aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/9p.rst2
-rw-r--r--Documentation/filesystems/autofs.rst4
-rw-r--r--Documentation/filesystems/fsverity.rst27
-rw-r--r--Documentation/filesystems/idmappings.rst8
-rw-r--r--Documentation/filesystems/iomap/design.rst6
-rw-r--r--Documentation/filesystems/journalling.rst6
-rw-r--r--Documentation/filesystems/locking.rst6
-rw-r--r--Documentation/filesystems/netfs_library.rst2
-rw-r--r--Documentation/filesystems/vfs.rst12
9 files changed, 48 insertions, 25 deletions
diff --git a/Documentation/filesystems/9p.rst b/Documentation/filesystems/9p.rst
index 1e0e0bb6fdf9..d270a0aa8d55 100644
--- a/Documentation/filesystems/9p.rst
+++ b/Documentation/filesystems/9p.rst
@@ -31,7 +31,7 @@ Other applications are described in the following papers:
* PROSE I/O: Using 9p to enable Application Partitions
http://plan9.escet.urjc.es/iwp9/cready/PROSE_iwp9_2006.pdf
* VirtFS: A Virtualization Aware File System pass-through
- http://goo.gl/3WPDg
+ https://kernel.org/doc/ols/2010/ols2010-pages-109-120.pdf
Usage
=====
diff --git a/Documentation/filesystems/autofs.rst b/Documentation/filesystems/autofs.rst
index 3b6e38e646cd..1ac576458c69 100644
--- a/Documentation/filesystems/autofs.rst
+++ b/Documentation/filesystems/autofs.rst
@@ -18,7 +18,7 @@ key advantages:
2. The names and locations of filesystems can be stored in
a remote database and can change at any time. The content
- in that data base at the time of access will be used to provide
+ in that database at the time of access will be used to provide
a target for the access. The interpretation of names in the
filesystem can even be programmatic rather than database-backed,
allowing wildcards for example, and can vary based on the user who
@@ -423,7 +423,7 @@ The available ioctl commands are:
and objects are expired if the are not in use.
**AUTOFS_EXP_FORCED** causes the in use status to be ignored
- and objects are expired ieven if they are in use. This assumes
+ and objects are expired even if they are in use. This assumes
that the daemon has requested this because it is capable of
performing the umount.
diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst
index 13e4b18e5dbb..0e2fac7a16da 100644
--- a/Documentation/filesystems/fsverity.rst
+++ b/Documentation/filesystems/fsverity.rst
@@ -86,6 +86,16 @@ authenticating fs-verity file hashes include:
signature in their "security.ima" extended attribute, as controlled
by the IMA policy. For more information, see the IMA documentation.
+- Integrity Policy Enforcement (IPE). IPE supports enforcing access
+ control decisions based on immutable security properties of files,
+ including those protected by fs-verity's built-in signatures.
+ "IPE policy" specifically allows for the authorization of fs-verity
+ files using properties ``fsverity_digest`` for identifying
+ files by their verity digest, and ``fsverity_signature`` to authorize
+ files with a verified fs-verity's built-in signature. For
+ details on configuring IPE policies and understanding its operational
+ modes, please refer to :doc:`IPE admin guide </admin-guide/LSM/ipe>`.
+
- Trusted userspace code in combination with `Built-in signature
verification`_. This approach should be used only with great care.
@@ -457,7 +467,11 @@ Enabling this option adds the following:
On success, the ioctl persists the signature alongside the Merkle
tree. Then, any time the file is opened, the kernel verifies the
file's actual digest against this signature, using the certificates
- in the ".fs-verity" keyring.
+ in the ".fs-verity" keyring. This verification happens as long as the
+ file's signature exists, regardless of the state of the sysctl variable
+ "fs.verity.require_signatures" described in the next item. The IPE LSM
+ relies on this behavior to recognize and label fsverity files
+ that contain a verified built-in fsverity signature.
3. A new sysctl "fs.verity.require_signatures" is made available.
When set to 1, the kernel requires that all verity files have a
@@ -481,7 +495,7 @@ be carefully considered before using them:
- Builtin signature verification does *not* make the kernel enforce
that any files actually have fs-verity enabled. Thus, it is not a
- complete authentication policy. Currently, if it is used, the only
+ complete authentication policy. Currently, if it is used, one
way to complete the authentication policy is for trusted userspace
code to explicitly check whether files have fs-verity enabled with a
signature before they are accessed. (With
@@ -490,6 +504,15 @@ be carefully considered before using them:
could just store the signature alongside the file and verify it
itself using a cryptographic library, instead of using this feature.
