aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/Locking34
-rw-r--r--Documentation/filesystems/dax.txt6
-rw-r--r--Documentation/filesystems/f2fs.txt7
-rw-r--r--Documentation/filesystems/proc.txt9
-rw-r--r--Documentation/filesystems/vfs.txt62
5 files changed, 79 insertions, 39 deletions
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index 75eea7ce3d7c..1b3c39a7de62 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -15,11 +15,14 @@ prototypes:
int (*d_compare)(const struct dentry *, const struct dentry *,
unsigned int, const char *, const struct qstr *);
int (*d_delete)(struct dentry *);
+ int (*d_init)(struct dentry *);
void (*d_release)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);
char *(*d_dname)((struct dentry *dentry, char *buffer, int buflen);
struct vfsmount *(*d_automount)(struct path *path);
int (*d_manage)(struct dentry *, bool);
+ struct dentry *(*d_real)(struct dentry *, const struct inode *,
+ unsigned int);
locking rules:
rename_lock ->d_lock may block rcu-walk
@@ -28,12 +31,14 @@ d_weak_revalidate:no no yes no
d_hash no no no maybe
d_compare: yes no no maybe
d_delete: no yes no no
+d_init: no no yes no
d_release: no no yes no
d_prune: no yes no no
d_iput: no no yes no
d_dname: no no no no
d_automount: no no yes no
d_manage: no no yes (ref-walk) maybe
+d_real no no yes no
--------------------------- inode_operations ---------------------------
prototypes:
@@ -66,7 +71,6 @@ prototypes:
struct file *, unsigned open_flag,
umode_t create_mode, int *opened);
int (*tmpfile) (struct inode *, struct dentry *, umode_t);
- int (*dentry_open)(struct dentry *, struct file *, const struct cred *);
locking rules:
all may block
@@ -95,7 +99,6 @@ fiemap: no
update_time: no
atomic_open: yes
tmpfile: no
-dentry_open: no
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
victim.
@@ -179,7 +182,6 @@ unlocks and drops the reference.
prototypes:
int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage)(struct file *, struct page *);
- int (*sync_page)(struct page *);
int (*writepages)(struct address_space *, struct writeback_control *);
int (*set_page_dirty)(struct page *page);
int (*readpages)(struct file *filp, struct address_space *mapping,
@@ -195,7 +197,9 @@ prototypes:
int (*releasepage) (struct page *, int);
void (*freepage)(struct page *);
int (*direct_IO)(struct kiocb *, struct iov_iter *iter);
+ bool (*isolate_page) (struct page *, isolate_mode_t);
int (*migratepage)(struct address_space *, struct page *, struct page *);
+ void (*putback_page) (struct page *);
int (*launder_page)(struct page *);
int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long);
int (*error_remove_page)(struct address_space *, struct page *);
@@ -208,7 +212,6 @@ locking rules:
PageLocked(page) i_mutex
writepage: yes, unlocks (see below)
readpage: yes, unlocks
-sync_page: maybe
writepages:
set_page_dirty no
readpages:
@@ -219,15 +222,17 @@ invalidatepage: yes
releasepage: yes
freepage: yes
direct_IO:
+isolate_page: yes
migratepage: yes (both)
+putback_page: yes
launder_page: yes
is_partially_uptodate: yes
error_remove_page: yes
swap_activate: no
swap_deactivate: no
- ->write_begin(), ->write_end(), ->sync_page() and ->readpage()
-may be called from the request handler (/dev/loop).
+ ->write_begin(), ->write_end() and ->readpage() may be called from
+the request handler (/dev/loop).
->readpage() unlocks the page, either synchronously or via I/O
completion.
@@ -283,11 +288,6 @@ will leave the page itself marked clean but it will be tagged as dirty in the
radix tree. This incoherency can lead to all sorts of hard-to-debug problems
in the filesystem like having dirty inodes at umount and losing written data.
