diff options
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r-- | Documentation/filesystems/9p.rst | 2 | ||||
-rw-r--r-- | Documentation/filesystems/autofs.rst | 4 | ||||
-rw-r--r-- | Documentation/filesystems/fsverity.rst | 27 | ||||
-rw-r--r-- | Documentation/filesystems/idmappings.rst | 8 | ||||
-rw-r--r-- | Documentation/filesystems/iomap/design.rst | 6 | ||||
-rw-r--r-- | Documentation/filesystems/journalling.rst | 6 | ||||
-rw-r--r-- | Documentation/filesystems/locking.rst | 6 | ||||
-rw-r--r-- | Documentation/filesystems/netfs_library.rst | 2 | ||||
-rw-r--r-- | Documentation/filesystems/vfs.rst | 12 |
9 files changed, 48 insertions, 25 deletions
diff --git a/Documentation/filesystems/9p.rst b/Documentation/filesystems/9p.rst index 1e0e0bb6fdf9..d270a0aa8d55 100644 --- a/Documentation/filesystems/9p.rst +++ b/Documentation/filesystems/9p.rst @@ -31,7 +31,7 @@ Other applications are described in the following papers: * PROSE I/O: Using 9p to enable Application Partitions http://plan9.escet.urjc.es/iwp9/cready/PROSE_iwp9_2006.pdf * VirtFS: A Virtualization Aware File System pass-through - http://goo.gl/3WPDg + https://kernel.org/doc/ols/2010/ols2010-pages-109-120.pdf Usage ===== diff --git a/Documentation/filesystems/autofs.rst b/Documentation/filesystems/autofs.rst index 3b6e38e646cd..1ac576458c69 100644 --- a/Documentation/filesystems/autofs.rst +++ b/Documentation/filesystems/autofs.rst @@ -18,7 +18,7 @@ key advantages: 2. The names and locations of filesystems can be stored in a remote database and can change at any time. The content - in that data base at the time of access will be used to provide + in that database at the time of access will be used to provide a target for the access. The interpretation of names in the filesystem can even be programmatic rather than database-backed, allowing wildcards for example, and can vary based on the user who @@ -423,7 +423,7 @@ The available ioctl commands are: and objects are expired if the are not in use. **AUTOFS_EXP_FORCED** causes the in use status to be ignored - and objects are expired ieven if they are in use. This assumes + and objects are expired even if they are in use. This assumes that the daemon has requested this because it is capable of performing the umount. diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst index 13e4b18e5dbb..0e2fac7a16da 100644 --- a/Documentation/filesystems/fsverity.rst +++ b/Documentation/filesystems/fsverity.rst @@ -86,6 +86,16 @@ authenticating fs-verity file hashes include: signature in their "security.ima" extended attribute, as controlled by the IMA policy. For more information, see the IMA documentation. +- Integrity Policy Enforcement (IPE). IPE supports enforcing access + control decisions based on immutable security properties of files, + including those protected by fs-verity's built-in signatures. + "IPE policy" specifically allows for the authorization of fs-verity + files using properties ``fsverity_digest`` for identifying + files by their verity digest, and ``fsverity_signature`` to authorize + files with a verified fs-verity's built-in signature. For + details on configuring IPE policies and understanding its operational + modes, please refer to :doc:`IPE admin guide </admin-guide/LSM/ipe>`. + - Trusted userspace code in combination with `Built-in signature verification`_. This approach should be used only with great care. @@ -457,7 +467,11 @@ Enabling this option adds the following: On success, the ioctl persists the signature alongside the Merkle tree. Then, any time the file is opened, the kernel verifies the file's actual digest against this signature, using the certificates - in the ".fs-verity" keyring. + in the ".fs-verity" keyring. This verification happens as long as the + file's signature exists, regardless of the state of the sysctl variable + "fs.verity.require_signatures" described in the next item. The IPE LSM + relies on this behavior to recognize and label fsverity files + that contain a verified built-in fsverity signature. 