trees: alsa-kernel and alsa-driver. The former contains purely the +source code for the Linux 2.6 (or later) tree. This tree is designed +only for compilation on 2.6 or later environment. The latter, +alsa-driver, contains many subtle files for compiling ALSA drivers +outside of the Linux kernel tree, wrapper functions for older 2.2 and +2.4 kernels, to adapt the latest kernel API, and additional drivers +which are still in development or in tests. The drivers in alsa-driver +tree will be moved to alsa-kernel (and eventually to the 2.6 kernel +tree) when they are finished and confirmed to work fine. + +The file tree structure of ALSA driver is depicted below. Both +alsa-kernel and alsa-driver have almost the same file structure, except +for “core” directory. It's named as “acore” in alsa-driver tree. + +:: + +            sound +                    /core +                            /oss +                            /seq +                                    /oss +                                    /instr +                    /ioctl32 +                    /include +                    /drivers +                            /mpu401 +                            /opl3 +                    /i2c +                            /l3 +                    /synth +                            /emux +                    /pci +                            /(cards) +                    /isa +                            /(cards) +                    /arm +                    /ppc +                    /sparc +                    /usb +                    /pcmcia /(cards) +                    /oss + + +core directory +-------------- + +This directory contains the middle layer which is the heart of ALSA +drivers. In this directory, the native ALSA modules are stored. The +sub-directories contain different modules and are dependent upon the +kernel config. + +core/oss +~~~~~~~~ + +The codes for PCM and mixer OSS emulation modules are stored in this +directory. The rawmidi OSS emulation is included in the ALSA rawmidi +code since it's quite small. The sequencer code is stored in +``core/seq/oss`` directory (see `below <#core-seq-oss>`__). + +core/ioctl32 +~~~~~~~~~~~~ + +This directory contains the 32bit-ioctl wrappers for 64bit architectures +such like x86-64, ppc64 and sparc64. For 32bit and alpha architectures, +these are not compiled. + +core/seq +~~~~~~~~ + +This directory and its sub-directories are for the ALSA sequencer. This +directory contains the sequencer core and primary sequencer modules such +like snd-seq-midi, snd-seq-virmidi, etc. They are compiled only when +``CONFIG_SND_SEQUENCER`` is set in the kernel config. + +core/seq/oss +~~~~~~~~~~~~ + +This contains the OSS sequencer emulation codes. + +core/seq/instr +~~~~~~~~~~~~~~ + +This directory contains the modules for the sequencer instrument layer. + +include directory +----------------- + +This is the place for the public header files of ALSA drivers, which are +to be exported to user-space, or included by several files at different +directories. Basically, the private header files should not be placed in +this directory, but you may still find files there, due to historical +reasons :) + +drivers directory +----------------- + +This directory contains code shared among different drivers on different +architectures. They are hence supposed not to be architecture-specific. +For example, the dummy pcm driver and the serial MIDI driver are found +in this directory. In the sub-directories, there is code for components +which are independent from bus and cpu architectures. + +drivers/mpu401 +~~~~~~~~~~~~~~ + +The MPU401 and MPU401-UART modules are stored here. + +drivers/opl3 and opl4 +~~~~~~~~~~~~~~~~~~~~~ + +The OPL3 and OPL4 FM-synth stuff is found here. + +i2c directory +------------- + +This contains the ALSA i2c components. + +Although there is a standard i2c layer on Linux, ALSA has its own i2c +code for some cards, because the soundcard needs only a simple operation +and the standard i2c API is too complicated for such a purpose. + +i2c/l3 +~~~~~~ + +This is a sub-directory for ARM L3 i2c. + +synth directory +--------------- + +This contains the synth middle-level modules. + +So far, there is only Emu8000/Emu10k1 synth driver under the +``synth/emux`` sub-directory. + +pci directory +------------- + +This directory and its sub-directories hold the top-level card modules +for PCI soundcards and the code specific to the PCI BUS. + +The drivers compiled from a single file are stored directly in the pci +directory, while the drivers with several source files are stored on +their own sub-directory (e.g. emu10k1, ice1712). + +isa directory +------------- + +This directory and its sub-directories hold the top-level card modules +for ISA soundcards. + +arm, ppc, and sparc directories +------------------------------- + +They are used for top-level card modules which are specific to one of +these architectures. + +usb directory +------------- + +This directory contains the USB-audio driver. In the latest version, the +USB MIDI driver is integrated in the usb-audio driver. + +pcmcia directory +---------------- + +The PCMCIA, especially PCCard drivers will go here. CardBus drivers will +be in the pci directory, because their API is identical to that of +standard PCI cards. + +oss directory +------------- + +The OSS/Lite source files are stored here in Linux 2.6 (or later) tree. +In the ALSA driver tarball, this directory is empty, of course :) + +Basic Flow for PCI Drivers +========================== + +Outline +------- + +The minimum flow for PCI soundcards is as follows: + +-  define the PCI ID table (see the section `PCI Entries`_). + +-  create ``probe`` callback. + +-  create ``remove`` callback. + +-  create a :c:type:`struct pci_driver <pci_driver>` structure +   containing the three pointers above. + +-  create an ``init`` function just calling the +   :c:func:`pci_register_driver()` to register the pci_driver +   table defined above. + +-  create an ``exit`` function to call the +   :c:func:`pci_unregister_driver()` function. + +Full Code Example +----------------- + +The code example is shown below. Some parts are kept unimplemented at +this moment but will be filled in the next sections. The numbers in the +comment lines of the :c:func:`snd_mychip_probe()` function refer +to details explained in the following section. + +:: + +      #include <linux/init.h> +      #include <linux/pci.h> +      #include <linux/slab.h> +      #include <sound/core.h> +      #include <sound/initval.h> + +      /* module parameters (see "Module Parameters") */ +      /* SNDRV_CARDS: maximum number of cards supported by this module */ +      static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; +      static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; +      static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; + +      /* definition of the chip-specific record */ +      struct mychip { +              struct snd_card *card; +              /* the rest of the implementation will be in section +               * "PCI Resource Management" +               */ +      }; + +      /* chip-specific destructor +       * (see "PCI Resource Management") +       */ +      static int snd_mychip_free(struct mychip *chip) +      { +              .... /* will be implemented later... */ +      } + +      /* component-destructor +       * (see "Management of Cards and Components") +       */ +      static int snd_mychip_dev_free(struct snd_device *device) +      { +              return snd_mychip_free(device->device_data); +      } + +      /* chip-specific constructor +       * (see "Management of Cards and Components") +       */ +      static int snd_mychip_create(struct snd_card *card, +                                   struct pci_dev *pci, +                                   struct mychip **rchip) +      { +              struct mychip *chip; +              int err; +              static struct snd_device_ops ops = { +                     .dev_free = snd_mychip_dev_free, +              }; + +              *rchip = NULL; + +              /* check PCI availability here +               * (see "PCI Resource Management") +               */ +              .... + +              /* allocate a chip-specific data with zero filled */ +              chip = kzalloc(sizeof(*chip), GFP_KERNEL); +              if (chip == NULL) +                      return -ENOMEM; + +              chip->card = card; + +              /* rest of initialization here; will be implemented +               * later, see "PCI Resource Management" +               */ +              .... + +              err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); +              if (err < 0) { +                      snd_mychip_free(chip); +                      return err; +              } + +              *rchip = chip; +              return 0; +      } + +      /* constructor -- see "Driver Constructor" sub-section */ +      static int snd_mychip_probe(struct pci_dev *pci, +                                  const struct pci_device_id *pci_id) +      { +              static int dev; +              struct snd_card *card; +              struct mychip *chip; +              int err; + +              /* (1) */ +              if (dev >= SNDRV_CARDS) +                      return -ENODEV; +              if (!enable[dev]) { +                      dev++; +                      return -ENOENT; +              } + +              /* (2) */ +              err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, +                                 0, &card); +              if (err < 0) +                      return err; + +              /* (3) */ +              err = snd_mychip_create(card, pci, &chip); +              if (err < 0) { +                      snd_card_free(card); +                      return err; +              } + +              /* (4) */ +              strcpy(card->driver, "My Chip"); +              strcpy(card->shortname, "My Own Chip 123"); +              sprintf(card->longname, "%s at 0x%lx irq %i", +                      card->shortname, chip->ioport, chip->irq); + +              /* (5) */ +              .... /* implemented later */ + +              /* (6) */ +              err = snd_card_register(card); +              if (err < 0) { +                      snd_card_free(card); +                      return err; +              } + +              /* (7) */ +              pci_set_drvdata(pci, card); +              dev++; +              return 0; +      } + +      /* destructor -- see the "Destructor" sub-section */ +      static void snd_mychip_remove(struct pci_dev *pci) +      { +              snd_card_free(pci_get_drvdata(pci)); +              pci_set_drvdata(pci, NULL); +      } + + + +Driver Constructor +------------------ + +The real constructor of PCI drivers is the ``probe`` callback. The +``probe`` callback and other component-constructors which are called +from the ``probe`` callback cannot be used with the ``__init`` prefix +because any PCI device could be a hotplug device. + +In the ``probe`` callback, the following scheme is often used. + +1) Check and increment the device index. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + +  static int dev; +  .... +  if (dev >= SNDRV_CARDS) +          return -ENODEV; +  if (!enable[dev]) { +          dev++; +          return -ENOENT; +  } + + +where ``enable[dev]`` is the module option. + +Each time the ``probe`` callback is called, check the availability of +the device. If not available, simply increment the device index and +returns. dev will be incremented also later (`step 7 +<#set-the-pci-driver-data-and-return-zero>`__). + +2) Create a card instance +~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + +  struct snd_card *card; +  int err; +  .... +  err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, +                     0, &card); + + +The details will be explained in the section `Management of Cards and +Components`_. + +3) Create a main component +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In this part, the PCI resources are allocated. + +:: + +  struct mychip *chip; +  .... +  err = snd_mychip_create(card, pci, &chip); +  if (err < 0) { +          snd_card_free(card); +          return err; +  } + +The details will be explained in the section `PCI Resource +Management`_. + +4) Set the driver ID and name strings. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + +  strcpy(card->driver, "My Chip"); +  strcpy(card->shortname, "My Own Chip 123"); +  sprintf(card->longname, "%s at 0x%lx irq %i", +          card->shortname, chip->ioport, chip->irq); + +The driver field holds the minimal ID string of the chip. This is used +by alsa-lib's configurator, so keep it simple but unique. Even the +same driver can have different driver IDs to distinguish the +functionality of each chip type. + +The shortname field is a string shown as more verbose name. The longname +field contains the information shown in ``/proc/asound/cards``. + +5) Create other components, such as mixer, MIDI, etc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Here you define the basic components such as `PCM <#PCM-Interface>`__, +mixer (e.g. `AC97 <#API-for-AC97-Codec>`__), MIDI (e.g. +`MPU-401 <#MIDI-MPU401-UART-Interface>`__), and other interfaces. +Also, if you want a `proc file <#Proc-Interface>`__, define it here, +too. + +6) Register the card instance. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + +  err = snd_card_register(card); +  if (err < 0) { +          snd_card_free(card); +          return err; +  } + +Will be explained in the section `Management of Cards and +Components`_, too. + +7) Set the PCI driver data and return zero. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + +  pci_set_drvdata(pci, card); +  dev++; +  return 0; + +In the above, the card record is stored. This pointer is used in the +remove callback and power-management callbacks, too. + +Destructor +---------- + +The destructor, remove callback, simply releases the card instance. Then +the ALSA middle layer will release all the attached components +automatically. + +It would be typically like the following: + +:: + +  static void snd_mychip_remove(struct pci_dev *pci) +  { +          snd_card_free(pci_get_drvdata(pci)); +          pci_set_drvdata(pci, NULL); +  } + + +The above code assumes that the card pointer is set to the PCI driver +data. + +Header Files +------------ + +For the above example, at least the following include files are +necessary. + +:: + +  #include <linux/init.h> +  #include <linux/pci.h> +  #include <linux/slab.h> +  #include <sound/core.h> +  #include <sound/initval.h> + +where the last one is necessary only when module options are defined +in the source file. If the code is split into several files, the files +without module options don't need them. + +In addition to these headers, you'll need ``<linux/interrupt.h>`` for +interrupt handling, and ``<asm/io.h>`` for I/O access. If you use the +:c:func:`mdelay()` or :c:func:`udelay()` functions, you'll need +to include ``<linux/delay.h>`` too. + +The ALSA interfaces like the PCM and control APIs are defined in other +``<sound/xxx.h>`` header files. They have to be included after +``<sound/core.h>``. + +Management of Cards and Components +================================== + +Card Instance +------------- + +For each soundcard, a “card” record must be allocated. + +A card record is the headquarters of the soundcard. It manages the whole +list of devices (components) on the soundcard, such as PCM, mixers, +MIDI, synthesizer, and so on. Also, the card record holds the ID and the +name strings of the card, manages the root of proc files, and controls +the power-management states and hotplug disconnections. The component +list on the card record is used to manage the correct release of +resources at destruction. + +As mentioned above, to create a card instance, call +:c:func:`snd_card_new()`. + +:: + +  struct snd_card *card; +  int err; +  err = snd_card_new(&pci->dev, index, id, module, extra_size, &card); + + +The function takes six arguments: the parent device pointer, the +card-index number, the id string, the module pointer (usually +``THIS_MODULE``), the size of extra-data space, and the pointer to +return the card instance. The extra_size argument is used to allocate +card->private_data for the chip-specific data. Note that these data are +allocated by :c:func:`snd_card_new()`. + +The first argument, the pointer of struct :c:type:`struct device +<device>`, specifies the parent device. For PCI devices, typically +``&pci->`` is passed there. + +Components +---------- + +After the card is created, you can attach the components (devices) to +the card instance. In an ALSA driver, a component is represented as a +:c:type:`struct snd_device <snd_device>` object. A component +can be a PCM instance, a control interface, a raw MIDI interface, etc. +Each such instance has one component entry. + +A component can be created via :c:func:`snd_device_new()` +function. + +:: + +  snd_device_new(card, SNDRV_DEV_XXX, chip, &ops); + +This takes the card pointer, the device-level (``SNDRV_DEV_XXX``), the +data pointer, and the callback pointers (``&ops``). The device-level +defines the type of components and the order of registration and +de-registration. For most components, the device-level is already +defined. For a user-defined component, you can use +``SNDRV_DEV_LOWLEVEL``. + +This function itself doesn't allocate the data space. The data must be +allocated manually beforehand, and its pointer is passed as the +argument. This pointer (``chip`` in the above example) is used as the +identifier for the instance. + +Each pre-defined ALSA component such as ac97 and pcm calls +:c:func:`snd_device_new()` inside its constructor. The destructor +for each component is defined in the callback pointers. Hence, you don't +need to take care of calling a destructor for such a component. + +If you wish to create your own component, you need to set the destructor +function to the dev_free callback in the ``ops``, so that it can be +released automatically via :c:func:`snd_card_free()`. The next +example will show an implementation of chip-specific data. + +Chip-Specific Data +------------------ + +Chip-specific information, e.g. the I/O port address, its resource +pointer, or the irq number, is stored in the chip-specific record. + +:: + +  struct mychip { +          .... +  }; + + +In general, there are two ways of allocating the chip record. + +1. Allocating via :c:func:`snd_card_new()`. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +As mentioned above, you can pass the extra-data-length to the 5th +argument of :c:func:`snd_card_new()`, i.e. + +:: + +  err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, +                     sizeof(struct mychip), &card); + +:c:type:`struct mychip <mychip>` is the type of the chip record. + +In return, the allocated record can be accessed as + +:: + +  struct mychip *chip = card->private_data; + +With this method, you don't have to allocate twice. The record is +released together with the card instance. + +2. Allocating an extra device. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +After allocating a card instance via :c:func:`snd_card_new()` +(with ``0`` on the 4th arg), call :c:func:`kzalloc()`. + +:: + +  struct snd_card *card; +  struct mychip *chip; +  err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, +                     0, &card); +  ..... +  chip = kzalloc(sizeof(*chip), GFP_KERNEL); + +The chip record should have the field to hold the card pointer at least, + +:: + +  struct mychip { +          struct snd_card *card; +          .... +  }; + + +Then, set the card pointer in the returned chip instance. + +:: + +  chip->card = card; + +Next, initialize the fields, and register this chip record as a +low-level device with a specified ``ops``, + +:: + +  static struct snd_device_ops ops = { +          .dev_free =        snd_mychip_dev_free, +  }; +  .... +  snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); + +:c:func:`snd_mychip_dev_free()` is the device-destructor +function, which will call the real destructor. + +:: + +  static int snd_mychip_dev_free(struct snd_device *device) +  { +          return snd_mychip_free(device->device_data); +  } + +where :c:func:`snd_mychip_free()` is the real destructor. + +Registration and Release +------------------------ + +After all components are assigned, register the card instance by calling +:c:func:`snd_card_register()`. Access to the device files is +enabled at this point. That is, before +:c:func:`snd_card_register()` is called, the components are safely +inaccessible from external side. If this call fails, exit the probe +function after releasing the card via :c:func:`snd_card_free()`. + +For releasing the card instance, you can call simply +:c:func:`snd_card_free()`. As mentioned earlier, all components +are released automatically by this call. + +For a device which allows hotplugging, you can use +:c:func:`snd_card_free_when_closed()`. This one will postpone +the destruction until all devices are closed. + +PCI Resource Management +======================= + +Full Code Example +----------------- + +In this section, we'll complete the chip-specific constructor, +destructor and PCI entries. Example code is shown first, below. + +:: + +      struct mychip { +              struct snd_card *card; +              struct pci_dev *pci; + +              unsigned long port; +              int irq; +      }; + +      static int snd_mychip_free(struct mychip *chip) +      { +              /* disable hardware here if any */ +              .... /* (not implemented in this document) */ + +              /* release the irq */ +              if (chip->irq >= 0) +                      free_irq(chip->irq, chip); +              /* release the I/O ports & memory */ +              pci_release_regions(chip->pci); +              /* disable the PCI entry */ +              pci_disable_device(chip->pci); +              /* release the data */ +              kfree(chip); +              return 0; +      } + +      /* chip-specific constructor */ +      static int snd_mychip_create(struct snd_card *card, +                                   struct pci_dev *pci, +                                   struct mychip **rchip) +      { +              struct mychip *chip; +              int err; +              static struct snd_device_ops ops = { +                     .dev_free = snd_mychip_dev_free, +              }; + +              *rchip = NULL; + +              /* initialize the PCI entry */ +              err = pci_enable_device(pci); +              if (err < 0) +                      return err; +              /* check PCI availability (28bit DMA) */ +              if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 || +                  pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) { +                      printk(KERN_ERR "error to set 28bit mask DMA\n"); +                      pci_disable_device(pci); +                      return -ENXIO; +              } + +              chip = kzalloc(sizeof(*chip), GFP_KERNEL); +              if (chip == NULL) { +                      pci_disable_device(pci); +                      return -ENOMEM; +              } + +              /* initialize the stuff */ +              chip->card = card; +              chip->pci = pci; +              chip->irq = -1; + +              /* (1) PCI resource allocation */ +              err = pci_request_regions(pci, "My Chip"); +              if (err < 0) { +                      kfree(chip); +                      pci_disable_device(pci); +                      return err; +              } +              chip->port = pci_resource_start(pci, 0); +              if (request_irq(pci->irq, snd_mychip_interrupt, +                              IRQF_SHARED, KBUILD_MODNAME, chip)) { +                      printk(KERN_ERR "cannot grab irq %d\n", pci->irq); +                      snd_mychip_free(chip); +                      return -EBUSY; +              } +              chip->irq = pci->irq; + +              /* (2) initialization of the chip hardware */ +              .... /*   (not implemented in this document) */ + +              err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); +              if (err < 0) { +                      snd_mychip_free(chip); +                      return err; +              } + +              *rchip = chip; +              return 0; +      } + +      /* PCI IDs */ +      static struct pci_device_id snd_mychip_ids[] = { +              { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, +                PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, +              .... +              { 0, } +      }; +      MODULE_DEVICE_TABLE(pci, snd_mychip_ids); + +      /* pci_driver definition */ +      static struct pci_driver driver = { +              .name = KBUILD_MODNAME, +              .id_table = snd_mychip_ids, +              .probe = snd_mychip_probe, +              .remove = snd_mychip_remove, +      }; + +      /* module initialization */ +      static int __init alsa_card_mychip_init(void) +      { +              return pci_register_driver(&driver); +      } + +      /* module clean up */ +      static void __exit alsa_card_mychip_exit(void) +      { +              pci_unregister_driver(&driver); +      } + +      module_init(alsa_card_mychip_init) +      module_exit(alsa_card_mychip_exit) + +      EXPORT_NO_SYMBOLS; /* for old kernels only */ + +Some Hafta's +------------ + +The allocation of PCI resources is done in the ``probe`` function, and +usually an extra :c:func:`xxx_create()` function is written for this +purpose. + +In the case of PCI devices, you first have to call the +:c:func:`pci_enable_device()` function before allocating +resources. Also, you need to set the proper PCI DMA mask to limit the +accessed I/O range. In some cases, you might need to call +:c:func:`pci_set_master()` function, too. + +Suppose the 28bit mask, and the code to be added would be like: + +:: + +  err = pci_enable_device(pci); +  if (err < 0) +          return err; +  if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 || +      pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) { +          printk(KERN_ERR "error to set 28bit mask DMA\n"); +          pci_disable_device(pci); +          return -ENXIO; +  } +   + +Resource Allocation +------------------- + +The allocation of I/O ports and irqs is done via standard kernel +functions. Unlike ALSA ver.0.5.x., there are no helpers for that. And +these resources must be released in the destructor function (see below). +Also, on ALSA 0.9.x, you don't need to allocate (pseudo-)DMA for PCI +like in ALSA 0.5.x. + +Now assume that the PCI device has an I/O port with 8 bytes and an +interrupt. Then :c:type:`struct mychip <mychip>` will have the +following fields: + +:: + +  struct mychip { +          struct snd_card *card; + +          unsigned long port; +          int irq; +  }; + + +For an I/O port (and also a memory region), you need to have the +resource pointer for the standard resource management. For an irq, you +have to keep only the irq number (integer). But you need to initialize +this number as -1 before actual allocation, since irq 0 is valid. The +port address and its resource pointer can be initialized as null by +:c:func:`kzalloc()` automatically, so you don't have to take care of +resetting them. + +The allocation of an I/O port is done like this: + +:: + +  err = pci_request_regions(pci, "My Chip"); +  if (err < 0) {  +          kfree(chip); +          pci_disable_device(pci); +          return err; +  } +  chip->port = pci_resource_start(pci, 0); + +It will reserve the I/O port region of 8 bytes of the given PCI device. +The returned value, ``chip->res_port``, is allocated via +:c:func:`kmalloc()` by :c:func:`request_region()`. The pointer +must be released via :c:func:`kfree()`, but there is a problem with +this. This issue will be explained later. + +The allocation of an interrupt source is done like this: + +:: + +  if (request_irq(pci->irq, snd_mychip_interrupt, +                  IRQF_SHARED, KBUILD_MODNAME, chip)) { +          printk(KERN_ERR "cannot grab irq %d\n", pci->irq); +          snd_mychip_free(chip); +          return -EBUSY; +  } +  chip->irq = pci->irq; + +where :c:func:`snd_mychip_interrupt()` is the interrupt handler +defined `later <#pcm-interface-interrupt-handler>`__. Note that +``chip->irq`` should be defined only when :c:func:`request_irq()` +succeeded. + +On the PCI bus, interrupts can be shared. Thus, ``IRQF_SHARED`` is used +as the interrupt flag of :c:func:`request_irq()`. + +The last argument of :c:func:`request_irq()` is the data pointer +passed to the interrupt handler. Usually, the chip-specific record is +used for that, but you can use what you like, too. + +I won't give details about the interrupt handler at this point, but at +least its appearance can be explained now. The interrupt handler looks +usually like the following: + +:: + +  static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) +  { +          struct mychip *chip = dev_id; +          .... +          return IRQ_HANDLED; +  } + + +Now let's write the corresponding destructor for the resources above. +The role of destructor is simple: disable the hardware (if already +activated) and release the resources. So far, we have no hardware part, +so the disabling code is not written here. + +To release the resources, the “check-and-release” method is a safer way. +For the interrupt, do like this: + +:: + +  if (chip->irq >= 0) +          free_irq(chip->irq, chip); + +Since the irq number can start from 0, you should initialize +``chip->irq`` with a negative value (e.g. -1), so that you can check +the validity of the irq number as above. + +When you requested I/O ports or memory regions via +:c:func:`pci_request_region()` or +:c:func:`pci_request_regions()` like in this example, release the +resource(s) using the corresponding function, +:c:func:`pci_release_region()` or +:c:func:`pci_release_regions()`. + +:: + +  pci_release_regions(chip->pci); + +When you requested manually via :c:func:`request_region()` or +:c:func:`request_mem_region()`, you can release it via +:c:func:`release_resource()`. Suppose that you keep the resource +pointer returned from :c:func:`request_region()` in +chip->res_port, the release procedure looks like: + +:: + +  release_and_free_resource(chip->res_port); + +Don't forget to call :c:func:`pci_disable_device()` before the +end. + +And finally, release the chip-specific record. + +:: + +  kfree(chip); + +We didn't implement the hardware disabling part in the above. If you +need to do this, please note that the destructor may be called even +before the initialization of the chip is completed. It would be better +to have a flag to skip hardware disabling if the hardware was not +initialized yet. + +When the chip-data is assigned to the card using +:c:func:`snd_device_new()` with ``SNDRV_DEV_LOWLELVEL`` , its +destructor is called at the last. That is, it is assured that all other +components like PCMs and controls have already been released. You don't +have to stop PCMs, etc. explicitly, but just call low-level hardware +stopping. + +The management of a memory-mapped region is almost as same as the +management of an I/O port. You'll need three fields like the +following: + +:: + +  struct mychip { +          .... +          unsigned long iobase_phys; +          void __iomem *iobase_virt; +  }; + +and the allocation would be like below: + +:: + +  if ((err = pci_request_regions(pci, "My Chip")) < 0) { +          kfree(chip); +          return err; +  } +  chip->iobase_phys = pci_resource_start(pci, 0); +  chip->iobase_virt = ioremap_nocache(chip->iobase_phys, +                                      pci_resource_len(pci, 0)); + +and the corresponding destructor would be: + +:: + +  static int snd_mychip_free(struct mychip *chip) +  { +          .... +          if (chip->iobase_virt) +                  iounmap(chip->iobase_virt); +          .... +          pci_release_regions(chip->pci); +          .... +  } + +PCI Entries +----------- + +So far, so good. Let's finish the missing PCI stuff. At first, we need a +:c:type:`struct pci_device_id <pci_device_id>` table for +this chipset. It's a table of PCI vendor/device ID number, and some +masks. + +For example, + +:: + +  static struct pci_device_id snd_mychip_ids[] = { +          { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, +            PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, +          .... +          { 0, } +  }; +  MODULE_DEVICE_TABLE(pci, snd_mychip_ids); + +The first and second fields of the :c:type:`struct pci_device_id +<pci_device_id>` structure are the vendor and device IDs. If you +have no reason to filter the matching devices, you can leave the +remaining fields as above. The last field of the :c:type:`struct +pci_device_id <pci_device_id>` struct contains private data +for this entry. You can specify any value here, for example, to define +specific operations for supported device IDs. Such an example is found +in the intel8x0 driver. + +The last entry of this list is the terminator. You must specify this +all-zero entry. + +Then, prepare the :c:type:`struct pci_driver <pci_driver>` +record: + +:: + +  static struct pci_driver driver = { +          .name = KBUILD_MODNAME, +          .id_table = snd_mychip_ids, +          .probe = snd_mychip_probe, +          .remove = snd_mychip_remove, +  }; + +The ``probe`` and ``remove`` functions have already been defined in +the previous sections. The ``name`` field is the name string of this +device. Note that you must not use a slash “/” in this string. + +And at last, the module entries: + +:: + +  static int __init alsa_card_mychip_init(void) +  { +          return pci_register_driver(&driver); +  } + +  static void __exit alsa_card_mychip_exit(void) +  { +          pci_unregister_driver(&driver); +  } + +  module_init(alsa_card_mychip_init) +  module_exit(alsa_card_mychip_exit) + +Note that these module entries are tagged with ``__init`` and ``__exit`` +prefixes. + +Oh, one thing was forgotten. If you have no exported symbols, you need +to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels). + +:: + +  EXPORT_NO_SYMBOLS; + +That's all! + +PCM Interface +============= + +General +------- + +The PCM middle layer of ALSA is quite powerful and it is only necessary +for each driver to implement the low-level functions to access its +hardware. + +For accessing to the PCM layer, you need to include ``<sound/pcm.h>`` +first. In addition, ``<sound/pcm_params.h>`` might be needed if you +access to some functions related with hw_param. + +Each card device can have up to four pcm instances. A pcm instance +corresponds to a pcm device file. The limitation of number of instances +comes only from the available bit size of the Linux's device numbers. +Once when 64bit device number is used, we'll have more pcm instances +available. + +A pcm instance consists of pcm playback and capture streams, and each +pcm stream consists of one or more pcm substreams. Some soundcards +support multiple playback functions. For example, emu10k1 has a PCM +playback of 32 stereo substreams. In this case, at each open, a free +substream is (usually) automatically chosen and opened. Meanwhile, when +only one substream exists and it was already opened, the successful open +will either block or error with ``EAGAIN`` according to the file open +mode. But you don't have to care about such details in your driver. The +PCM middle layer will take care of such work. + +Full Code Example +----------------- + +The example code below does not include any hardware access routines but +shows only the skeleton, how to build up the PCM interfaces. + +:: + +      #include <sound/pcm.h> +      .... + +      /* hardware definition */ +      static struct snd_pcm_hardware snd_mychip_playback_hw = { +              .info = (SNDRV_PCM_INFO_MMAP | +                       SNDRV_PCM_INFO_INTERLEAVED | +                       SNDRV_PCM_INFO_BLOCK_TRANSFER | +                       SNDRV_PCM_INFO_MMAP_VALID), +              .formats =          SNDRV_PCM_FMTBIT_S16_LE, +              .rates =            SNDRV_PCM_RATE_8000_48000, +              .rate_min =         8000, +              .rate_max =         48000, +              .channels_min =     2, +              .channels_max =     2, +              .buffer_bytes_max = 32768, +              .period_bytes_min = 4096, +              .period_bytes_max = 32768, +              .periods_min =      1, +              .periods_max =      1024, +      }; + +      /* hardware definition */ +      static struct snd_pcm_hardware snd_mychip_capture_hw = { +              .info = (SNDRV_PCM_INFO_MMAP | +                       SNDRV_PCM_INFO_INTERLEAVED | +                       SNDRV_PCM_INFO_BLOCK_TRANSFER | +                       SNDRV_PCM_INFO_MMAP_VALID), +              .formats =          SNDRV_PCM_FMTBIT_S16_LE, +              .rates =            SNDRV_PCM_RATE_8000_48000, +              .rate_min =         8000, +              .rate_max =         48000, +              .channels_min =     2, +              .channels_max =     2, +              .buffer_bytes_max = 32768, +              .period_bytes_min = 4096, +              .period_bytes_max = 32768, +              .periods_min =      1, +              .periods_max =      1024, +      }; + +      /* open callback */ +      static int snd_mychip_playback_open(struct snd_pcm_substream *substream) +      { +              struct mychip *chip = snd_pcm_substream_chip(substream); +              struct snd_pcm_runtime *runtime = substream->runtime; + +              runtime->hw = snd_mychip_playback_hw; +              /* more hardware-initialization will be done here */ +              .... +              return 0; +      } + +      /* close callback */ +      static int snd_mychip_playback_close(struct snd_pcm_substream *substream) +      { +              struct mychip *chip = snd_pcm_substream_chip(substream); +              /* the hardware-specific codes will be here */ +              .... +              return 0; + +      } + +      /* open callback */ +      static int snd_mychip_capture_open(struct snd_pcm_substream *substream) +      { +              struct mychip *chip = snd_pcm_substream_chip(substream); +              struct snd_pcm_runtime *runtime = substream->runtime; + +              runtime->hw = snd_mychip_capture_hw; +              /* more hardware-initialization will be done here */ +              .... +              return 0; +      } + +      /* close callback */ +      static int snd_mychip_capture_close(struct snd_pcm_substream *substream) +      { +              struct mychip *chip = snd_pcm_substream_chip(substream); +              /* the hardware-specific codes will be here */ +              .... +              return 0; + +      } + +      /* hw_params callback */ +      static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream, +                                   struct snd_pcm_hw_params *hw_params) +      { +              return snd_pcm_lib_malloc_pages(substream, +                                         params_buffer_bytes(hw_params)); +      } + +      /* hw_free callback */ +      static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream) +      { +              return snd_pcm_lib_free_pages(substream); +      } + +      /* prepare callback */ +      static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream) +      { +              struct mychip *chip = snd_pcm_substream_chip(substream); +              struct snd_pcm_runtime *runtime = substream->runtime; + +              /* set up the hardware with the current configuration +               * for example... +               */ +              mychip_set_sample_format(chip, runtime->format); +              mychip_set_sample_rate(chip, runtime->rate); +              mychip_set_channels(chip, runtime->channels); +              mychip_set_dma_setup(chip, runtime->dma_addr, +                                   chip->buffer_size, +                                   chip->period_size); +              return 0; +      } + +      /* trigger callback */ +      static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream, +                                        int cmd) +      { +              switch (cmd) { +              case SNDRV_PCM_TRIGGER_START: +                      /* do something to start the PCM engine */ +                      .... +                      break; +              case SNDRV_PCM_TRIGGER_STOP: +                      /* do something to stop the PCM engine */ +                      .... +                      break; +              default: +                      return -EINVAL; +              } +      } + +      /* pointer callback */ +      static snd_pcm_uframes_t +      snd_mychip_pcm_pointer(struct snd_pcm_substream *substream) +      { +              struct mychip *chip = snd_pcm_substream_chip(substream); +              unsigned int current_ptr; + +              /* get the current hardware pointer */ +              current_ptr = mychip_get_hw_pointer(chip); +              return current_ptr; +      } + +      /* operators */ +      static struct snd_pcm_ops snd_mychip_playback_ops = { +              .open =        snd_mychip_playback_open, +              .close =       snd_mychip_playback_close, +              .ioctl =       snd_pcm_lib_ioctl, +              .hw_params =   snd_mychip_pcm_hw_params, +              .hw_free =     snd_mychip_pcm_hw_free, +              .prepare =     snd_mychip_pcm_prepare, +              .trigger =     snd_mychip_pcm_trigger, +              .pointer =     snd_mychip_pcm_pointer, +      }; + +      /* operators */ +      static struct snd_pcm_ops snd_mychip_capture_ops = { +              .open =        snd_mychip_capture_open, +              .close =       snd_mychip_capture_close, +              .ioctl =       snd_pcm_lib_ioctl, +              .hw_params =   snd_mychip_pcm_hw_params, +              .hw_free =     snd_mychip_pcm_hw_free, +              .prepare =     snd_mychip_pcm_prepare, +              .trigger =     snd_mychip_pcm_trigger, +              .pointer =     snd_mychip_pcm_pointer, +      }; + +      /* +       *  definitions of capture are omitted here... +       */ + +      /* create a pcm device */ +      static int snd_mychip_new_pcm(struct mychip *chip) +      { +              struct snd_pcm *pcm; +              int err; + +              err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); +              if (err < 0) +                      return err; +              pcm->private_data = chip; +              strcpy(pcm->name, "My Chip"); +              chip->pcm = pcm; +              /* set operators */ +              snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, +                              &snd_mychip_playback_ops); +              snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, +                              &snd_mychip_capture_ops); +              /* pre-allocation of buffers */ +              /* NOTE: this may fail */ +              snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, +                                                    snd_dma_pci_data(chip->pci), +                                                    64*1024, 64*1024); +              return 0; +      } + + +PCM Constructor +--------------- + +A pcm instance is allocated by the :c:func:`snd_pcm_new()` +function. It would be better to create a constructor for pcm, namely, + +:: + +  static int snd_mychip_new_pcm(struct mychip *chip) +  { +          struct snd_pcm *pcm; +          int err; + +          err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); +          if (err < 0)  +                  return err; +          pcm->private_data = chip; +          strcpy(pcm->name, "My Chip"); +          chip->pcm = pcm; +	  .... +          return 0; +  } + +The :c:func:`snd_pcm_new()` function takes four arguments. The +first argument is the card pointer to which this pcm is assigned, and +the second is the ID string. + +The third argument (``index``, 0 in the above) is the index of this new +pcm. It begins from zero. If you create more than one pcm instances, +specify the different numbers in this argument. For example, ``index = +1`` for the second PCM device. + +The fourth and fifth arguments are the number of substreams for playback +and capture, respectively. Here 1 is used for both arguments. When no +playback or capture substreams are available, pass 0 to the +corresponding argument. + +If a chip supports multiple playbacks or captures, you can specify more +numbers, but they must be handled properly in open/close, etc. +callbacks. When you need to know which substream you are referring to, +then it can be obtained from :c:type:`struct snd_pcm_substream +<snd_pcm_substream>` data passed to each callback as follows: + +:: + +  struct snd_pcm_substream *substream; +  int index = substream->number; + + +After the pcm is created, you need to set operators for each pcm stream. + +:: + +  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, +                  &snd_mychip_playback_ops); +  snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, +                  &snd_mychip_capture_ops); + +The operators are defined typically like this: + +:: + +  static struct snd_pcm_ops snd_mychip_playback_ops = { +          .open =        snd_mychip_pcm_open, +          .close =       snd_mychip_pcm_close, +          .ioctl =       snd_pcm_lib_ioctl, +          .hw_params =   snd_mychip_pcm_hw_params, +          .hw_free =     snd_mychip_pcm_hw_free, +          .prepare =     snd_mychip_pcm_prepare, +          .trigger =     snd_mychip_pcm_trigger, +          .pointer =     snd_mychip_pcm_pointer, +  }; + +All the callbacks are described in the Operators_ subsection. + +After setting the operators, you probably will want to pre-allocate the +buffer. For the pre-allocation, simply call the following: + +:: + +  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, +                                        snd_dma_pci_data(chip->pci), +                                        64*1024, 64*1024); + +It will allocate a buffer up to 64kB as default. Buffer management +details will be described in the later section `Buffer and Memory +Management`_. + +Additionally, you can set some extra information for this pcm in +``pcm->info_flags``. The available values are defined as +``SNDRV_PCM_INFO_XXX`` in ``<sound/asound.h>``, which is used for the +hardware definition (described later). When your soundchip supports only +half-duplex, specify like this: + +:: + +  pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; + + +... And the Destructor? +----------------------- + +The destructor for a pcm instance is not always necessary. Since the pcm +device will be released by the middle layer code automatically, you +don't have to call the destructor explicitly. + +The destructor would be necessary if you created special records +internally and needed to release them. In such a case, set the +destructor function to ``pcm->private_free``: + +:: + +      static void mychip_pcm_free(struct snd_pcm *pcm) +      { +              struct mychip *chip = snd_pcm_chip(pcm); +              /* free your own data */ +              kfree(chip->my_private_pcm_data); +              /* do what you like else */ +              .... +      } + +      static int snd_mychip_new_pcm(struct mychip *chip) +      { +              struct snd_pcm *pcm; +              .... +              /* allocate your own data */ +              chip->my_private_pcm_data = kmalloc(...); +              /* set the destructor */ +              pcm->private_data = chip; +              pcm->private_free = mychip_pcm_free; +              .... +      } + + + +Runtime Pointer - The Chest of PCM Information +---------------------------------------------- + +When the PCM substream is opened, a PCM runtime instance is allocated +and assigned to the substream. This pointer is accessible via +``substream->runtime``. This runtime pointer holds most information you +need to control the PCM: the copy of hw_params and sw_params +configurations, the buffer pointers, mmap records, spinlocks, etc. + +The definition of runtime instance is found in ``<sound/pcm.h>``. Here +are the contents of this file: + +:: + +  struct _snd_pcm_runtime { +          /* -- Status -- */ +          struct snd_pcm_substream *trigger_master; +          snd_timestamp_t trigger_tstamp;	/* trigger timestamp */ +          int overrange; +          snd_pcm_uframes_t avail_max; +          snd_pcm_uframes_t hw_ptr_base;	/* Position at buffer restart */ +          snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/ +   +          /* -- HW params -- */ +          snd_pcm_access_t access;	/* access mode */ +          snd_pcm_format_t format;	/* SNDRV_PCM_FORMAT_* */ +          snd_pcm_subformat_t subformat;	/* subformat */ +          unsigned int rate;		/* rate in Hz */ +          unsigned int channels;		/* channels */ +          snd_pcm_uframes_t period_size;	/* period size */ +          unsigned int periods;		/* periods */ +          snd_pcm_uframes_t buffer_size;	/* buffer size */ +          unsigned int tick_time;		/* tick time */ +          snd_pcm_uframes_t min_align;	/* Min alignment for the format */ +          size_t byte_align; +          unsigned int frame_bits; +          unsigned int sample_bits; +          unsigned int info; +          unsigned int rate_num; +          unsigned int rate_den; +   +          /* -- SW params -- */ +          struct timespec tstamp_mode;	/* mmap timestamp is updated */ +          unsigned int period_step; +          unsigned int sleep_min;		/* min ticks to sleep */ +          snd_pcm_uframes_t start_threshold; +          snd_pcm_uframes_t stop_threshold; +          snd_pcm_uframes_t silence_threshold; /* Silence filling happens when +                                                  noise is nearest than this */ +          snd_pcm_uframes_t silence_size;	/* Silence filling size */ +          snd_pcm_uframes_t boundary;	/* pointers wrap point */ +   +          snd_pcm_uframes_t silenced_start; +          snd_pcm_uframes_t silenced_size; +   +          snd_pcm_sync_id_t sync;		/* hardware synchronization ID */ +   +          /* -- mmap -- */ +          volatile struct snd_pcm_mmap_status *status; +          volatile struct snd_pcm_mmap_control *control; +          atomic_t mmap_count; +   +          /* -- locking / scheduling -- */ +          spinlock_t lock; +          wait_queue_head_t sleep; +          struct timer_list tick_timer; +          struct fasync_struct *fasync; + +          /* -- private section -- */ +          void *private_data; +          void (*private_free)(struct snd_pcm_runtime *runtime); +   +          /* -- hardware description -- */ +          struct snd_pcm_hardware hw; +          struct snd_pcm_hw_constraints hw_constraints; +   +          /* -- timer -- */ +          unsigned int timer_resolution;	/* timer resolution */ +   +          /* -- DMA -- */            +          unsigned char *dma_area;	/* DMA area */ +          dma_addr_t dma_addr;		/* physical bus address (not accessible from main CPU) */ +          size_t dma_bytes;		/* size of DMA area */ +   +          struct snd_dma_buffer *dma_buffer_p;	/* allocated buffer */ +   +  #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) +          /* -- OSS things -- */ +          struct snd_pcm_oss_runtime oss; +  #endif +  }; + + +For the operators (callbacks) of each sound driver, most of these +records are supposed to be read-only. Only the PCM middle-layer changes +/ updates them. The exceptions are the hardware description (hw) DMA +buffer information and the private data. Besides, if you use the +standard buffer allocation method via +:c:func:`snd_pcm_lib_malloc_pages()`, you don't need to set the +DMA buffer information by yourself. + +In the sections below, important records are explained. + +Hardware Description +~~~~~~~~~~~~~~~~~~~~ + +The hardware descriptor (:c:type:`struct snd_pcm_hardware +<snd_pcm_hardware>`) contains the definitions of the fundamental +hardware configuration. Above all, you'll need to define this in the +`PCM open callback`_. Note that the runtime instance holds the copy of +the descriptor, not the pointer to the existing descriptor. That is, +in the open callback, you can modify the copied descriptor +(``runtime->hw``) as you need. For example, if the maximum number of +channels is 1 only on some chip models, you can still use the same +hardware descriptor and change the channels_max later: + +:: + +          struct snd_pcm_runtime *runtime = substream->runtime; +          ... +          runtime->hw = snd_mychip_playback_hw; /* common definition */ +          if (chip->model == VERY_OLD_ONE) +                  runtime->hw.channels_max = 1; + +Typically, you'll have a hardware descriptor as below: + +:: + +  static struct snd_pcm_hardware snd_mychip_playback_hw = { +          .info = (SNDRV_PCM_INFO_MMAP | +                   SNDRV_PCM_INFO_INTERLEAVED | +                   SNDRV_PCM_INFO_BLOCK_TRANSFER | +                   SNDRV_PCM_INFO_MMAP_VALID), +          .formats =          SNDRV_PCM_FMTBIT_S16_LE, +          .rates =            SNDRV_PCM_RATE_8000_48000, +          .rate_min =         8000, +          .rate_max =         48000, +          .channels_min =     2, +          .channels_max =     2, +          .buffer_bytes_max = 32768, +          .period_bytes_min = 4096, +          .period_bytes_max = 32768, +          .periods_min =      1, +          .periods_max =      1024, +  }; + +-  The ``info`` field contains the type and capabilities of this +   pcm. The bit flags are defined in ``<sound/asound.h>`` as +   ``SNDRV_PCM_INFO_XXX``. Here, at least, you have to specify whether +   the mmap is supported and which interleaved format is +   supported. When the hardware supports mmap, add the +   ``SNDRV_PCM_INFO_MMAP`` flag here. When the hardware supports the +   interleaved or the non-interleaved formats, +   ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_PCM_INFO_NONINTERLEAVED`` +   flag must be set, respectively. If both are supported, you can set +   both, too. + +   In the above example, ``MMAP_VALID`` and ``BLOCK_TRANSFER`` are +   specified for the OSS mmap mode. Usually both are set. Of course, +   ``MMAP_VALID`` is set only if the mmap is really supported. + +   The other possible flags are ``SNDRV_PCM_INFO_PAUSE`` and +   ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` bit means that the pcm +   supports the “pause” operation, while the ``RESUME`` bit means that +   the pcm supports the full “suspend/resume” operation. If the +   ``PAUSE`` flag is set, the ``trigger`` callback below must handle +   the corresponding (pause push/release) commands. The suspend/resume +   trigger commands can be defined even without the ``RESUME`` +   flag. See `Power Management`_ section for details. + +   When the PCM substreams can be synchronized (typically, +   synchronized start/stop of a playback and a capture streams), you +   can give ``SNDRV_PCM_INFO_SYNC_START``, too. In this case, you'll +   need to check the linked-list of PCM substreams in the trigger +   callback. This will be described in the later section. + +-  ``formats`` field contains the bit-flags of supported formats +   (``SNDRV_PCM_FMTBIT_XXX``). If the hardware supports more than one +   format, give all or'ed bits. In the example above, the signed 16bit +   little-endian format is specified. + +-  ``rates`` field contains the bit-flags of supported rates +   (``SNDRV_PCM_RATE_XXX``). When the chip supports continuous rates, +   pass ``CONTINUOUS`` bit additionally. The pre-defined rate bits are +   provided only for typical rates. If your chip supports +   unconventional rates, you need to add the ``KNOT`` bit and set up +   the hardware constraint manually (explained later). + +-  ``rate_min`` and ``rate_max`` define the minimum and maximum sample +   rate. This should correspond somehow to ``rates`` bits. + +-  ``channel_min`` and ``channel_max`` define, as you might already +   expected, the minimum and maximum number of channels. + +-  ``buffer_bytes_max`` defines the maximum buffer size in +   bytes. There is no ``buffer_bytes_min`` field, since it can be +   calculated from the minimum period size and the minimum number of +   periods. Meanwhile, ``period_bytes_min`` and define the minimum and +   maximum size of the period in bytes. ``periods_max`` and +   ``periods_min`` define the maximum and minimum number of periods in +   the buffer. + +   The “period” is a term that corresponds to a fragment in the OSS +   world. The period defines the size at which a PCM interrupt is +   generated. This size strongly depends on the hardware. Generally, +   the smaller period size will give you more interrupts, that is, +   more controls. In the case of capture, this size defines the input +   latency. On the other hand, the whole buffer size defines the +   output latency for the playback direction. + +-  There is also a field ``fifo_size``. This specifies the size of the +   hardware FIFO, but currently it is neither used in the driver nor +   in the alsa-lib. So, you can ignore this field. + +PCM Configurations +~~~~~~~~~~~~~~~~~~ + +Ok, let's go back again to the PCM runtime records. The most +frequently referred records in the runtime instance are the PCM +configurations. The PCM configurations are stored in the runtime +instance after the application sends ``hw_params`` data via +alsa-lib. There are many fields copied from hw_params and sw_params +structs. For example, ``format`` holds the format type chosen by the +application. This field contains the enum value +``SNDRV_PCM_FORMAT_XXX``. + +One thing to be noted is that the configured buffer and period sizes +are stored in “frames” in the runtime. In the ALSA world, ``1 frame = +channels \* samples-size``. For conversion between frames and bytes, +you can use the :c:func:`frames_to_bytes()` and +:c:func:`bytes_to_frames()` helper functions. + +:: + +  period_bytes = frames_to_bytes(runtime, runtime->period_size); + +Also, many software parameters (sw_params) are stored in frames, too. +Please check the type of the field. ``snd_pcm_uframes_t`` is for the +frames as unsigned integer while ``snd_pcm_sframes_t`` is for the +frames as signed integer. + +DMA Buffer Information +~~~~~~~~~~~~~~~~~~~~~~ + +The DMA buffer is defined by the following four fields, ``dma_area``, +``dma_addr``, ``dma_bytes`` and ``dma_private``. The ``dma_area`` +holds the buffer pointer (the logical address). You can call +:c:func:`memcpy()` from/to this pointer. Meanwhile, ``dma_addr`` holds +the physical address of the buffer. This field is specified only when +the buffer is a linear buffer. ``dma_bytes`` holds the size of buffer +in bytes. ``dma_private`` is used for the ALSA DMA allocator. + +If you use a standard ALSA function, +:c:func:`snd_pcm_lib_malloc_pages()`, for allocating the buffer, +these fields are set by the ALSA middle layer, and you should *not* +change them by yourself. You can read them but not write them. On the +other hand, if you want to allocate the buffer by yourself, you'll +need to manage it in hw_params callback. At least, ``dma_bytes`` is +mandatory. ``dma_area`` is necessary when the buffer is mmapped. If +your driver doesn't support mmap, this field is not +necessary. ``dma_addr`` is also optional. You can use dma_private as +you like, too. + +Running Status +~~~~~~~~~~~~~~ + +The running status can be referred via ``runtime->status``. This is +the pointer to the :c:type:`struct snd_pcm_mmap_status +<snd_pcm_mmap_status>` record. For example, you can get the current +DMA hardware pointer via ``runtime->status->hw_ptr``. + +The DMA application pointer can be referred via ``runtime->control``, +which points to the :c:type:`struct snd_pcm_mmap_control +<snd_pcm_mmap_control>` record. However, accessing directly to +this value is not recommended. + +Private Data +~~~~~~~~~~~~ + +You can allocate a record for the substream and store it in +``runtime->private_data``. Usually, this is done in the `PCM open +callback`_. Don't mix this with ``pcm->private_data``. The +``pcm->private_data`` usually points to the chip instance assigned +statically at the creation of PCM, while the ``runtime->private_data`` +points to a dynamic data structure created at the PCM open +callback. + +:: + +  static int snd_xxx_open(struct snd_pcm_substream *substream) +  { +          struct my_pcm_data *data; +          .... +          data = kmalloc(sizeof(*data), GFP_KERNEL); +          substream->runtime->private_data = data; +          .... +  } + + +The allocated object must be released in the `close callback`_. + +Operators +--------- + +OK, now let me give details about each pcm callback (``ops``). In +general, every callback must return 0 if successful, or a negative +error number such as ``-EINVAL``. To choose an appropriate error +number, it is advised to check what value other parts of the kernel +return when the same kind of request fails. + +The callback function takes at least the argument with :c:type:`struct +snd_pcm_substream <snd_pcm_substream>` pointer. To retrieve the chip +record from the given substream instance, you can use the following +macro. + +:: + +  int xxx() { +          struct mychip *chip = snd_pcm_substream_chip(substream); +          .... +  } + +The macro reads ``substream->private_data``, which is a copy of +``pcm->private_data``. You can override the former if you need to +assign different data records per PCM substream. For example, the +cmi8330 driver assigns different ``private_data`` for playback and +capture directions, because it uses two different codecs (SB- and +AD-compatible) for different directions. + +PCM open callback +~~~~~~~~~~~~~~~~~ + +:: + +  static int snd_xxx_open(struct snd_pcm_substream *substream); + +This is called when a pcm substream is opened. + +At least, here you have to initialize the ``runtime->hw`` +record. Typically, this is done by like this: + +:: + +  static int snd_xxx_open(struct snd_pcm_substream *substream) +  { +          struct mychip *chip = snd_pcm_substream_chip(substream); +          struct snd_pcm_runtime *runtime = substream->runtime; + +          runtime->hw = snd_mychip_playback_hw; +          return 0; +  } + +where ``snd_mychip_playback_hw`` is the pre-defined hardware +description. + +You can allocate a private data in this callback, as described in +`Private Data`_ section. + +If the hardware configuration needs more constraints, set the hardware +constraints here, too. See Constraints_ for more details. + +close callback +~~~~~~~~~~~~~~ + +:: + +  static int snd_xxx_close(struct snd_pcm_substream *substream); + + +Obviously, this is called when a pcm substream is closed. + +Any private instance for a pcm substream allocated in the ``open`` +callback will be released here. + +:: + +  static int snd_xxx_close(struct snd_pcm_substream *substream) +  { +          .... +          kfree(substream->runtime->private_data); +          .... +  } + +ioctl callback +~~~~~~~~~~~~~~ + +This is used for any special call to pcm ioctls. But usually you can +pass a generic ioctl callback, :c:func:`snd_pcm_lib_ioctl()`. + +hw_params callback +~~~~~~~~~~~~~~~~~~~ + +:: + +  static int snd_xxx_hw_params(struct snd_pcm_substream *substream, +                               struct snd_pcm_hw_params *hw_params); + +This is called when the hardware parameter (``hw_params``) is set up +by the application, that is, once when the buffer size, the period +size, the format, etc. are defined for the pcm substream. + +Many hardware setups should be done in this callback, including the +allocation of buffers. + +Parameters to be initialized are retrieved by +:c:func:`params_xxx()` macros. To allocate buffer, you can call a +helper function, + +:: + +  snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); + +:c:func:`snd_pcm_lib_malloc_pages()` is available only when the +DMA buffers have been pre-allocated. See the section `Buffer Types`_ +for more details. + +Note that this and ``prepare`` callbacks may be called multiple times +per initialization. For example, the OSS emulation may call these +callbacks at each change via its ioctl. + +Thus, you need to be careful not to allocate the same buffers many +times, which will lead to memory leaks! Calling the helper function +above many times is OK. It will release the previous buffer +automatically when it was already allocated. + +Another note is that this callback is non-atomic (schedulable) as +default, i.e. when no ``nonatomic`` flag set. This is important, +because the ``trigger`` callback is atomic (non-schedulable). That is, +mutexes or any schedule-related functions are not available in +``trigger`` callback. Please see the subsection Atomicity_ for +details. + +hw_free callback +~~~~~~~~~~~~~~~~~ + +:: + +  static int snd_xxx_hw_free(struct snd_pcm_substream *substream); + +This is called to release the resources allocated via +``hw_params``. For example, releasing the buffer via +:c:func:`snd_pcm_lib_malloc_pages()` is done by calling the +following: + +:: + +  snd_pcm_lib_free_pages(substream); + +This function is always called before the close callback is called. +Also, the callback may be called multiple times, too. Keep track +whether the resource was already released. + +prepare callback +~~~~~~~~~~~~~~~~ + +:: + +  static int snd_xxx_prepare(struct snd_pcm_substream *substream); + +This callback is called when the pcm is “prepared”. You can set the +format type, sample rate, etc. here. The difference from ``hw_params`` +is that the ``prepare`` callback will be called each time +:c:func:`snd_pcm_prepare()` is called, i.e. when recovering after +underruns, etc. + +Note that this callback is now non-atomic. You can use +schedule-related functions safely in this callback. + +In this and the following callbacks, you can refer to the values via +the runtime record, ``substream->runtime``. For example, to get the +current rate, format or channels, access to ``runtime->rate``, +``runtime->format`` or ``runtime->channels``, respectively. The +physical address of the allocated buffer is set to +``runtime->dma_area``. The buffer and period sizes are in +``runtime->buffer_size`` and ``runtime->period_size``, respectively. + +Be careful that this callback will be called many times at each setup, +too. + +trigger callback +~~~~~~~~~~~~~~~~ + +:: + +  static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd); + +This is called when the pcm is started, stopped or paused. + +Which action is specified in the second argument, +``SNDRV_PCM_TRIGGER_XXX`` in ``<sound/pcm.h>``. At least, the ``START`` +and ``STOP`` commands must be defined in this callback. + +:: + +  switch (cmd) { +  case SNDRV_PCM_TRIGGER_START: +          /* do something to start the PCM engine */ +          break; +  case SNDRV_PCM_TRIGGER_STOP: +          /* do something to stop the PCM engine */ +          break; +  default: +          return -EINVAL; +  } + +When the pcm supports the pause operation (given in the info field of +the hardware table), the ``PAUSE_PUSH`` and ``PAUSE_RELEASE`` commands +must be handled here, too. The former is the command to pause the pcm, +and the latter to restart the pcm again. + +When the pcm supports the suspend/resume operation, regardless of full +or partial suspend/resume support, the ``SUSPEND`` and ``RESUME`` +commands must be handled, too. These commands are issued when the +power-management status is changed. Obviously, the ``SUSPEND`` and +``RESUME`` commands suspend and resume the pcm substream, and usually, +they are identical to the ``STOP`` and ``START`` commands, respectively. +See the `Power Management`_ section for details. + +As mentioned, this callback is atomic as default unless ``nonatomic`` +flag set, and you cannot call functions which may sleep. The +``trigger`` callback should be as minimal as possible, just really +triggering the DMA. The other stuff should be initialized +``hw_params`` and ``prepare`` callbacks properly beforehand. + +pointer callback +~~~~~~~~~~~~~~~~ + +:: + +  static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream) + +This callback is called when the PCM middle layer inquires the current +hardware position on the buffer. The position must be returned in +frames, ranging from 0 to ``buffer_size - 1``.  + +This is called usually from the buffer-update routine in the pcm +middle layer, which is invoked when :c:func:`snd_pcm_period_elapsed()` +is called in the interrupt routine. Then the pcm middle layer updates +the position and calculates the available space, and wakes up the +sleeping poll threads, etc. + +This callback is also atomic as default. + +copy and silence callbacks +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These callbacks are not mandatory, and can be omitted in most cases. +These callbacks are used when the hardware buffer cannot be in the +normal memory space. Some chips have their own buffer on the hardware +which is not mappable. In such a case, you have to transfer the data +manually from the memory buffer to the hardware buffer. Or, if the +buffer is non-contiguous on both physical and virtual memory spaces, +these callbacks must be defined, too. + +If these two callbacks are defined, copy and set-silence operations +are done by them. The detailed will be described in the later section +`Buffer and Memory Management`_. + +ack callback +~~~~~~~~~~~~ + +This callback is also not mandatory. This callback is called when the +``appl_ptr`` is updated in read or write operations. Some drivers like +emu10k1-fx and cs46xx need to track the current ``appl_ptr`` for the +internal buffer, and this callback is useful only for such a purpose. + +This callback is atomic as default. + +page callback +~~~~~~~~~~~~~ + +This callback is optional too. This callback is used mainly for +non-contiguous buffers. The mmap calls this callback to get the page +address. Some examples will be explained in the later section `Buffer +and Memory Management`_, too. + +PCM Interrupt Handler +--------------------- + +The rest of pcm stuff is the PCM interrupt handler. The role of PCM +interrupt handler in the sound driver is to update the buffer position +and to tell the PCM middle layer when the buffer position goes across +the prescribed period size. To inform this, call the +:c:func:`snd_pcm_period_elapsed()` function. + +There are several types of sound chips to generate the interrupts. + +Interrupts at the period (fragment) boundary +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This is the most frequently found type: the hardware generates an +interrupt at each period boundary. In this case, you can call +:c:func:`snd_pcm_period_elapsed()` at each interrupt. + +:c:func:`snd_pcm_period_elapsed()` takes the substream pointer as +its argument. Thus, you need to keep the substream pointer accessible +from the chip instance. For example, define ``substream`` field in the +chip record to hold the current running substream pointer, and set the +pointer value at ``open`` callback (and reset at ``close`` callback). + +If you acquire a spinlock in the interrupt handler, and the lock is used +in other pcm callbacks, too, then you have to release the lock before +calling :c:func:`snd_pcm_period_elapsed()`, because +:c:func:`snd_pcm_period_elapsed()` calls other pcm callbacks +inside. + +Typical code would be like: + +:: + + +      static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) +      { +              struct mychip *chip = dev_id; +              spin_lock(&chip->lock); +              .... +              if (pcm_irq_invoked(chip)) { +                      /* call updater, unlock before it */ +                      spin_unlock(&chip->lock); +                      snd_pcm_period_elapsed(chip->substream); +                      spin_lock(&chip->lock); +                      /* acknowledge the interrupt if necessary */ +              } +              .... +              spin_unlock(&chip->lock); +              return IRQ_HANDLED; +      } + + + +High frequency timer interrupts +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This happens when the hardware doesn't generate interrupts at the period +boundary but issues timer interrupts at a fixed timer rate (e.g. es1968 +or ymfpci drivers). In this case, you need to check the current hardware +position and accumulate the processed sample length at each interrupt. +When the accumulated size exceeds the period size, call +:c:func:`snd_pcm_period_elapsed()` and reset the accumulator. + +Typical code would be like the following. + +:: + + +      static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) +      { +              struct mychip *chip = dev_id; +              spin_lock(&chip->lock); +              .... +              if (pcm_irq_invoked(chip)) { +                      unsigned int last_ptr, size; +                      /* get the current hardware pointer (in frames) */ +                      last_ptr = get_hw_ptr(chip); +                      /* calculate the processed frames since the +                       * last update +                       */ +                      if (last_ptr < chip->last_ptr) +                              size = runtime->buffer_size + last_ptr +                                       - chip->last_ptr; +                      else +                              size = last_ptr - chip->last_ptr; +                      /* remember the last updated point */ +                      chip->last_ptr = last_ptr; +                      /* accumulate the size */ +                      chip->size += size; +                      /* over the period boundary? */ +                      if (chip->size >= runtime->period_size) { +                              /* reset the accumulator */ +                              chip->size %= runtime->period_size; +                              /* call updater */ +                              spin_unlock(&chip->lock); +                              snd_pcm_period_elapsed(substream); +                              spin_lock(&chip->lock); +                      } +                      /* acknowledge the interrupt if necessary */ +              } +              .... +              spin_unlock(&chip->lock); +              return IRQ_HANDLED; +      } + + + +On calling :c:func:`snd_pcm_period_elapsed()` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In both cases, even if more than one period are elapsed, you don't have +to call :c:func:`snd_pcm_period_elapsed()` many times. Call only +once. And the pcm layer will check the current hardware pointer and +update to the latest status. + +Atomicity +--------- + +One of the most important (and thus difficult to debug) problems in +kernel programming are race conditions. In the Linux kernel, they are +usually avoided via spin-locks, mutexes or semaphores. In general, if a +race condition can happen in an interrupt handler, it has to be managed +atomically, and you have to use a spinlock to protect the critical +session. If the critical section is not in interrupt handler code and if +taking a relatively long time to execute is acceptable, you should use +mutexes or semaphores instead. + +As already seen, some pcm callbacks are atomic and some are not. For +example, the ``hw_params`` callback is non-atomic, while ``trigger`` +callback is atomic. This means, the latter is called already in a +spinlock held by the PCM middle layer. Please take this atomicity into +account when you choose a locking scheme in the callbacks. + +In the atomic callbacks, you cannot use functions which may call +:c:func:`schedule()` or go to :c:func:`sleep()`. Semaphores and +mutexes can sleep, and hence they cannot be used inside the atomic +callbacks (e.g. ``trigger`` callback). To implement some delay in such a +callback, please use :c:func:`udelay()` or :c:func:`mdelay()`. + +All three atomic callbacks (trigger, pointer, and ack) are called with +local interrupts disabled. + +The recent changes in PCM core code, however, allow all PCM operations +to be non-atomic. This assumes that the all caller sides are in +non-atomic contexts. For example, the function +:c:func:`snd_pcm_period_elapsed()` is called typically from the +interrupt handler. But, if you set up the driver to use a threaded +interrupt handler, this call can be in non-atomic context, too. In such +a case, you can set ``nonatomic`` filed of :c:type:`struct snd_pcm +<snd_pcm>` object after creating it. When this flag is set, mutex +and rwsem are used internally in the PCM core instead of spin and +rwlocks, so that you can call all PCM functions safely in a non-atomic +context. + +Constraints +----------- + +If your chip supports unconventional sample rates, or only the limited +samples, you need to set a constraint for the condition. + +For example, in order to restrict the sample rates in the some supported +values, use :c:func:`snd_pcm_hw_constraint_list()`. You need to +call this function in the open callback. + +:: + +      static unsigned int rates[] = +              {4000, 10000, 22050, 44100}; +      static struct snd_pcm_hw_constraint_list constraints_rates = { +              .count = ARRAY_SIZE(rates), +              .list = rates, +              .mask = 0, +      }; + +      static int snd_mychip_pcm_open(struct snd_pcm_substream *substream) +      { +              int err; +              .... +              err = snd_pcm_hw_constraint_list(substream->runtime, 0, +                                               SNDRV_PCM_HW_PARAM_RATE, +                                               &constraints_rates); +              if (err < 0) +                      return err; +              .... +      } + + + +There are many different constraints. Look at ``sound/pcm.h`` for a +complete list. You can even define your own constraint rules. For +example, let's suppose my_chip can manage a substream of 1 channel if +and only if the format is ``S16_LE``, otherwise it supports any format +specified in the :c:type:`struct snd_pcm_hardware +<snd_pcm_hardware>` structure (or in any other +constraint_list). You can build a rule like this: + +:: + +      static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params, +                                            struct snd_pcm_hw_rule *rule) +      { +              struct snd_interval *c = hw_param_interval(params, +                            SNDRV_PCM_HW_PARAM_CHANNELS); +              struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); +              struct snd_interval ch; + +              snd_interval_any(&ch); +              if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) { +                      ch.min = ch.max = 1; +                      ch.integer = 1; +                      return snd_interval_refine(c, &ch); +              } +              return 0; +      } + + +Then you need to call this function to add your rule: + +:: + +  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, +                      hw_rule_channels_by_format, NULL, +                      SNDRV_PCM_HW_PARAM_FORMAT, -1); + +The rule function is called when an application sets the PCM format, and +it refines the number of channels accordingly. But an application may +set the number of channels before setting the format. Thus you also need +to define the inverse rule: + +:: + +      static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params, +                                            struct snd_pcm_hw_rule *rule) +      { +              struct snd_interval *c = hw_param_interval(params, +                    SNDRV_PCM_HW_PARAM_CHANNELS); +              struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); +              struct snd_mask fmt; + +              snd_mask_any(&fmt);    /* Init the struct */ +              if (c->min < 2) { +                      fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE; +                      return snd_mask_refine(f, &fmt); +              } +              return 0; +      } + + +... and in the open callback: + +:: + +  snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, +                      hw_rule_format_by_channels, NULL, +                      SNDRV_PCM_HW_PARAM_CHANNELS, -1); + +I won't give more details here, rather I would like to say, “Luke, use +the source.” + +Control Interface +================= + +General +------- + +The control interface is used widely for many switches, sliders, etc. +which are accessed from user-space. Its most important use is the mixer +interface. In other words, since ALSA 0.9.x, all the mixer stuff is +implemented on the control kernel API. + +ALSA has a well-defined AC97 control module. If your chip supports only +the AC97 and nothing else, you can skip this section. + +The control API is defined in ``<sound/control.h>``. Include this file +if you want to add your own controls. + +Definition of Controls +---------------------- + +To create a new control, you need to define the following three +callbacks: ``info``, ``get`` and ``put``. Then, define a +:c:type:`struct snd_kcontrol_new <snd_kcontrol_new>` record, such as: + +:: + + +      static struct snd_kcontrol_new my_control = { +              .iface = SNDRV_CTL_ELEM_IFACE_MIXER, +              .name = "PCM Playback Switch", +              .index = 0, +              .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, +              .private_value = 0xffff, +              .info = my_control_info, +              .get = my_control_get, +              .put = my_control_put +      }; + + +The ``iface`` field specifies the control type, +``SNDRV_CTL_ELEM_IFACE_XXX``, which is usually ``MIXER``. Use ``CARD`` +for global controls that are not logically part of the mixer. If the +control is closely associated with some specific device on the sound +card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``TIMER``, or ``SEQUENCER``, +and specify the device number with the ``device`` and ``subdevice`` +fields. + +The ``name`` is the name identifier string. Since ALSA 0.9.x, the +control name is very important, because its role is classified from +its name. There are pre-defined standard control names. The details +are described in the `Control Names`_ subsection. + +The ``index`` field holds the index number of this control. If there +are several different controls with the same name, they can be +distinguished by the index number. This is the case when several +codecs exist on the card. If the index is zero, you can omit the +definition above.  + +The ``access`` field contains the access type of this control. Give +the combination of bit masks, ``SNDRV_CTL_ELEM_ACCESS_XXX``, +there. The details will be explained in the `Access Flags`_ +subsection. + +The ``private_value`` field contains an arbitrary long integer value +for this record. When using the generic ``info``, ``get`` and ``put`` +callbacks, you can pass a value through this field. If several small +numbers are necessary, you can combine them in bitwise. Or, it's +possible to give a pointer (casted to unsigned long) of some record to +this field, too.  + +The ``tlv`` field can be used to provide metadata about the control; +see the `Metadata`_ subsection. + +The other three are `Control Callbacks`_. + +Control Names +------------- + +There are some standards to define the control names. A control is +usually defined from the three parts as “SOURCE DIRECTION FUNCTION”. + +The first, ``SOURCE``, specifies the source of the control, and is a +string such as “Master”, “PCM”, “CD” and “Line”. There are many +pre-defined sources. + +The second, ``DIRECTION``, is one of the following strings according to +the direction of the control: “Playback”, “Capture”, “Bypass Playback” +and “Bypass Capture”. Or, it can be omitted, meaning both playback and +capture directions. + +The third, ``FUNCTION``, is one of the following strings according to +the function of the control: “Switch”, “Volume” and “Route”. + +The example of control names are, thus, “Master Capture Switch” or “PCM +Playback Volume”. + +There are some exceptions: + +Global capture and playback +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +“Capture Source”, “Capture Switch” and “Capture Volume” are used for the +global capture (input) source, switch and volume. Similarly, “Playback +Switch” and “Playback Volume” are used for the global output gain switch +and volume. + +Tone-controls +~~~~~~~~~~~~~ + +tone-control switch and volumes are specified like “Tone Control - XXX”, +e.g. “Tone Control - Switch”, “Tone Control - Bass”, “Tone Control - +Center”. + +3D controls +~~~~~~~~~~~ + +3D-control switches and volumes are specified like “3D Control - XXX”, +e.g. “3D Control - Switch”, “3D Control - Center”, “3D Control - Space”. + +Mic boost +~~~~~~~~~ + +Mic-boost switch is set as “Mic Boost” or “Mic Boost (6dB)”. + +More precise information can be found in +``Documentation/sound/alsa/ControlNames.txt``. + +Access Flags +------------ + +The access flag is the bitmask which specifies the access type of the +given control. The default access type is +``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which means both read and write are +allowed to this control. When the access flag is omitted (i.e. = 0), it +is considered as ``READWRITE`` access as default. + +When the control is read-only, pass ``SNDRV_CTL_ELEM_ACCESS_READ`` +instead. In this case, you don't have to define the ``put`` callback. +Similarly, when the control is write-only (although it's a rare case), +you can use the ``WRITE`` flag instead, and you don't need the ``get`` +callback. + +If the control value changes frequently (e.g. the VU meter), +``VOLATILE`` flag should be given. This means that the control may be +changed without `Change notification`_. Applications should poll such +a control constantly. + +When the control is inactive, set the ``INACTIVE`` flag, too. There are +``LOCK`` and ``OWNER`` flags to change the write permissions. + +Control Callbacks +----------------- + +info callback +~~~~~~~~~~~~~ + +The ``info`` callback is used to get detailed information on this +control. This must store the values of the given :c:type:`struct +snd_ctl_elem_info <snd_ctl_elem_info>` object. For example, +for a boolean control with a single element: + +:: + + +      static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol, +                              struct snd_ctl_elem_info *uinfo) +      { +              uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; +              uinfo->count = 1; +              uinfo->value.integer.min = 0; +              uinfo->value.integer.max = 1; +              return 0; +      } + + + +The ``type`` field specifies the type of the control. There are +``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``BYTES``, ``IEC958`` and +``INTEGER64``. The ``count`` field specifies the number of elements in +this control. For example, a stereo volume would have count = 2. The +``value`` field is a union, and the values stored are depending on the +type. The boolean and integer types are identical. + +The enumerated type is a bit different from others. You'll need to set +the string for the currently given item index. + +:: + +  static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, +                          struct snd_ctl_elem_info *uinfo) +  { +          static char *texts[4] = { +                  "First", "Second", "Third", "Fourth" +          }; +          uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; +          uinfo->count = 1; +          uinfo->value.enumerated.items = 4; +          if (uinfo->value.enumerated.item > 3) +                  uinfo->value.enumerated.item = 3; +          strcpy(uinfo->value.enumerated.name, +                 texts[uinfo->value.enumerated.item]); +          return 0; +  } + +The above callback can be simplified with a helper function, +:c:func:`snd_ctl_enum_info()`. The final code looks like below. +(You can pass ``ARRAY_SIZE(texts)`` instead of 4 in the third argument; +it's a matter of taste.) + +:: + +  static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, +                          struct snd_ctl_elem_info *uinfo) +  { +          static char *texts[4] = { +                  "First", "Second", "Third", "Fourth" +          }; +          return snd_ctl_enum_info(uinfo, 1, 4, texts); +  } + + +Some common info callbacks are available for your convenience: +:c:func:`snd_ctl_boolean_mono_info()` and +:c:func:`snd_ctl_boolean_stereo_info()`. Obviously, the former +is an info callback for a mono channel boolean item, just like +:c:func:`snd_myctl_mono_info()` above, and the latter is for a +stereo channel boolean item. + +get callback +~~~~~~~~~~~~ + +This callback is used to read the current value of the control and to +return to user-space. + +For example, + +:: + + +      static int snd_myctl_get(struct snd_kcontrol *kcontrol, +                               struct snd_ctl_elem_value *ucontrol) +      { +              struct mychip *chip = snd_kcontrol_chip(kcontrol); +              ucontrol->value.integer.value[0] = get_some_value(chip); +              return 0; +      } + + + +The ``value`` field depends on the type of control as well as on the +info callback. For example, the sb driver uses this field to store the +register offset, the bit-shift and the bit-mask. The ``private_value`` +field is set as follows: + +:: + +  .private_value = reg | (shift << 16) | (mask << 24) + +and is retrieved in callbacks like + +:: + +  static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, +                                    struct snd_ctl_elem_value *ucontrol) +  { +          int reg = kcontrol->private_value & 0xff; +          int shift = (kcontrol->private_value >> 16) & 0xff; +          int mask = (kcontrol->private_value >> 24) & 0xff; +          .... +  } + +In the ``get`` callback, you have to fill all the elements if the +control has more