- ->sync_page() locking rules are not well-defined - usually it is called
-with lock on page, but that is not guaranteed. Considering the currently
-existing instances of this method ->sync_page() itself doesn't look
-well-defined...
-
->writepages() is used for periodic writeback and for syscall-initiated
sync operations. The address_space should start I/O against at least
*nr_to_write pages. *nr_to_write must be decremented for each page which is
@@ -395,7 +395,7 @@ prototypes:
int (*release) (struct gendisk *, fmode_t);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
- int (*direct_access) (struct block_device *, sector_t, void __pmem **,
+ int (*direct_access) (struct block_device *, sector_t, void **,
unsigned long *);
int (*media_changed) (struct gendisk *);
void (*unlock_native_capacity) (struct gendisk *);
@@ -544,13 +544,13 @@ subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.
->map_pages() is called when VM asks to map easy accessible pages.
-Filesystem should find and map pages associated with offsets from "pgoff"
-till "max_pgoff". ->map_pages() is called with page table locked and must
+Filesystem should find and map pages associated with offsets from "start_pgoff"
+till "end_pgoff". ->map_pages() is called with page table locked and must
not block. If it's not possible to reach a page without blocking,
filesystem should skip it. Filesystem should use do_set_pte() to setup
-page table entry. Pointer to entry associated with offset "pgoff" is
-passed in "pte" field in vm_fault structure. Pointers to entries for other
-offsets should be calculated relative to "pte".
+page table entry. Pointer to entry associated with the page is passed in
+"pte" field in fault_env structure. Pointers to entries for other offsets
+should be calculated relative to "pte".
->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
diff --git a/Documentation/filesystems/dax.txt b/Documentation/filesystems/dax.txt
index ce4587d257d2..0c16a22521a8 100644
--- a/Documentation/filesystems/dax.txt
+++ b/Documentation/filesystems/dax.txt
@@ -49,6 +49,7 @@ These block devices may be used for inspiration:
- axonram: Axon DDR2 device driver
- brd: RAM backed block device driver
- dcssblk: s390 dcss block device driver
+- pmem: NVDIMM persistent memory driver
Implementation Tips for Filesystem Writers
@@ -75,8 +76,9 @@ calls to get_block() (for example by a page-fault racing with a read()
or a write()) work correctly.
These filesystems may be used for inspiration:
-- ext2: the second extended filesystem, see Documentation/filesystems/ext2.txt
-- ext4: the fourth extended filesystem, see Documentation/filesystems/ext4.txt
+- ext2: see Documentation/filesystems/ext2.txt
+- ext4: see Documentation/filesystems/ext4.txt
+- xfs: see Documentation/filesystems/xfs.txt
Handling Media Errors
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
index e1c9f0849da6..ecd808088362 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.txt
@@ -109,7 +109,9 @@ background_gc=%s Turn on/off cleaning operations, namely garbage
disable_roll_forward Disable the roll-forward recovery routine
norecovery Disable the roll-forward recovery routine, mounted read-
only (i.e., -o ro,disable_roll_forward)
-discard Issue discard/TRIM commands when a segment is cleaned.
+discard/nodiscard Enable/disable real-time discard in f2fs, if discard is
+ enabled, f2fs will issue discard/TRIM commands when a
+ segment is cleaned.
no_heap Disable heap-style segment allocation which finds free
segments for data from the beginning of main area, while
for node from the end of main area.
@@ -151,6 +153,9 @@ noinline_data Disable the inline data feature, inline data feature is
enabled by default.
data_flush Enable data flushing before checkpoint in order to
persist data of regular and symlink.
+mode=%s Control block allocation mode which supports "adaptive"
+ and "lfs". In "lfs" mode, there should be no random
+ writes towards main area.