3. A new sysctl "fs.verity.require_signatures" is made available. When set to 1, the kernel requires that all verity files have a @@ -481,7 +495,7 @@ be carefully considered before using them: - Builtin signature verification does *not* make the kernel enforce that any files actually have fs-verity enabled. Thus, it is not a - complete authentication policy. Currently, if it is used, the only + complete authentication policy. Currently, if it is used, one way to complete the authentication policy is for trusted userspace code to explicitly check whether files have fs-verity enabled with a signature before they are accessed. (With @@ -490,6 +504,15 @@ be carefully considered before using them: could just store the signature alongside the file and verify it itself using a cryptographic library, instead of using this feature. +- Another approach is to utilize fs-verity builtin signature + verification in conjunction with the IPE LSM, which supports defining + a kernel-enforced, system-wide authentication policy that allows only + files with a verified fs-verity builtin signature to perform certain + operations, such as execution. Note that IPE doesn't require + fs.verity.require_signatures=1. + Please refer to :doc:`IPE admin guide </admin-guide/LSM/ipe>` for + more details. + - A file's builtin signature can only be set at the same time that fs-verity is being enabled on the file. Changing or deleting the builtin signature later requires re-creating the file. diff --git a/Documentation/filesystems/idmappings.rst b/Documentation/filesystems/idmappings.rst index ac0af679e61e..77930c77fcfe 100644 --- a/Documentation/filesystems/idmappings.rst +++ b/Documentation/filesystems/idmappings.rst @@ -821,7 +821,7 @@ the same idmapping to the mount. We now perform three steps: /* Map the userspace id down into a kernel id in the filesystem's idmapping. */ make_kuid(u0:k20000:r10000, u1000) = k21000 -2. Verify that the caller's kernel ids can be mapped to userspace ids in the +3. Verify that the caller's kernel ids can be mapped to userspace ids in the filesystem's idmapping:: from_kuid(u0:k20000:r10000, k21000) = u1000 @@ -854,10 +854,10 @@ The same translation algorithm works with the third example. /* Map the userspace id down into a kernel id in the filesystem's idmapping. */ make_kuid(u0:k0:r4294967295, u1000) = k1000 -2. Verify that the caller's kernel ids can be mapped to userspace ids in the +3. Verify that the caller's kernel ids can be mapped to userspace ids in the filesystem's idmapping:: - from_kuid(u0:k0:r4294967295, k21000) = u1000 + from_kuid(u0:k0:r4294967295, k1000) = u1000 So the ownership that lands on disk will be ``u1000``. @@ -994,7 +994,7 @@ from above::: /* Map the userspace id down into a kernel id in the filesystem's idmapping. */ make_kuid(u0:k0:r4294967295, u1000) = k1000 -2. Verify that the caller's filesystem ids can be mapped to userspace ids in the +3. Verify that the caller's filesystem ids can be mapped to userspace ids in the filesystem's idmapping:: from_kuid(u0:k0:r4294967295, k1000) = u1000 diff --git a/Documentation/filesystems/iomap/design.rst b/Documentation/filesystems/iomap/design.rst index f8ee3427bc1a..37594e1c5914 100644 --- a/Documentation/filesystems/iomap/design.rst +++ b/Documentation/filesystems/iomap/design.rst @@ -142,9 +142,9 @@ Definitions * **pure overwrite**: A write operation that does not require any metadata or zeroing operations to perform during either submission or completion. - This implies that the fileystem must have already allocated space + This implies that the filesystem must have already allocated space on disk as ``IOMAP_MAPPED`` and the filesystem must not place any - constaints on IO alignment or size. + constraints on IO alignment or size. The only constraints on I/O alignment are device level (minimum I/O size and alignment, typically sector size). @@ -394,7 +394,7 @@ iomap is concerned: * The **upper** level primitive is provided by the filesystem to coordinate access to different iomap operations. - The exact primitive is specifc to the filesystem and operation, + The exact primitive is specific to the filesystem and operation, but is often a VFS inode, pagecache invalidation, or folio lock. For example, a filesystem might take ``i_rwsem`` before calling ``iomap_file_buffered_write`` and ``iomap_file_unshare`` to prevent diff --git a/Documentation/filesystems/journalling.rst b/Documentation/filesystems/journalling.rst index e18f90ffc6fd..0254f7d57429 100644 --- a/Documentation/filesystems/journalling.rst +++ b/Documentation/filesystems/journalling.rst @@ -137,7 +137,7 @@ Fast commits JBD2 to also allows you to perform file-system specific delta commits known as fast commits. In order to use fast commits, you will need to set following -callbacks that