+- Another approach is to utilize fs-verity builtin signature
+ verification in conjunction with the IPE LSM, which supports defining
+ a kernel-enforced, system-wide authentication policy that allows only
+ files with a verified fs-verity builtin signature to perform certain
+ operations, such as execution. Note that IPE doesn't require
+ fs.verity.require_signatures=1.
+ Please refer to :doc:`IPE admin guide </admin-guide/LSM/ipe>` for
+ more details.
+
- A file's builtin signature can only be set at the same time that
fs-verity is being enabled on the file. Changing or deleting the
builtin signature later requires re-creating the file.
diff --git a/Documentation/filesystems/idmappings.rst b/Documentation/filesystems/idmappings.rst
index ac0af679e61e..77930c77fcfe 100644
--- a/Documentation/filesystems/idmappings.rst
+++ b/Documentation/filesystems/idmappings.rst
@@ -821,7 +821,7 @@ the same idmapping to the mount. We now perform three steps:
/* Map the userspace id down into a kernel id in the filesystem's idmapping. */
make_kuid(u0:k20000:r10000, u1000) = k21000
-2. Verify that the caller's kernel ids can be mapped to userspace ids in the
+3. Verify that the caller's kernel ids can be mapped to userspace ids in the
filesystem's idmapping::
from_kuid(u0:k20000:r10000, k21000) = u1000
@@ -854,10 +854,10 @@ The same translation algorithm works with the third example.
/* Map the userspace id down into a kernel id in the filesystem's idmapping. */
make_kuid(u0:k0:r4294967295, u1000) = k1000
-2. Verify that the caller's kernel ids can be mapped to userspace ids in the
+3. Verify that the caller's kernel ids can be mapped to userspace ids in the
filesystem's idmapping::
- from_kuid(u0:k0:r4294967295, k21000) = u1000
+ from_kuid(u0:k0:r4294967295, k1000) = u1000
So the ownership that lands on disk will be ``u1000``.
@@ -994,7 +994,7 @@ from above:::
/* Map the userspace id down into a kernel id in the filesystem's idmapping. */
make_kuid(u0:k0:r4294967295, u1000) = k1000
-2. Verify that the caller's filesystem ids can be mapped to userspace ids in the
+3. Verify that the caller's filesystem ids can be mapped to userspace ids in the
filesystem's idmapping::
from_kuid(u0:k0:r4294967295, k1000) = u1000
diff --git a/Documentation/filesystems/iomap/design.rst b/Documentation/filesystems/iomap/design.rst
index f8ee3427bc1a..37594e1c5914 100644
--- a/Documentation/filesystems/iomap/design.rst
+++ b/Documentation/filesystems/iomap/design.rst
@@ -142,9 +142,9 @@ Definitions
* **pure overwrite**: A write operation that does not require any
metadata or zeroing operations to perform during either submission
or completion.
- This implies that the fileystem must have already allocated space
+ This implies that the filesystem must have already allocated space
on disk as ``IOMAP_MAPPED`` and the filesystem must not place any
- constaints on IO alignment or size.
+ constraints on IO alignment or size.
The only constraints on I/O alignment are device level (minimum I/O
size and alignment, typically sector size).
@@ -394,7 +394,7 @@ iomap is concerned:
* The **upper** level primitive is provided by the filesystem to
coordinate access to different iomap operations.
- The exact primitive is specifc to the filesystem and operation,
+ The exact primitive is specific to the filesystem and operation,
but is often a VFS inode, pagecache invalidation, or folio lock.
For example, a filesystem might take ``i_rwsem`` before calling
``iomap_file_buffered_write`` and ``iomap_file_unshare`` to prevent
diff --git a/Documentation/filesystems/journalling.rst b/Documentation/filesystems/journalling.rst
index e18f90ffc6fd..0254f7d57429 100644
--- a/Documentation/filesystems/journalling.rst
+++ b/Documentation/filesystems/journalling.rst
@@ -137,7 +137,7 @@ Fast commits
JBD2 to also allows you to perform file-system specific delta commits known as
fast commits. In order to use fast commits, you will need to set following
-callbacks that perform correspodning work:
+callbacks that perform corresponding work:
`journal->j_fc_cleanup_cb`: Cleanup function called after every full commit and
fast commit.