================================================================================
DEBUGFS ENTRIES
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index 5b61eeae3f6e..68080ad6a75e 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -436,6 +436,7 @@ Private_Dirty: 0 kB
Referenced: 892 kB
Anonymous: 0 kB
AnonHugePages: 0 kB
+ShmemPmdMapped: 0 kB
Shared_Hugetlb: 0 kB
Private_Hugetlb: 0 kB
Swap: 0 kB
@@ -464,6 +465,8 @@ accessed.
a mapping associated with a file may contain anonymous pages: when MAP_PRIVATE
and a page is modified, the file page is replaced by a private anonymous copy.
"AnonHugePages" shows the ammount of memory backed by transparent hugepage.
+"ShmemPmdMapped" shows the ammount of shared (shmem/tmpfs) memory backed by
+huge pages.
"Shared_Hugetlb" and "Private_Hugetlb" show the ammounts of memory backed by
hugetlbfs page which is *not* counted in "RSS" or "PSS" field for historical
reasons. And these are not included in {Shared,Private}_{Clean,Dirty} field.
@@ -868,6 +871,9 @@ VmallocTotal: 112216 kB
VmallocUsed: 428 kB
VmallocChunk: 111088 kB
AnonHugePages: 49152 kB
+ShmemHugePages: 0 kB
+ShmemPmdMapped: 0 kB
+
MemTotal: Total usable ram (i.e. physical ram minus a few reserved
bits and the kernel binary code)
@@ -912,6 +918,9 @@ MemAvailable: An estimate of how much memory is available for starting new
AnonHugePages: Non-file backed huge pages mapped into userspace page tables
Mapped: files which have been mmaped, such as libraries
Shmem: Total memory used by shared memory (shmem) and tmpfs
+ShmemHugePages: Memory used by shared memory (shmem) and tmpfs allocated
+ with huge pages
+ShmemPmdMapped: Shared memory mapped into userspace with huge pages
Slab: in-kernel data structures cache
SReclaimable: Part of Slab, that might be reclaimed, such as caches
SUnreclaim: Part of Slab, that cannot be reclaimed on memory pressure
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index c61a223ef3ff..8a196851f01d 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -364,7 +364,6 @@ struct inode_operations {
int (*atomic_open)(struct inode *, struct dentry *, struct file *,
unsigned open_flag, umode_t create_mode, int *opened);
int (*tmpfile) (struct inode *, struct dentry *, umode_t);
- int (*dentry_open)(struct dentry *, struct file *, const struct cred *);
};
Again, all methods are called without any locks being held, unless
@@ -534,9 +533,7 @@ __sync_single_inode) to check if ->writepages has been successful in
writing out the whole address_space.
The Writeback tag is used by filemap*wait* and sync_page* functions,
-via filemap_fdatawait_range, to wait for all writeback to
-complete. While waiting ->sync_page (if defined) will be called on
-each page that is found to require writeback.
+via filemap_fdatawait_range, to wait for all writeback to complete.
An address_space handler may attach extra information to a page,
typically using the 'private' field in the 'struct page'. If such
@@ -554,8 +551,8 @@ address_space has finer control of write sizes.
The read process essentially only requires 'readpage'. The write
process is more complicated and uses write_begin/write_end or
-set_page_dirty to write data into the address_space, and writepage,
-sync_page, and writepages to writeback data to storage.
+set_page_dirty to write data into the address_space, and writepage
+and writepages to writeback data to storage.
Adding and removing pages to/from an address_space is protected by the
inode's i_mutex.
@@ -592,9 +589,14 @@ struct address_space_operations {
int (*releasepage) (struct page *, int);
void (*freepage)(struct page *);
ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter);
+ /* isolate a page for migration */
+ bool (*isolate_page) (struct page *, isolate_mode_t);
/* migrate the contents of a page to the specified target */
int (*migratepage) (struct page *, struct page *);
+ /* put migration-failed page back to right list */
+ void (*putback_page) (struct page *);
int (*launder_page) (struct page *);
+
int (*is_partially_uptodate) (struct page *, unsigned long,
unsigned long);
void (*is_dirty_writeback) (struct page *, bool *, bool *);
@@ -696,13 +698,6 @@ struct address_space_operations {
but instead uses bmap to find out where the blocks in the file
are and uses those addresses directly.