perform correspodning work: +callbacks that perform corresponding work: `journal->j_fc_cleanup_cb`: Cleanup function called after every full commit and fast commit. @@ -149,7 +149,7 @@ File system is free to perform fast commits as and when it wants as long as it gets permission from JBD2 to do so by calling the function :c:func:`jbd2_fc_begin_commit()`. Once a fast commit is done, the client file system should tell JBD2 about it by calling -:c:func:`jbd2_fc_end_commit()`. If file system wants JBD2 to perform a full +:c:func:`jbd2_fc_end_commit()`. If the file system wants JBD2 to perform a full commit immediately after stopping the fast commit it can do so by calling :c:func:`jbd2_fc_end_commit_fallback()`. This is useful if fast commit operation fails for some reason and the only way to guarantee consistency is for JBD2 to @@ -199,7 +199,7 @@ Journal Level .. kernel-doc:: fs/jbd2/recovery.c :internal: -Transasction Level +Transaction Level ~~~~~~~~~~~~~~~~~~ .. kernel-doc:: fs/jbd2/transaction.c diff --git a/Documentation/filesystems/locking.rst b/Documentation/filesystems/locking.rst index e664061ed55d..f5e3676db954 100644 --- a/Documentation/filesystems/locking.rst +++ b/Documentation/filesystems/locking.rst @@ -251,10 +251,10 @@ prototypes:: void (*readahead)(struct readahead_control *); int (*write_begin)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, - struct page **pagep, void **fsdata); + struct folio **foliop, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, - struct page *page, void *fsdata); + struct folio *folio, void *fsdata); sector_t (*bmap)(struct address_space *, sector_t); void (*invalidate_folio) (struct folio *, size_t start, size_t len); bool (*release_folio)(struct folio *, gfp_t); @@ -280,7 +280,7 @@ read_folio: yes, unlocks shared writepages: dirty_folio: maybe readahead: yes, unlocks shared -write_begin: locks the page exclusive +write_begin: locks the folio exclusive write_end: yes, unlocks exclusive bmap: invalidate_folio: yes exclusive diff --git a/Documentation/filesystems/netfs_library.rst b/Documentation/filesystems/netfs_library.rst index 4cc657d743f7..f0d2cb257bb8 100644 --- a/Documentation/filesystems/netfs_library.rst +++ b/Documentation/filesystems/netfs_library.rst @@ -116,7 +116,7 @@ The following services are provided: * Handle local caching, allowing cached data and server-read data to be interleaved for a single request. - * Handle clearing of bufferage that aren't on the server. + * Handle clearing of bufferage that isn't on the server. * Handle retrying of reads that failed, switching reads from the cache to the server as necessary. diff --git a/Documentation/filesystems/vfs.rst b/Documentation/filesystems/vfs.rst index 6e903a903f8f..4f67b5ea0568 100644 --- a/Documentation/filesystems/vfs.rst +++ b/Documentation/filesystems/vfs.rst @@ -810,7 +810,7 @@ cache in your filesystem. The following members are defined: struct page **pagep, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, - struct page *page, void *fsdata); + struct folio *folio, void *fsdata); sector_t (*bmap)(struct address_space *, sector_t); void (*invalidate_folio) (struct folio *, size_t start, size_t len); bool (*release_folio)(struct folio *, gfp_t); @@ -926,12 +926,12 @@ cache in your filesystem. The following members are defined: (if they haven't been read already) so that the updated blocks can be written out properly. - The filesystem must return the locked pagecache page for the - specified offset, in ``*pagep``, for the caller to write into. + The filesystem must return the locked pagecache folio for the + specified offset, in ``*foliop``, for the caller to write into. It must be able to cope with short writes (where the length passed to write_begin is greater than the number of bytes copied - into the page). + into the folio). A void * may be returned in fsdata, which then gets passed into write_end. @@ -944,8 +944,8 @@ cache in your filesystem. The following members are defined: called. len is the original len passed to write_begin, and copied is the amount that was able to be copied. - The filesystem must take care of unlocking the page and - releasing it refcount, and updating i_size. + The filesystem must take care of unlocking the folio, + decrementing its refcount, and updating i_size. Returns < 0 on failure, otherwise the number of bytes (<= 'copied') that were able to be copied into pagecache. |