@@ -149,7 +149,7 @@ File system is free to perform fast commits as and when it wants as long as it
gets permission from JBD2 to do so by calling the function
:c:func:`jbd2_fc_begin_commit()`. Once a fast commit is done, the client
file system should tell JBD2 about it by calling
-:c:func:`jbd2_fc_end_commit()`. If file system wants JBD2 to perform a full
+:c:func:`jbd2_fc_end_commit()`. If the file system wants JBD2 to perform a full
commit immediately after stopping the fast commit it can do so by calling
:c:func:`jbd2_fc_end_commit_fallback()`. This is useful if fast commit operation
fails for some reason and the only way to guarantee consistency is for JBD2 to
@@ -199,7 +199,7 @@ Journal Level
.. kernel-doc:: fs/jbd2/recovery.c
:internal:
-Transasction Level
+Transaction Level
~~~~~~~~~~~~~~~~~~
.. kernel-doc:: fs/jbd2/transaction.c
diff --git a/Documentation/filesystems/locking.rst b/Documentation/filesystems/locking.rst
index e664061ed55d..f5e3676db954 100644
--- a/Documentation/filesystems/locking.rst
+++ b/Documentation/filesystems/locking.rst
@@ -251,10 +251,10 @@ prototypes::
void (*readahead)(struct readahead_control *);
int (*write_begin)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len,
- struct page **pagep, void **fsdata);
+ struct folio **foliop, void **fsdata);
int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
- struct page *page, void *fsdata);
+ struct folio *folio, void *fsdata);
sector_t (*bmap)(struct address_space *, sector_t);
void (*invalidate_folio) (struct folio *, size_t start, size_t len);
bool (*release_folio)(struct folio *, gfp_t);
@@ -280,7 +280,7 @@ read_folio: yes, unlocks shared
writepages:
dirty_folio: maybe
readahead: yes, unlocks shared
-write_begin: locks the page exclusive
+write_begin: locks the folio exclusive
write_end: yes, unlocks exclusive
bmap:
invalidate_folio: yes exclusive
diff --git a/Documentation/filesystems/netfs_library.rst b/Documentation/filesystems/netfs_library.rst
index 4cc657d743f7..f0d2cb257bb8 100644
--- a/Documentation/filesystems/netfs_library.rst
+++ b/Documentation/filesystems/netfs_library.rst
@@ -116,7 +116,7 @@ The following services are provided:
* Handle local caching, allowing cached data and server-read data to be
interleaved for a single request.
- * Handle clearing of bufferage that aren't on the server.
+ * Handle clearing of bufferage that isn't on the server.
* Handle retrying of reads that failed, switching reads from the cache to the
server as necessary.
diff --git a/Documentation/filesystems/vfs.rst b/Documentation/filesystems/vfs.rst
index 6e903a903f8f..4f67b5ea0568 100644
--- a/Documentation/filesystems/vfs.rst
+++ b/Documentation/filesystems/vfs.rst
@@ -810,7 +810,7 @@ cache in your filesystem. The following members are defined:
struct page **pagep, void **fsdata);
int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
- struct page *page, void *fsdata);
+ struct folio *folio, void *fsdata);
sector_t (*bmap)(struct address_space *, sector_t);
void (*invalidate_folio) (struct folio *, size_t start, size_t len);
bool (*release_folio)(struct folio *, gfp_t);
@@ -926,12 +926,12 @@ cache in your filesystem. The following members are defined:
(if they haven't been read already) so that the updated blocks
can be written out properly.
- The filesystem must return the locked pagecache page for the
- specified offset, in ``*pagep``, for the caller to write into.
+ The filesystem must return the locked pagecache folio for the
+ specified offset, in ``*foliop``, for the caller to write into.
It must be able to cope with short writes (where the length
passed to write_begin is greater than the number of bytes copied
- into the page).
+ into the folio).
A void * may be returned in fsdata, which then gets passed into
write_end.
@@ -944,8 +944,8 @@ cache in your filesystem. The following members are defined:
called. len is the original len passed to write_begin, and
copied is the amount that was able to be copied.
- The filesystem must take care of unlocking the page and
- releasing it refcount, and updating i_size.
+ The filesystem must take care of unlocking the folio,
+ decrementing its refcount, and updating i_size.
Returns < 0 on failure, otherwise the number of bytes (<=
'copied') that were able to be copied into pagecache.