than one elements, i.e. ``count > 1``. In the example +above, we filled only one element (``value.integer.value[0]``) since +it's assumed as ``count = 1``. + +put callback +~~~~~~~~~~~~ + +This callback is used to write a value from user-space. + +For example, + +:: + + +      static int snd_myctl_put(struct snd_kcontrol *kcontrol, +                               struct snd_ctl_elem_value *ucontrol) +      { +              struct mychip *chip = snd_kcontrol_chip(kcontrol); +              int changed = 0; +              if (chip->current_value != +                   ucontrol->value.integer.value[0]) { +                      change_current_value(chip, +                                  ucontrol->value.integer.value[0]); +                      changed = 1; +              } +              return changed; +      } + + + +As seen above, you have to return 1 if the value is changed. If the +value is not changed, return 0 instead. If any fatal error happens, +return a negative error code as usual. + +As in the ``get`` callback, when the control has more than one +elements, all elements must be evaluated in this callback, too. + +Callbacks are not atomic +~~~~~~~~~~~~~~~~~~~~~~~~ + +All these three callbacks are basically not atomic. + +Control Constructor +------------------- + +When everything is ready, finally we can create a new control. To create +a control, there are two functions to be called, +:c:func:`snd_ctl_new1()` and :c:func:`snd_ctl_add()`. + +In the simplest way, you can do like this: + +:: + +  err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip)); +  if (err < 0) +          return err; + +where ``my_control`` is the :c:type:`struct snd_kcontrol_new +<snd_kcontrol_new>` object defined above, and chip is the object +pointer to be passed to kcontrol->private_data which can be referred +to in callbacks. + +:c:func:`snd_ctl_new1()` allocates a new :c:type:`struct +snd_kcontrol <snd_kcontrol>` instance, and +:c:func:`snd_ctl_add()` assigns the given control component to the +card. + +Change Notification +------------------- + +If you need to change and update a control in the interrupt routine, you +can call :c:func:`snd_ctl_notify()`. For example, + +:: + +  snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer); + +This function takes the card pointer, the event-mask, and the control id +pointer for the notification. The event-mask specifies the types of +notification, for example, in the above example, the change of control +values is notified. The id pointer is the pointer of :c:type:`struct +snd_ctl_elem_id <snd_ctl_elem_id>` to be notified. You can +find some examples in ``es1938.c`` or ``es1968.c`` for hardware volume +interrupts. + +Metadata +-------- + +To provide information about the dB values of a mixer control, use on of +the ``DECLARE_TLV_xxx`` macros from ``<sound/tlv.h>`` to define a +variable containing this information, set the ``tlv.p`` field to point to +this variable, and include the ``SNDRV_CTL_ELEM_ACCESS_TLV_READ`` flag +in the ``access`` field; like this: + +:: + +  static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0); + +  static struct snd_kcontrol_new my_control = { +          ... +          .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | +                    SNDRV_CTL_ELEM_ACCESS_TLV_READ, +          ... +          .tlv.p = db_scale_my_control, +  }; + + +The :c:func:`DECLARE_TLV_DB_SCALE()` macro defines information +about a mixer control where each step in the control's value changes the +dB value by a constant dB amount. The first parameter is the name of the +variable to be defined. The second parameter is the minimum value, in +units of 0.01 dB. The third parameter is the step size, in units of 0.01 +dB. Set the fourth parameter to 1 if the minimum value actually mutes +the control. + +The :c:func:`DECLARE_TLV_DB_LINEAR()` macro defines information +about a mixer control where the control's value affects the output +linearly. The first parameter is the name of the variable to be defined. +The second parameter is the minimum value, in units of 0.01 dB. The +third parameter is the maximum value, in units of 0.01 dB. If the +minimum value mutes the control, set the second parameter to +``TLV_DB_GAIN_MUTE``. + +API for AC97 Codec +================== + +General +------- + +The ALSA AC97 codec layer is a well-defined one, and you don't have to +write much code to control it. Only low-level control routines are +necessary. The AC97 codec API is defined in ``<sound/ac97_codec.h>``. + +Full Code Example +----------------- + +:: + +      struct mychip { +              .... +              struct snd_ac97 *ac97; +              .... +      }; + +      static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, +                                                 unsigned short reg) +      { +              struct mychip *chip = ac97->private_data; +              .... +              /* read a register value here from the codec */ +              return the_register_value; +      } + +      static void snd_mychip_ac97_write(struct snd_ac97 *ac97, +                                       unsigned short reg, unsigned short val) +      { +              struct mychip *chip = ac97->private_data; +              .... +              /* write the given register value to the codec */ +      } + +      static int snd_mychip_ac97(struct mychip *chip) +      { +              struct snd_ac97_bus *bus; +              struct snd_ac97_template ac97; +              int err; +              static struct snd_ac97_bus_ops ops = { +                      .write = snd_mychip_ac97_write, +                      .read = snd_mychip_ac97_read, +              }; + +              err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus); +              if (err < 0) +                      return err; +              memset(&ac97, 0, sizeof(ac97)); +              ac97.private_data = chip; +              return snd_ac97_mixer(bus, &ac97, &chip->ac97); +      } + + +AC97 Constructor +---------------- + +To create an ac97 instance, first call :c:func:`snd_ac97_bus()` +with an ``ac97_bus_ops_t`` record with callback functions. + +:: + +  struct snd_ac97_bus *bus; +  static struct snd_ac97_bus_ops ops = { +        .write = snd_mychip_ac97_write, +        .read = snd_mychip_ac97_read, +  }; + +  snd_ac97_bus(card, 0, &ops, NULL, &pbus); + +The bus record is shared among all belonging ac97 instances. + +And then call :c:func:`snd_ac97_mixer()` with an :c:type:`struct +snd_ac97_template <snd_ac97_template>` record together with +the bus pointer created above. + +:: + +  struct snd_ac97_template ac97; +  int err; + +  memset(&ac97, 0, sizeof(ac97)); +  ac97.private_data = chip; +  snd_ac97_mixer(bus, &ac97, &chip->ac97); + +where chip->ac97 is a pointer to a newly created ``ac97_t`` +instance. In this case, the chip pointer is set as the private data, +so that the read/write callback functions can refer to this chip +instance. This instance is not necessarily stored in the chip +record. If you need to change the register values from the driver, or +need the suspend/resume of ac97 codecs, keep this pointer to pass to +the corresponding functions. + +AC97 Callbacks +-------------- + +The standard callbacks are ``read`` and ``write``. Obviously they +correspond to the functions for read and write accesses to the +hardware low-level codes. + +The ``read`` callback returns the register value specified in the +argument. + +:: + +  static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, +                                             unsigned short reg) +  { +          struct mychip *chip = ac97->private_data; +          .... +          return the_register_value; +  } + +Here, the chip can be cast from ``ac97->private_data``. + +Meanwhile, the ``write`` callback is used to set the register +value + +:: + +  static void snd_mychip_ac97_write(struct snd_ac97 *ac97, +                       unsigned short reg, unsigned short val) + + +These callbacks are non-atomic like the control API callbacks. + +There are also other callbacks: ``reset``, ``wait`` and ``init``. + +The ``reset`` callback is used to reset the codec. If the chip +requires a special kind of reset, you can define this callback. + +The ``wait`` callback is used to add some waiting time in the standard +initialization of the codec. If the chip requires the extra waiting +time, define this callback. + +The ``init`` callback is used for additional initialization of the +codec. + +Updating Registers in The Driver +-------------------------------- + +If you need to access to the codec from the driver, you can call the +following functions: :c:func:`snd_ac97_write()`, +:c:func:`snd_ac97_read()`, :c:func:`snd_ac97_update()` and +:c:func:`snd_ac97_update_bits()`. + +Both :c:func:`snd_ac97_write()` and +:c:func:`snd_ac97_update()` functions are used to set a value to +the given register (``AC97_XXX``). The difference between them is that +:c:func:`snd_ac97_update()` doesn't write a value if the given +value has been already set, while :c:func:`snd_ac97_write()` +always rewrites the value. + +:: + +  snd_ac97_write(ac97, AC97_MASTER, 0x8080); +  snd_ac97_update(ac97, AC97_MASTER, 0x8080); + +:c:func:`snd_ac97_read()` is used to read the value of the given +register. For example, + +:: + +  value = snd_ac97_read(ac97, AC97_MASTER); + +:c:func:`snd_ac97_update_bits()` is used to update some bits in +the given register. + +:: + +  snd_ac97_update_bits(ac97, reg, mask, value); + +Also, there is a function to change the sample rate (of a given register +such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA or DRA is supported by the +codec: :c:func:`snd_ac97_set_rate()`. + +:: + +  snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100); + + +The following registers are available to set the rate: +``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_DAC_RATE``, +``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. When ``AC97_SPDIF`` is +specified, the register is not really changed but the corresponding +IEC958 status bits will be updated. + +Clock Adjustment +---------------- + +In some chips, the clock of the codec isn't 48000 but using a PCI clock +(to save a quartz!). In this case, change the field ``bus->clock`` to +the corresponding value. For example, intel8x0 and es1968 drivers have +their own function to read from the clock. + +Proc Files +---------- + +The ALSA AC97 interface will create a proc file such as +``/proc/asound/card0/codec97#0/ac97#0-0`` and ``ac97#0-0+regs``. You +can refer to these files to see the current status and registers of +the codec. + +Multiple Codecs +--------------- + +When there are several codecs on the same card, you need to call +:c:func:`snd_ac97_mixer()` multiple times with ``ac97.num=1`` or +greater. The ``num`` field specifies the codec number. + +If you set up multiple codecs, you either need to write different +callbacks for each codec or check ``ac97->num`` in the callback +routines. + +MIDI (MPU401-UART) Interface +============================ + +General +------- + +Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the +soundcard supports the standard MPU401-UART interface, most likely you +can use the ALSA MPU401-UART API. The MPU401-UART API is defined in +``<sound/mpu401.h>``. + +Some soundchips have a similar but slightly different implementation of +mpu401 stuff. For example, emu10k1 has its own mpu401 routines. + +MIDI Constructor +---------------- + +To create a rawmidi object, call :c:func:`snd_mpu401_uart_new()`. + +:: + +  struct snd_rawmidi *rmidi; +  snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags, +                      irq, &rmidi); + + +The first argument is the card pointer, and the second is the index of +this component. You can create up to 8 rawmidi devices. + +The third argument is the type of the hardware, ``MPU401_HW_XXX``. If +it's not a special one, you can use ``MPU401_HW_MPU401``. + +The 4th argument is the I/O port address. Many backward-compatible +MPU401 have an I/O port such as 0x330. Or, it might be a part of its own +PCI I/O region. It depends on the chip design. + +The 5th argument is a bitflag for additional information. When the I/O +port address above is part of the PCI I/O region, the MPU401 I/O port +might have been already allocated (reserved) by the driver itself. In +such a case, pass a bit flag ``MPU401_INFO_INTEGRATED``, and the +mpu401-uart layer will allocate the I/O ports by itself. + +When the controller supports only the input or output MIDI stream, pass +the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OUTPUT`` bitflag, +respectively. Then the rawmidi instance is created as a single stream. + +``MPU401_INFO_MMIO`` bitflag is used to change the access method to MMIO +(via readb and writeb) instead of iob and outb. In this case, you have +to pass the iomapped address to :c:func:`snd_mpu401_uart_new()`. + +When ``MPU401_INFO_TX_IRQ`` is set, the output stream isn't checked in +the default interrupt handler. The driver needs to call +:c:func:`snd_mpu401_uart_interrupt_tx()` by itself to start +processing the output stream in the irq handler. + +If the MPU-401 interface shares its interrupt with the other logical +devices on the card, set ``MPU401_INFO_IRQ_HOOK`` (see +`below <#MIDI-Interrupt-Handler>`__). + +Usually, the port address corresponds to the command port and port + 1 +corresponds to the data port. If not, you may change the ``cport`` +field of :c:type:`struct snd_mpu401 <snd_mpu401>` manually afterward. +However, :c:type:`struct snd_mpu401 <snd_mpu401>` pointer is +not returned explicitly by :c:func:`snd_mpu401_uart_new()`. You +need to cast ``rmidi->private_data`` to :c:type:`struct snd_mpu401 +<snd_mpu401>` explicitly, + +:: + +  struct snd_mpu401 *mpu; +  mpu = rmidi->private_data; + +and reset the ``cport`` as you like: + +:: + +  mpu->cport = my_own_control_port; + +The 6th argument specifies the ISA irq number that will be allocated. If +no interrupt is to be allocated (because your code is already allocating +a shared interrupt, or because the device does not use interrupts), pass +-1 instead. For a MPU-401 device without an interrupt, a polling timer +will be used instead. + +MIDI Interrupt Handler +---------------------- + +When the interrupt is allocated in +:c:func:`snd_mpu401_uart_new()`, an exclusive ISA interrupt +handler is automatically used, hence you don't have anything else to do +than creating the mpu401 stuff. Otherwise, you have to set +``MPU401_INFO_IRQ_HOOK``, and call +:c:func:`snd_mpu401_uart_interrupt()` explicitly from your own +interrupt handler when it has determined that a UART interrupt has +occurred. + +In this case, you need to pass the private_data of the returned rawmidi +object from :c:func:`snd_mpu401_uart_new()` as the second +argument of :c:func:`snd_mpu401_uart_interrupt()`. + +:: + +  snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs); + + +RawMIDI Interface +================= + +Overview +-------- + +The raw MIDI interface is used for hardware MIDI ports that can be +accessed as a byte stream. It is not used for synthesizer chips that do +not directly understand MIDI. + +ALSA handles file and buffer management. All you have to do is to write +some code to move data between the buffer and the hardware. + +The rawmidi API is defined in ``<sound/rawmidi.h>``. + +RawMIDI Constructor +------------------- + +To create a rawmidi device, call the :c:func:`snd_rawmidi_new()` +function: + +:: + +  struct snd_rawmidi *rmidi; +  err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi); +  if (err < 0) +          return err; +  rmidi->private_data = chip; +  strcpy(rmidi->name, "My MIDI"); +  rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | +                      SNDRV_RAWMIDI_INFO_INPUT | +                      SNDRV_RAWMIDI_INFO_DUPLEX; + +The first argument is the card pointer, the second argument is the ID +string. + +The third argument is the index of this component. You can create up to +8 rawmidi devices. + +The fourth and fifth arguments are the number of output and input +substreams, respectively, of this device (a substream is the equivalent +of a MIDI port). + +Set the ``info_flags`` field to specify the capabilities of the +device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if there is at least one +output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if there is at least one +input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX`` if the device can handle +output and input at the same time. + +After the rawmidi device is created, you need to set the operators +(callbacks) for each substream. There are helper functions to set the +operators for all the substreams of a device: + +:: + +  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops); +  snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops); + +The operators are usually defined like this: + +:: + +  static struct snd_rawmidi_ops snd_mymidi_output_ops = { +          .open =    snd_mymidi_output_open, +          .close =   snd_mymidi_output_close, +          .trigger = snd_mymidi_output_trigger, +  }; + +These callbacks are explained in the `RawMIDI Callbacks`_ section. + +If there are more than one substream, you should give a unique name to +each of them: + +:: + +  struct snd_rawmidi_substream *substream; +  list_for_each_entry(substream, +                      &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams, +                      list { +          sprintf(substream->name, "My MIDI Port %d", substream->number + 1); +  } +  /* same for SNDRV_RAWMIDI_STREAM_INPUT */ + +RawMIDI Callbacks +----------------- + +In all the callbacks, the private data that you've set for the rawmidi +device can be accessed as ``substream->rmidi->private_data``. + +If there is more than one port, your callbacks can determine the port +index from the struct snd_rawmidi_substream data passed to each +callback: + +:: + +  struct snd_rawmidi_substream *substream; +  int index = substream->number; + +RawMIDI open callback +~~~~~~~~~~~~~~~~~~~~~ + +:: + +      static int snd_xxx_open(struct snd_rawmidi_substream *substream); + + +This is called when a substream is opened. You can initialize the +hardware here, but you shouldn't start transmitting/receiving data yet. + +RawMIDI close callback +~~~~~~~~~~~~~~~~~~~~~~ + +:: + +      static int snd_xxx_close(struct snd_rawmidi_substream *substream); + +Guess what. + +The ``open`` and ``close`` callbacks of a rawmidi device are +serialized with a mutex, and can sleep. + +Rawmidi trigger callback for output substreams +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + +      static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up); + + +This is called with a nonzero ``up`` parameter when there is some data +in the substream buffer that must be transmitted. + +To read data from the buffer, call +:c:func:`snd_rawmidi_transmit_peek()`. It will return the number +of bytes that have been read; this will be less than the number of bytes +requested when there are no more data in the buffer. After the data have +been transmitted successfully, call +:c:func:`snd_rawmidi_transmit_ack()` to remove the data from the +substream buffer: + +:: + +  unsigned char data; +  while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) { +          if (snd_mychip_try_to_transmit(data)) +                  snd_rawmidi_transmit_ack(substream, 1); +          else +                  break; /* hardware FIFO full */ +  } + +If you know beforehand that the hardware will accept data, you can use +the :c:func:`snd_rawmidi_transmit()` function which reads some +data and removes them from the buffer at once: + +:: + +  while (snd_mychip_transmit_possible()) { +          unsigned char data; +          if (snd_rawmidi_transmit(substream, &data, 1) != 1) +                  break; /* no more data */ +          snd_mychip_transmit(data); +  } + +If you know beforehand how many bytes you can accept, you can use a +buffer size greater than one with the +:c:func:`snd_rawmidi_transmit\*()` functions. + +The ``trigger`` callback must not sleep. If the hardware FIFO is full +before the substream buffer has been emptied, you have to continue +transmitting data later, either in an interrupt handler, or with a +timer if the hardware doesn't have a MIDI transmit interrupt. + +The ``trigger`` callback is called with a zero ``up`` parameter when +the transmission of data should be aborted. + +RawMIDI trigger callback for input substreams +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + +      static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up); + + +This is called with a nonzero ``up`` parameter to enable receiving data, +or with a zero ``up`` parameter do disable receiving data. + +The ``trigger`` callback must not sleep; the actual reading of data +from the device is usually done in an interrupt handler. + +When data reception is enabled, your interrupt handler should call +:c:func:`snd_rawmidi_receive()` for all received data: + +:: + +  void snd_mychip_midi_interrupt(...) +  { +          while (mychip_midi_available()) { +                  unsigned char data; +                  data = mychip_midi_read(); +                  snd_rawmidi_receive(substream, &data, 1); +          } +  } + + +drain callback +~~~~~~~~~~~~~~ + +:: + +      static void snd_xxx_drain(struct snd_rawmidi_substream *substream); + + +This is only used with output substreams. This function should wait +until all data read from the substream buffer have been transmitted. +This ensures that the device can be closed and the driver unloaded +without losing data. + +This callback is optional. If you do not set ``drain`` in the struct +snd_rawmidi_ops structure, ALSA will simply wait for 50 milliseconds +instead. + +Miscellaneous Devices +===================== + +FM OPL3 +------- + +The FM OPL3 is still used in many chips (mainly for backward +compatibility). ALSA has a nice OPL3 FM control layer, too. The OPL3 API +is defined in ``<sound/opl3.h>``. + +FM registers can be directly accessed through the direct-FM API, defined +in ``<sound/asound_fm.h>``. In ALSA native mode, FM registers are +accessed through the Hardware-Dependent Device direct-FM extension API, +whereas in OSS compatible mode, FM registers can be accessed with the +OSS direct-FM compatible API in ``/dev/dmfmX`` device. + +To create the OPL3 component, you have two functions to call. The first +one is a constructor for the ``opl3_t`` instance. + +:: + +  struct snd_opl3 *opl3; +  snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX, +                  integrated, &opl3); + +The first argument is the card pointer, the second one is the left port +address, and the third is the right port address. In most cases, the +right port is placed at the left port + 2. + +The fourth argument is the hardware type. + +When the left and right ports have been already allocated by the card +driver, pass non-zero to the fifth argument (``integrated``). Otherwise, +the opl3 module will allocate the specified ports by itself. + +When the accessing the hardware requires special method instead of the +standard I/O access, you can create opl3 instance separately with +:c:func:`snd_opl3_new()`. + +:: + +  struct snd_opl3 *opl3; +  snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3); + +Then set ``command``, ``private_data`` and ``private_free`` for the +private access function, the private data and the destructor. The +``l_port`` and ``r_port`` are not necessarily set. Only the command +must be set properly. You can retrieve the data from the +``opl3->private_data`` field.  + +After creating the opl3 instance via :c:func:`snd_opl3_new()`, +call :c:func:`snd_opl3_init()` to initialize the chip to the +proper state. Note that :c:func:`snd_opl3_create()` always calls +it internally. + +If the opl3 instance is created successfully, then create a hwdep device +for this opl3. + +:: + +  struct snd_hwdep *opl3hwdep; +  snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep); + +The first argument is the ``opl3_t`` instance you created, and the +second is the index number, usually 0. + +The third argument is the index-offset for the sequencer client assigned +to the OPL3 port. When there is an MPU401-UART, give 1 for here (UART +always takes 0). + +Hardware-Dependent Devices +-------------------------- + +Some chips need user-space access for special controls or for loading +the micro code. In such a case, you can create a hwdep +(hardware-dependent) device. The hwdep API is defined in +``<sound/hwdep.h>``. You can find examples in opl3 driver or +``isa/sb/sb16_csp.c``. + +The creation of the ``hwdep`` instance is done via +:c:func:`snd_hwdep_new()`. + +:: + +  struct snd_hwdep *hw; +  snd_hwdep_new(card, "My HWDEP", 0, &hw); + +where the third argument is the index number. + +You can then pass any pointer value to the ``private_data``. If you +assign a private data, you should define the destructor, too. The +destructor function is set in the ``private_free`` field. + +:: + +  struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL); +  hw->private_data = p; +  hw->private_free = mydata_free; + +and the implementation of the destructor would be: + +:: + +  static void mydata_free(struct snd_hwdep *hw) +  { +          struct mydata *p = hw->private_data; +          kfree(p); +  } + +The arbitrary file operations can be defined for this instance. The file +operators are defined in the ``ops`` table. For example, assume that +this chip needs an ioctl. + +:: + +  hw->ops.open = mydata_open; +  hw->ops.ioctl = mydata_ioctl; +  hw->ops.release = mydata_release; + +And implement the callback functions as you like. + +IEC958 (S/PDIF) +--------------- + +Usually the controls for IEC958 devices are implemented via the control +interface. There is a macro to compose a name string for IEC958 +controls, :c:func:`SNDRV_CTL_NAME_IEC958()` defined in +``<include/asound.h>``. + +There are some standard controls for IEC958 status bits. These controls +use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``, and the size of element is +fixed as 4 bytes array (value.iec958.status[x]). For the ``info`` +callback, you don't specify the value field for this type (the count +field must be set, though). + +“IEC958 Playback Con Mask” is used to return the bit-mask for the IEC958 +status bits of consumer mode. Similarly, “IEC958 Playback Pro Mask” +returns the bitmask for professional mode. They are read-only controls, +and are defined as MIXER controls (iface = +``SNDRV_CTL_ELEM_IFACE_MIXER``). + +Meanwhile, “IEC958 Playback Default” control is defined for getting and +setting the current default IEC958 bits. Note that this one is usually +defined as a PCM control (iface = ``SNDRV_CTL_ELEM_IFACE_PCM``), +although in some places it's defined as a MIXER control. + +In addition, you can define the control switches to enable/disable or to +set the raw bit mode. The implementation will depend on the chip, but +the control should be named as “IEC958 xxx”, preferably using the +:c:func:`SNDRV_CTL_NAME_IEC958()` macro. + +You can find several cases, for example, ``pci/emu10k1``, +``pci/ice1712``, or ``pci/cmipci.c``. + +Buffer and Memory Management +============================ + +Buffer Types +------------ + +ALSA provides several different buffer allocation functions depending on +the bus and the architecture. All these have a consistent API. The +allocation of physically-contiguous pages is done via +:c:func:`snd_malloc_xxx_pages()` function, where xxx is the bus +type. + +The allocation of pages with fallback is +:c:func:`snd_malloc_xxx_pages_fallback()`. This function tries +to allocate the specified pages but if the pages are not available, it +tries to reduce the page sizes until enough space is found. + +The release the pages, call :c:func:`snd_free_xxx_pages()` +function. + +Usually, ALSA drivers try to allocate and reserve a large contiguous +physical space at the time the module is loaded for the later use. This +is called “pre-allocation”. As already written, you can call the +following function at pcm instance construction time (in the case of PCI +bus). + +:: + +  snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, +                                        snd_dma_pci_data(pci), size, max); + +where ``size`` is the byte size to be pre-allocated and the ``max`` is +the maximum size to be changed via the ``prealloc`` proc file. The +allocator will try to get an area as large as possible within the +given size. + +The second argument (type) and the third argument (device pointer) are +dependent on the bus. In the case of the ISA bus, pass +:c:func:`snd_dma_isa_data()` as the third argument with +``SNDRV_DMA_TYPE_DEV`` type. For the continuous buffer unrelated to the +bus can be pre-allocated with ``SNDRV_DMA_TYPE_CONTINUOUS`` type and the +``snd_dma_continuous_data(GFP_KERNEL)`` device pointer, where +``GFP_KERNEL`` is the kernel allocation flag to use. For the PCI +scatter-gather buffers, use ``SNDRV_DMA_TYPE_DEV_SG`` with +``snd_dma_pci_data(pci)`` (see the `Non-Contiguous Buffers`_ +section). + +Once the buffer is pre-allocated, you can use the allocator in the +``hw_params`` callback: + +:: + +  snd_pcm_lib_malloc_pages(substream, size); + +Note that you have to pre-allocate to use this function. + +External Hardware Buffers +------------------------- + +Some chips have their own hardware buffers and the DMA transfer from the +host memory is not available. In such a case, you need to either 1) +copy/set the audio data directly to the external hardware buffer, or 2) +make an intermediate buffer and copy/set the data from it to the +external hardware buffer in interrupts (or in tasklets, preferably). + +The first case works fine if the external hardware buffer is large +enough. This method doesn't need any extra buffers and thus is more +effective. You need to define the ``copy`` and ``silence`` callbacks +for the data transfer. However, there is a drawback: it cannot be +mmapped. The examples are GUS's GF1 PCM or emu8000's wavetable PCM. + +The second case allows for mmap on the buffer, although you have to +handle an interrupt or a tasklet to transfer the data from the +intermediate buffer to the hardware buffer. You can find an example in +the vxpocket driver. + +Another case is when the chip uses a PCI memory-map region for the +buffer instead of the host memory. In this case, mmap is available only +on certain architectures like the Intel one. In non-mmap mode, the data +cannot be transferred as in the normal way. Thus you need to define the +``copy`` and ``silence`` callbacks as well, as in the cases above. The +examples are found in ``rme32.c`` and ``rme96.c``. + +The implementation of the ``copy`` and ``silence`` callbacks depends +upon whether the hardware supports interleaved or non-interleaved +samples. The ``copy`` callback is defined like below, a bit +differently depending whether the direction is playback or capture: + +:: + +  static int playback_copy(struct snd_pcm_substream *substream, int channel, +               snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count); +  static int capture_copy(struct snd_pcm_substream *substream, int channel, +               snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count); + +In the case of interleaved samples, the second argument (``channel``) is +not used. The third argument (``pos``) points the current position +offset in frames. + +The meaning of the fourth argument is different between playback and +capture. For playback, it holds the source data pointer, and for +capture, it's the destination data pointer. + +The last argument is the number of frames to be copied. + +What you have to do in this callback is again different between playback +and capture directions. In the playback case, you copy the given amount +of data (``count``) at the specified pointer (``src``) to the specified +offset (``pos``) on the hardware buffer. When coded like memcpy-like +way, the copy would be like: + +:: + +  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src, +            frames_to_bytes(runtime, count)); + +For the capture direction, you copy the given amount of data (``count``) +at the specified offset (``pos``) on the hardware buffer to the +specified pointer (``dst``). + +:: + +  my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos), +            frames_to_bytes(runtime, count)); + +Note that both the position and the amount of data are given in frames. + +In the case of non-interleaved samples, the implementation will be a bit +more complicated. + +You need to check the channel argument, and if it's -1, copy the whole +channels. Otherwise, you have to copy only the specified channel. Please +check ``isa/gus/gus_pcm.c`` as an example. + +The ``silence`` callback is also implemented in a similar way + +:: + +  static int silence(struct snd_pcm_substream *substream, int channel, +                     snd_pcm_uframes_t pos, snd_pcm_uframes_t count); + +The meanings of arguments are the same as in the ``copy`` callback, +although there is no ``src/dst`` argument. In the case of interleaved +samples, the channel argument has no meaning, as well as on ``copy`` +callback. + +The role of ``silence`` callback is to set the given amount +(``count``) of silence data at the specified offset (``pos``) on the +hardware buffer. Suppose that the data format is signed (that is, the +silent-data is 0), and the implementation using a memset-like function +would be like:  + +:: + +  my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0, +            frames_to_bytes(runtime, count)); + +In the case of non-interleaved samples, again, the implementation +becomes a bit more complicated. See, for example, ``isa/gus/gus_pcm.c``. + +Non-Contiguous Buffers +---------------------- + +If your hardware supports the page table as in emu10k1 or the buffer +descriptors as in via82xx, you can use the scatter-gather (SG) DMA. ALSA +provides an interface for handling SG-buffers. The API is provided in +``<sound/pcm.h>``. + +For creating the SG-buffer handler, call +:c:func:`snd_pcm_lib_preallocate_pages()` or +:c:func:`snd_pcm_lib_preallocate_pages_for_all()` with +``SNDRV_DMA_TYPE_DEV_SG`` in the PCM constructor like other PCI +pre-allocator. You need to pass ``snd_dma_pci_data(pci)``, where pci is +the :c:type:`struct pci_dev <pci_dev>` pointer of the chip as +well. The ``struct snd_sg_buf`` instance is created as +``substream->dma_private``. You can cast the pointer like: + +:: + +  struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private; + +Then call :c:func:`snd_pcm_lib_malloc_pages()` in the ``hw_params`` +callback as well as in the case of normal PCI buffer. The SG-buffer +handler will allocate the non-contiguous kernel pages of the given size +and map them onto the virtually contiguous memory. The virtual pointer +is addressed in runtime->dma_area. The physical address +(``runtime->dma_addr``) is set to zero, because the buffer is +physically non-contiguous. The physical address table is set up in +``sgbuf->table``. You can get the physical address at a certain offset +via :c:func:`snd_pcm_sgbuf_get_addr()`. + +When a SG-handler is used, you need to set +:c:func:`snd_pcm_sgbuf_ops_page()` as the ``page`` callback. (See +`page callback`_ section.) + +To release the data, call :c:func:`snd_pcm_lib_free_pages()` in +the ``hw_free`` callback as usual. + +Vmalloc'ed Buffers +------------------ + +It's possible to use a buffer allocated via :c:func:`vmalloc()`, for +example, for an intermediate buffer. Since the allocated pages are not +contiguous, you need to set the ``page`` callback to obtain the physical +address at every offset. + +The implementation of ``page`` callback would be like this: + +:: + +  #include <linux/vmalloc.h> + +  /* get the physical page pointer on the given offset */ +  static struct page *mychip_page(struct snd_pcm_substream *substream, +                                  unsigned long offset) +  { +          void *pageptr = substream->runtime->dma_area + offset; +          return vmalloc_to_page(pageptr); +  } + +Proc Interface +============== + +ALSA provides an easy interface for procfs. The proc files are very +useful for debugging. I recommend you set up proc files if you write a +driver and want to get a running status or register dumps. The API is +found in ``<sound/info.h>``. + +To create a proc file, call :c:func:`snd_card_proc_new()`. + +:: + +  struct snd_info_entry *entry; +  int err = snd_card_proc_new(card, "my-file", &entry); + +where the second argument specifies the name of the proc file to be +created. The above example will create a file ``my-file`` under the +card directory, e.g. ``/proc/asound/card0/my-file``. + +Like other components, the proc entry created via +:c:func:`snd_card_proc_new()` will be registered and released +automatically in the card registration and release functions. + +When the creation is successful, the function stores a new instance in +the pointer given in the third argument. It is initialized as a text +proc file for read only. To use this proc file as a read-only text file +as it is, set the read callback with a private data via +:c:func:`snd_info_set_text_ops()`. + +:: + +  snd_info_set_text_ops(entry, chip, my_proc_read); + +where the second argument (``chip``) is the private data to be used in +the callbacks. The third parameter specifies the read buffer size and +the fourth (``my_proc_read``) is the callback function, which is +defined like + +:: + +  static void my_proc_read(struct snd_info_entry *entry, +                           struct snd_info_buffer *buffer); + +In the read callback, use :c:func:`snd_iprintf()` for output +strings, which works just like normal :c:func:`printf()`. For +example, + +:: + +  static void my_proc_read(struct snd_info_entry *entry, +                           struct snd_info_buffer *buffer) +  { +          struct my_chip *chip = entry->private_data; + +          snd_iprintf(buffer, "This is my chip!