- dentry_open: *WARNING: probably going away soon, do not use!* This is an
- alternative to f_op->open(), the difference is that this method may open
- a file not necessarily originating from the same filesystem as the one
- i_op->open() was called on. It may be useful for stacking filesystems
- which want to allow native I/O directly on underlying files.
-
-
invalidatepage: If a page has PagePrivate set, then invalidatepage
will be called when part or all of the page is to be removed
from the address space. This generally corresponds to either a
@@ -747,6 +742,10 @@ struct address_space_operations {
and transfer data directly between the storage and the
application's address space.
+ isolate_page: Called by the VM when isolating a movable non-lru page.
+ If page is successfully isolated, VM marks the page as PG_isolated
+ via __SetPageIsolated.
+
migrate_page: This is used to compact the physical memory usage.
If the VM wants to relocate a page (maybe off a memory card
that is signalling imminent failure) it will pass a new page
@@ -754,6 +753,8 @@ struct address_space_operations {
transfer any private data across and update any references
that it has to the page.
+ putback_page: Called by the VM when isolated page's migration fails.
+
launder_page: Called before freeing a page - it writes back the dirty page. To
prevent redirtying the page, it is kept locked during the whole
operation.
@@ -933,11 +934,14 @@ struct dentry_operations {
int (*d_compare)(const struct dentry *, const struct dentry *,
unsigned int, const char *, const struct qstr *);
int (*d_delete)(const struct dentry *);
+ int (*d_init)(struct dentry *);
void (*d_release)(struct dentry *);
void (*d_iput)(struct dentry *, struct inode *);
char *(*d_dname)(struct dentry *, char *, int);
struct vfsmount *(*d_automount)(struct path *);
int (*d_manage)(struct dentry *, bool);
+ struct dentry *(*d_real)(struct dentry *, const struct inode *,
+ unsigned int);
};
d_revalidate: called when the VFS needs to revalidate a dentry. This
@@ -1003,6 +1007,8 @@ struct dentry_operations {
always cache a reachable dentry. d_delete must be constant and
idempotent.
+ d_init: called when a dentry is allocated
+
d_release: called when a dentry is really deallocated
d_iput: called when a dentry loses its inode (just prior to its
@@ -1022,6 +1028,14 @@ struct dentry_operations {
at the end of the buffer, and returns a pointer to the first char.
dynamic_dname() helper function is provided to take care of this.
+ Example :
+
+ static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)
+ {
+ return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
+ dentry->d_inode->i_ino);
+ }
+
d_automount: called when an automount dentry is to be traversed (optional).
This should create a new VFS mount record and return the record to the
caller. The caller is supplied with a path parameter giving the
@@ -1060,13 +1074,23 @@ struct dentry_operations {
This function is only used if DCACHE_MANAGE_TRANSIT is set on the
dentry being transited from.
-Example :
+ d_real: overlay/union type filesystems implement this method to return one of
+ the underlying dentries hidden by the overlay. It is used in three
+ different modes:
-static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen)
-{
- return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
- dentry->d_inode->i_ino);
-}
+ Called from open it may need to copy-up the file depending on the
+ supplied open flags. This mode is selected with a non-zero flags
+ argument. In this mode the d_real method can return an error.
+
+ Called from file_dentry() it returns the real dentry matching the inode
+ argument. The real dentry may be from a lower layer already copied up,
+ but still referenced from the file. This mode is selected with a
+ non-NULL inode argument. This will always succeed.
+
+ With NULL inode and zero flags the topmost real underlying dentry is
+ returned. This will always succeed.
+
+ This method is never called with both non-NULL inode and non-zero flags.
Each dentry has a pointer to its parent dentry, as well as a hash list
of child dentries. Child dentries are basically like files in a