\n"); +          snd_iprintf(buffer, "Port = %ld\n", chip->port); +  } + +The file permissions can be changed afterwards. As default, it's set as +read only for all users. If you want to add write permission for the +user (root as default), do as follows: + +:: + + entry->mode = S_IFREG | S_IRUGO | S_IWUSR; + +and set the write buffer size and the callback + +:: + +  entry->c.text.write = my_proc_write; + +For the write callback, you can use :c:func:`snd_info_get_line()` +to get a text line, and :c:func:`snd_info_get_str()` to retrieve +a string from the line. Some examples are found in +``core/oss/mixer_oss.c``, core/oss/and ``pcm_oss.c``. + +For a raw-data proc-file, set the attributes as follows: + +:: + +  static struct snd_info_entry_ops my_file_io_ops = { +          .read = my_file_io_read, +  }; + +  entry->content = SNDRV_INFO_CONTENT_DATA; +  entry->private_data = chip; +  entry->c.ops = &my_file_io_ops; +  entry->size = 4096; +  entry->mode = S_IFREG | S_IRUGO; + +For the raw data, ``size`` field must be set properly. This specifies +the maximum size of the proc file access. + +The read/write callbacks of raw mode are more direct than the text mode. +You need to use a low-level I/O functions such as +:c:func:`copy_from/to_user()` to transfer the data. + +:: + +  static ssize_t my_file_io_read(struct snd_info_entry *entry, +                              void *file_private_data, +                              struct file *file, +                              char *buf, +                              size_t count, +                              loff_t pos) +  { +          if (copy_to_user(buf, local_data + pos, count)) +                  return -EFAULT; +          return count; +  } + +If the size of the info entry has been set up properly, ``count`` and +``pos`` are guaranteed to fit within 0 and the given size. You don't +have to check the range in the callbacks unless any other condition is +required. + +Power Management +================ + +If the chip is supposed to work with suspend/resume functions, you need +to add power-management code to the driver. The additional code for +power-management should be ifdef-ed with ``CONFIG_PM``. + +If the driver *fully* supports suspend/resume that is, the device can be +properly resumed to its state when suspend was called, you can set the +``SNDRV_PCM_INFO_RESUME`` flag in the pcm info field. Usually, this is +possible when the registers of the chip can be safely saved and restored +to RAM. If this is set, the trigger callback is called with +``SNDRV_PCM_TRIGGER_RESUME`` after the resume callback completes. + +Even if the driver doesn't support PM fully but partial suspend/resume +is still possible, it's still worthy to implement suspend/resume +callbacks. In such a case, applications would reset the status by +calling :c:func:`snd_pcm_prepare()` and restart the stream +appropriately. Hence, you can define suspend/resume callbacks below but +don't set ``SNDRV_PCM_INFO_RESUME`` info flag to the PCM. + +Note that the trigger with SUSPEND can always be called when +:c:func:`snd_pcm_suspend_all()` is called, regardless of the +``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`` flag affects only the +behavior of :c:func:`snd_pcm_resume()`. (Thus, in theory, +``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to be handled in the trigger +callback when no ``SNDRV_PCM_INFO_RESUME`` flag is set. But, it's better +to keep it for compatibility reasons.) + +In the earlier version of ALSA drivers, a common power-management layer +was provided, but it has been removed. The driver needs to define the +suspend/resume hooks according to the bus the device is connected to. In +the case of PCI drivers, the callbacks look like below: + +:: + +  #ifdef CONFIG_PM +  static int snd_my_suspend(struct pci_dev *pci, pm_message_t state) +  { +          .... /* do things for suspend */ +          return 0; +  } +  static int snd_my_resume(struct pci_dev *pci) +  { +          .... /* do things for suspend */ +          return 0; +  } +  #endif + +The scheme of the real suspend job is as follows. + +1. Retrieve the card and the chip data. + +2. Call :c:func:`snd_power_change_state()` with +   ``SNDRV_CTL_POWER_D3hot`` to change the power status. + +3. Call :c:func:`snd_pcm_suspend_all()` to suspend the running +   PCM streams. + +4. If AC97 codecs are used, call :c:func:`snd_ac97_suspend()` for +   each codec. + +5. Save the register values if necessary. + +6. Stop the hardware if necessary. + +7. Disable the PCI device by calling +   :c:func:`pci_disable_device()`. Then, call +   :c:func:`pci_save_state()` at last. + +A typical code would be like: + +:: + +  static int mychip_suspend(struct pci_dev *pci, pm_message_t state) +  { +          /* (1) */ +          struct snd_card *card = pci_get_drvdata(pci); +          struct mychip *chip = card->private_data; +          /* (2) */ +          snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); +          /* (3) */ +          snd_pcm_suspend_all(chip->pcm); +          /* (4) */ +          snd_ac97_suspend(chip->ac97); +          /* (5) */ +          snd_mychip_save_registers(chip); +          /* (6) */ +          snd_mychip_stop_hardware(chip); +          /* (7) */ +          pci_disable_device(pci); +          pci_save_state(pci); +          return 0; +  } + + +The scheme of the real resume job is as follows. + +1. Retrieve the card and the chip data. + +2. Set up PCI. First, call :c:func:`pci_restore_state()`. Then +   enable the pci device again by calling +   :c:func:`pci_enable_device()`. Call +   :c:func:`pci_set_master()` if necessary, too. + +3. Re-initialize the chip. + +4. Restore the saved registers if necessary. + +5. Resume the mixer, e.g. calling :c:func:`snd_ac97_resume()`. + +6. Restart the hardware (if any). + +7. Call :c:func:`snd_power_change_state()` with +   ``SNDRV_CTL_POWER_D0`` to notify the processes. + +A typical code would be like: + +:: + +  static int mychip_resume(struct pci_dev *pci) +  { +          /* (1) */ +          struct snd_card *card = pci_get_drvdata(pci); +          struct mychip *chip = card->private_data; +          /* (2) */ +          pci_restore_state(pci); +          pci_enable_device(pci); +          pci_set_master(pci); +          /* (3) */ +          snd_mychip_reinit_chip(chip); +          /* (4) */ +          snd_mychip_restore_registers(chip); +          /* (5) */ +          snd_ac97_resume(chip->ac97); +          /* (6) */ +          snd_mychip_restart_chip(chip); +          /* (7) */ +          snd_power_change_state(card, SNDRV_CTL_POWER_D0); +          return 0; +  } + +As shown in the above, it's better to save registers after suspending +the PCM operations via :c:func:`snd_pcm_suspend_all()` or +:c:func:`snd_pcm_suspend()`. It means that the PCM streams are +already stopped when the register snapshot is taken. But, remember that +you don't have to restart the PCM stream in the resume callback. It'll +be restarted via trigger call with ``SNDRV_PCM_TRIGGER_RESUME`` when +necessary. + +OK, we have all callbacks now. Let's set them up. In the initialization +of the card, make sure that you can get the chip data from the card +instance, typically via ``private_data`` field, in case you created the +chip data individually. + +:: + +  static int snd_mychip_probe(struct pci_dev *pci, +                              const struct pci_device_id *pci_id) +  { +          .... +          struct snd_card *card; +          struct mychip *chip; +          int err; +          .... +          err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, +                             0, &card); +          .... +          chip = kzalloc(sizeof(*chip), GFP_KERNEL); +          .... +          card->private_data = chip; +          .... +  } + +When you created the chip data with :c:func:`snd_card_new()`, it's +anyway accessible via ``private_data`` field. + +:: + +  static int snd_mychip_probe(struct pci_dev *pci, +                              const struct pci_device_id *pci_id) +  { +          .... +          struct snd_card *card; +          struct mychip *chip; +          int err; +          .... +          err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, +                             sizeof(struct mychip), &card); +          .... +          chip = card->private_data; +          .... +  } + +If you need a space to save the registers, allocate the buffer for it +here, too, since it would be fatal if you cannot allocate a memory in +the suspend phase. The allocated buffer should be released in the +corresponding destructor. + +And next, set suspend/resume callbacks to the pci_driver. + +:: + +  static struct pci_driver driver = { +          .name = KBUILD_MODNAME, +          .id_table = snd_my_ids, +          .probe = snd_my_probe, +          .remove = snd_my_remove, +  #ifdef CONFIG_PM +          .suspend = snd_my_suspend, +          .resume = snd_my_resume, +  #endif +  }; + +Module Parameters +================= + +There are standard module options for ALSA. At least, each module should +have the ``index``, ``id`` and ``enable`` options. + +If the module supports multiple cards (usually up to 8 = ``SNDRV_CARDS`` +cards), they should be arrays. The default initial values are defined +already as constants for easier programming: + +:: + +  static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; +  static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; +  static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; + +If the module supports only a single card, they could be single +variables, instead. ``enable`` option is not always necessary in this +case, but it would be better to have a dummy option for compatibility. + +The module parameters must be declared with the standard +``module_param()()``, ``module_param_array()()`` and +:c:func:`MODULE_PARM_DESC()` macros. + +The typical coding would be like below: + +:: + +  #define CARD_NAME "My Chip" + +  module_param_array(index, int, NULL, 0444); +  MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard."); +  module_param_array(id, charp, NULL, 0444); +  MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard."); +  module_param_array(enable, bool, NULL, 0444); +  MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard."); + +Also, don't forget to define the module description, classes, license +and devices. Especially, the recent modprobe requires to define the +module license as GPL, etc., otherwise the system is shown as “tainted”. + +:: + +  MODULE_DESCRIPTION("My Chip"); +  MODULE_LICENSE("GPL"); +  MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}"); + + +How To Put Your Driver Into ALSA Tree +===================================== + +General +------- + +So far, you've learned how to write the driver codes. And you might have +a question now: how to put my own driver into the ALSA driver tree? Here +(finally :) the standard procedure is described briefly. + +Suppose that you create a new PCI driver for the card “xyz”. The card +module name would be snd-xyz. The new driver is usually put into the +alsa-driver tree, ``alsa-driver/pci`` directory in the case of PCI +cards. Then the driver is evaluated, audited and tested by developers +and users. After a certain time, the driver will go to the alsa-kernel +tree (to the corresponding directory, such as ``alsa-kernel/pci``) and +eventually will be integrated into the Linux 2.6 tree (the directory +would be ``linux/sound/pci``). + +In the following sections, the driver code is supposed to be put into +alsa-driver tree. The two cases are covered: a driver consisting of a +single source file and one consisting of several source files. + +Driver with A Single Source File +-------------------------------- + +1. Modify alsa-driver/pci/Makefile + +   Suppose you have a file xyz.c. Add the following two lines + +:: + +  snd-xyz-objs := xyz.o +  obj-$(CONFIG_SND_XYZ) += snd-xyz.o + +2. Create the Kconfig entry + +   Add the new entry of Kconfig for your xyz driver. config SND_XYZ +   tristate "Foobar XYZ" depends on SND select SND_PCM help Say Y here +   to include support for Foobar XYZ soundcard. To compile this driver +   as a module, choose M here: the module will be called snd-xyz. the +   line, select SND_PCM, specifies that the driver xyz supports PCM. In +   addition to SND_PCM, the following components are supported for +   select command: SND_RAWMIDI, SND_TIMER, SND_HWDEP, +   SND_MPU401_UART, SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, +   SND_AC97_CODEC. Add the select command for each supported +   component. + +   Note that some selections imply the lowlevel selections. For example, +   PCM includes TIMER, MPU401_UART includes RAWMIDI, AC97_CODEC +   includes PCM, and OPL3_LIB includes HWDEP. You don't need to give +   the lowlevel selections again. + +   For the details of Kconfig script, refer to the kbuild documentation. + +3. Run cvscompile script to re-generate the configure script and build +   the whole stuff again. + +Drivers with Several Source Files +--------------------------------- + +Suppose that the driver snd-xyz have several source files. They are +located in the new subdirectory, pci/xyz. + +1. Add a new directory (``xyz``) in ``alsa-driver/pci/Makefile`` as +   below + +:: + +  obj-$(CONFIG_SND) += xyz/ + + +2. Under the directory ``xyz``, create a Makefile + +:: + +         ifndef SND_TOPDIR +         SND_TOPDIR=../.. +         endif + +         include $(SND_TOPDIR)/toplevel.config +         include $(SND_TOPDIR)/Makefile.conf + +         snd-xyz-objs := xyz.o abc.o def.o + +         obj-$(CONFIG_SND_XYZ) += snd-xyz.o + +         include $(SND_TOPDIR)/Rules.make + +3. Create the Kconfig entry + +   This procedure is as same as in the last section. + +4. Run cvscompile script to re-generate the configure script and build +   the whole stuff again. + +Useful Functions +================ + +:c:func:`snd_printk()` and friends +--------------------------------------- + +ALSA provides a verbose version of the :c:func:`printk()` function. +If a kernel config ``CONFIG_SND_VERBOSE_PRINTK`` is set, this function +prints the given message together with the file name and the line of the +caller. The ``KERN_XXX`` prefix is processed as well as the original +:c:func:`printk()` does, so it's recommended to add this prefix, +e.g. snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\\n"); + +There are also :c:func:`printk()`'s for debugging. +:c:func:`snd_printd()` can be used for general debugging purposes. +If ``CONFIG_SND_DEBUG`` is set, this function is compiled, and works +just like :c:func:`snd_printk()`. If the ALSA is compiled without +the debugging flag, it's ignored. + +:c:func:`snd_printdd()` is compiled in only when +``CONFIG_SND_DEBUG_VERBOSE`` is set. Please note that +``CONFIG_SND_DEBUG_VERBOSE`` is not set as default even if you configure +the alsa-driver with ``--with-debug=full`` option. You need to give +explicitly ``--with-debug=detect`` option instead. + +:c:func:`snd_BUG()` +------------------------ + +It shows the ``BUG?`` message and stack trace as well as +:c:func:`snd_BUG_ON()` at the point. It's useful to show that a +fatal error happens there. + +When no debug flag is set, this macro is ignored. + +:c:func:`snd_BUG_ON()` +---------------------------- + +:c:func:`snd_BUG_ON()` macro is similar with +:c:func:`WARN_ON()` macro. For example, snd_BUG_ON(!pointer); or +it can be used as the condition, if (snd_BUG_ON(non_zero_is_bug)) +return -EINVAL; + +The macro takes an conditional expression to evaluate. When +``CONFIG_SND_DEBUG``, is set, if the expression is non-zero, it shows +the warning message such as ``BUG? (xxx)`` normally followed by stack +trace. In both cases it returns the evaluated value. + +Acknowledgments +=============== + +I would like to thank Phil Kerr for his help for improvement and +corrections of this document. + +Kevin Conder reformatted the original plain-text to the DocBook format. + +Giuliano Pochini corrected typos and contributed the example codes in +the hardware constraints section.  |