diff options
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r-- | Documentation/driver-api/dpll.rst | 21 | ||||
-rw-r--r-- | Documentation/driver-api/driver-model/devres.rst | 2 | ||||
-rw-r--r-- | Documentation/driver-api/iio/buffers.rst | 8 | ||||
-rw-r--r-- | Documentation/driver-api/iio/core.rst | 14 | ||||
-rw-r--r-- | Documentation/driver-api/index.rst | 1 | ||||
-rw-r--r-- | Documentation/driver-api/mmc/index.rst | 1 | ||||
-rw-r--r-- | Documentation/driver-api/mmc/mmc-test.rst | 299 | ||||
-rw-r--r-- | Documentation/driver-api/pwrseq.rst | 95 | ||||
-rw-r--r-- | Documentation/driver-api/thermal/sysfs-api.rst | 68 |
9 files changed, 433 insertions, 76 deletions
diff --git a/Documentation/driver-api/dpll.rst b/Documentation/driver-api/dpll.rst index ea8d16600e16..e6855cd37e85 100644 --- a/Documentation/driver-api/dpll.rst +++ b/Documentation/driver-api/dpll.rst @@ -214,6 +214,27 @@ offset values are fractional with 3-digit decimal places and shell be divided with ``DPLL_PIN_PHASE_OFFSET_DIVIDER`` to get integer part and modulo divided to get fractional part. +Embedded SYNC +============= + +Device may provide ability to use Embedded SYNC feature. It allows +to embed additional SYNC signal into the base frequency of a pin - a one +special pulse of base frequency signal every time SYNC signal pulse +happens. The user can configure the frequency of Embedded SYNC. +The Embedded SYNC capability is always related to a given base frequency +and HW capabilities. The user is provided a range of Embedded SYNC +frequencies supported, depending on current base frequency configured for +the pin. + + ========================================= ================================= + ``DPLL_A_PIN_ESYNC_FREQUENCY`` current Embedded SYNC frequency + ``DPLL_A_PIN_ESYNC_FREQUENCY_SUPPORTED`` nest available Embedded SYNC + frequency ranges + ``DPLL_A_PIN_FREQUENCY_MIN`` attr minimum value of frequency + ``DPLL_A_PIN_FREQUENCY_MAX`` attr maximum value of frequency + ``DPLL_A_PIN_ESYNC_PULSE`` pulse type of Embedded SYNC + ========================================= ================================= + Configuration commands group ============================ diff --git a/Documentation/driver-api/driver-model/devres.rst b/Documentation/driver-api/driver-model/devres.rst index ac9ee7441887..5f2ee8d717b1 100644 --- a/Documentation/driver-api/driver-model/devres.rst +++ b/Documentation/driver-api/driver-model/devres.rst @@ -391,7 +391,7 @@ PCI devm_pci_remap_cfgspace() : ioremap PCI configuration space devm_pci_remap_cfg_resource() : ioremap PCI configuration space resource - pcim_enable_device() : after success, all PCI ops become managed + pcim_enable_device() : after success, some PCI ops become managed pcim_iomap() : do iomap() on a single BAR pcim_iomap_regions() : do request_region() and iomap() on multiple BARs pcim_iomap_regions_request_all() : do request_region() on all and iomap() on multiple BARs diff --git a/Documentation/driver-api/iio/buffers.rst b/Documentation/driver-api/iio/buffers.rst index e83026aebe97..63f364e862d1 100644 --- a/Documentation/driver-api/iio/buffers.rst +++ b/Documentation/driver-api/iio/buffers.rst @@ -15,8 +15,8 @@ trigger source. Multiple data channels can be read at once from IIO buffer sysfs interface ========================== An IIO buffer has an associated attributes directory under -:file:`/sys/bus/iio/iio:device{X}/buffer/*`. Here are some of the existing -attributes: +:file:`/sys/bus/iio/devices/iio:device{X}/buffer/*`. Here are some of the +existing attributes: * :file:`length`, the total number of data samples (capacity) that can be stored by the buffer. @@ -28,8 +28,8 @@ IIO buffer setup The meta information associated with a channel reading placed in a buffer is called a scan element. The important bits configuring scan elements are exposed to userspace applications via the -:file:`/sys/bus/iio/iio:device{X}/scan_elements/` directory. This directory contains -attributes of the following form: +:file:`/sys/bus/iio/devices/iio:device{X}/scan_elements/` directory. This +directory contains attributes of the following form: * :file:`enable`, used for enabling a channel. If and only if its attribute is non *zero*, then a triggered capture will contain data samples for this diff --git a/Documentation/driver-api/iio/core.rst b/Documentation/driver-api/iio/core.rst index 715cf29482a1..dfe438dc91a7 100644 --- a/Documentation/driver-api/iio/core.rst +++ b/Documentation/driver-api/iio/core.rst @@ -24,7 +24,7 @@ then we will show how a device driver makes use of an IIO device. There are two ways for a user space application to interact with an IIO driver. -1. :file:`/sys/bus/iio/iio:device{X}/`, this represents a hardware sensor +1. :file:`/sys/bus/iio/devices/iio:device{X}/`, this represents a hardware sensor and groups together the data channels of the same chip. 2. :file:`/dev/iio:device{X}`, character device node interface used for buffered data transfer and for events information retrieval. @@ -51,8 +51,8 @@ IIO device sysfs interface Attributes are sysfs files used to expose chip info and also allowing applications to set various configuration parameters. For device with -index X, attributes can be found under /sys/bus/iio/iio:deviceX/ directory. -Common attributes are: +index X, attributes can be found under /sys/bus/iio/devices/iio:deviceX/ +directory. Common attributes are: * :file:`name`, description of the physical chip. * :file:`dev`, shows the major:minor pair associated with @@ -140,16 +140,16 @@ Here is how we can make use of the channel's modifiers:: This channel's definition will generate two separate sysfs files for raw data retrieval: -* :file:`/sys/bus/iio/iio:device{X}/in_intensity_ir_raw` -* :file:`/sys/bus/iio/iio:device{X}/in_intensity_both_raw` +* :file:`/sys/bus/iio/devices/iio:device{X}/in_intensity_ir_raw` +* :file:`/sys/bus/iio/devices/iio:device{X}/in_intensity_both_raw` one file for processed data: -* :file:`/sys/bus/iio/iio:device{X}/in_illuminance_input` +* :file:`/sys/bus/iio/devices/iio:device{X}/in_illuminance_input` and one shared sysfs file for sampling frequency: -* :file:`/sys/bus/iio/iio:device{X}/sampling_frequency`. +* :file:`/sys/bus/iio/devices/iio:device{X}/sampling_frequency`. Here is how we can make use of the channel's indexing:: diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index f10decc2c14b..7f83e05769b4 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -124,6 +124,7 @@ Subsystem-specific APIs pps ptp pwm + pwrseq regulator reset rfkill diff --git a/Documentation/driver-api/mmc/index.rst b/Documentation/driver-api/mmc/index.rst index 7339736ac774..8188863e5959 100644 --- a/Documentation/driver-api/mmc/index.rst +++ b/Documentation/driver-api/mmc/index.rst @@ -10,4 +10,5 @@ MMC/SD/SDIO card support mmc-dev-attrs mmc-dev-parts mmc-async-req + mmc-test mmc-tools diff --git a/Documentation/driver-api/mmc/mmc-test.rst b/Documentation/driver-api/mmc/mmc-test.rst new file mode 100644 index 000000000000..1fe33eb43742 --- /dev/null +++ b/Documentation/driver-api/mmc/mmc-test.rst @@ -0,0 +1,299 @@ +.. SPDX-License-Identifier: GPL-2.0 + +======================== +MMC Test Framework +======================== + +Overview +======== + +The `mmc_test` framework is designed to test the performance and reliability of host controller drivers and all devices handled by the MMC subsystem. This includes not only MMC devices but also SD cards and other devices supported by the subsystem. + +The framework provides a variety of tests to evaluate different aspects of the host controller and device interactions, such as read and write performance, data integrity, and error handling. These tests help ensure that the host controller drivers and devices operate correctly under various conditions. + +The `mmc_test` framework is particularly useful for: + +- Verifying the functionality and performance of MMC and SD host controller drivers. +- Ensuring compatibility and reliability of MMC and SD devices. +- Identifying and diagnosing issues in the MMC subsystem. + +The results of the tests are logged in the kernel log, providing detailed information about the test outcomes and any encountered issues. + +Note: whatever is on your card will be overwritten by these tests. + +Initialization +============== + +To use the ``mmc_test`` framework, follow these steps: + +1. **Enable the MMC Test Framework**: + + Ensure that the ``CONFIG_MMC_TEST`` kernel configuration option is enabled. This can be done by configuring the kernel: + + .. code-block:: none + + make menuconfig + + Navigate to: + + Device Drivers ---> + <*> MMC/SD/SDIO card support ---> + [*] MMC host test driver + + Alternatively, you can enable it directly in the kernel configuration file: + + .. code-block:: none + + echo "CONFIG_MMC_TEST=y" >> .config + + Rebuild and install the kernel if necessary. + +2. **Load the MMC Test Module**: + + If the ``mmc_test`` framework is built as a module, you need to load it using ``modprobe``: + + .. code-block:: none + + modprobe mmc_test + +Binding the MMC Card for Testing +================================ + +To enable MMC testing, you need to unbind the MMC card from the ``mmcblk`` driver and bind it to the ``mmc_test`` driver. This allows the ``mmc_test`` framework to take control of the MMC card for testing purposes. + +1. Identify the MMC card: + + .. code-block:: sh + + ls /sys/bus/mmc/devices/ + + This will list the MMC devices, such as ``mmc0:0001``. + +2. Unbind the MMC card from the ``mmcblk`` driver: + + .. code-block:: sh + + echo 'mmc0:0001' > /sys/bus/mmc/drivers/mmcblk/unbind + +3. Bind the MMC card to the ``mmc_test`` driver: + + .. code-block:: sh + + echo 'mmc0:0001' > /sys/bus/mmc/drivers/mmc_test/bind + +After binding, you should see a line in the kernel log indicating that the card has been claimed for testing: + +.. code-block:: none + + mmc_test mmc0:0001: Card claimed for testing. + + +Usage - Debugfs Entries +======================= + +Once the ``mmc_test`` framework is enabled, you can interact with the following debugfs entries located in ``/sys/kernel/debug/mmc0/mmc0:0001``: + +1. **test**: + + This file is used to run specific tests. Write the test number to this file to execute a test. + + .. code-block:: sh + + echo <test_number> > /sys/kernel/debug/mmc0/mmc0:0001/test + + The test result is indicated in the kernel log info. You can view the kernel log using the `dmesg` command or by checking the log file in `/var/log/`. + + .. code-block:: sh + + dmesg | grep mmc0 + + Example: + + To run test number 4 (Basic read with data verification): + + .. code-block:: sh + + echo 4 > /sys/kernel/debug/mmc0/mmc0:0001/test + + Check the kernel log for the result: + + .. code-block:: sh + + dmesg | grep mmc0 + +2. **testlist**: + + This file lists all available tests. You can read this file to see the list of tests and their corresponding numbers. + + .. code-block:: sh + + cat /sys/kernel/debug/mmc0/mmc0:0001/testlist + + The available tests are listed in the table below: + ++------+--------------------------------+---------------------------------------------+ +| Test | Test Name | Test Description | ++======+================================+=============================================+ +| 0 | Run all tests | Runs all available tests | ++------+--------------------------------+---------------------------------------------+ +| 1 | Basic write | Performs a basic write operation of a | +| | | single 512-Byte block to the MMC card | +| | | without data verification. | ++------+--------------------------------+---------------------------------------------+ +| 2 | Basic read | Same for read | ++------+--------------------------------+---------------------------------------------+ +| 3 | Basic write | Performs a basic write operation of a | +| | (with data verification) | single 512-Byte block to the MMC card | +| | | with data verification by reading back | +| | | the written data and comparing it. | ++------+--------------------------------+---------------------------------------------+ +| 4 | Basic read | Same for read | +| | (with data verification) | | ++------+--------------------------------+---------------------------------------------+ +| 5 | Multi-block write | Performs a multi-block write operation of | +| | | 8 blocks (each 512 bytes) to the MMC card. | ++------+--------------------------------+---------------------------------------------+ +| 6 | Multi-block read | Same for read | ++------+--------------------------------+---------------------------------------------+ +| 7 | Power of two block writes | Performs write operations with block sizes | +| | | that are powers of two, starting from 1 | +| | | byte up to 256 bytes, to the MMC card. | ++------+--------------------------------+---------------------------------------------+ +| 8 | Power of two block reads | Same for read | ++------+--------------------------------+---------------------------------------------+ +| 9 | Weird sized block writes | Performs write operations with varying | +| | | block sizes starting from 3 bytes and | +| | | increasing by 7 bytes each iteration, up | +| | | to 511 bytes, to the MMC card. | ++------+--------------------------------+---------------------------------------------+ +| 10 | Weird sized block reads | same for read | ++------+--------------------------------+---------------------------------------------+ +| 11 | Badly aligned write | Performs write operations with buffers | +| | | starting at different alignments (0 to 7 | +| | | bytes offset) to test how the MMC card | +| | | handles unaligned data transfers. | ++------+--------------------------------+---------------------------------------------+ +| 12 | Badly aligned read | same for read | ++------+--------------------------------+---------------------------------------------+ +| 13 | Badly aligned multi-block write| same for multi-write | ++------+--------------------------------+---------------------------------------------+ +| 14 | Badly aligned multi-block read | same for multi-read | ++------+--------------------------------+---------------------------------------------+ +| 15 | Proper xfer_size at write | intentionally create a broken transfer by | +| | (Start failure) | modifying the MMC request in a way that it | +| | | will not perform as expected, e.g. use | +| | | MMC_WRITE_BLOCK for a multi-block transfer | ++------+--------------------------------+---------------------------------------------+ +| 16 | Proper xfer_size at read | same for read | +| | (Start failure) | | ++------+--------------------------------+---------------------------------------------+ +| 17 | Proper xfer_size at write | same for 2 blocks | +| | (Midway failure) | | ++------+--------------------------------+---------------------------------------------+ +| 18 | Proper xfer_size at read | same for read | +| | (Midway failure) | | ++------+--------------------------------+---------------------------------------------+ +| 19 | Highmem write | use a high memory page | ++------+--------------------------------+---------------------------------------------+ +| 20 | Highmem read | same for read | ++------+--------------------------------+---------------------------------------------+ +| 21 | Multi-block highmem write | same for multi-write | ++------+--------------------------------+---------------------------------------------+ +| 22 | Multi-block highmem read | same for mult-read | ++------+--------------------------------+---------------------------------------------+ +| 23 | Best-case read performance | Performs 512K sequential read (non sg) | ++------+--------------------------------+---------------------------------------------+ +| 24 | Best-case write performance | same for write | ++------+--------------------------------+---------------------------------------------+ +| 25 | Best-case read performance | Same using sg | +| | (Into scattered pages) | | ++------+--------------------------------+---------------------------------------------+ +| 26 | Best-case write performance | same for write | +| | (From scattered pages) | | ++------+--------------------------------+---------------------------------------------+ +| 27 | Single read performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 28 | Single write performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 29 | Single trim performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 30 | Consecutive read performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 31 | Consecutive write performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 32 | Consecutive trim performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 33 | Random read performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 34 | Random write performance | By transfer size | ++------+--------------------------------+---------------------------------------------+ +| 35 | Large sequential read | Into scattered pages | ++------+--------------------------------+---------------------------------------------+ +| 36 | Large sequential write | From scattered pages | ++------+--------------------------------+---------------------------------------------+ +| 37 | Write performance | With blocking req 4k to 4MB | ++------+--------------------------------+---------------------------------------------+ +| 38 | Write performance | With non-blocking req 4k to 4MB | ++------+--------------------------------+---------------------------------------------+ +| 39 | Read performance | With blocking req 4k to 4MB | ++------+--------------------------------+---------------------------------------------+ +| 40 | Read performance | With non-blocking req 4k to 4MB | ++------+--------------------------------+---------------------------------------------+ +| 41 | Write performance | Blocking req 1 to 512 sg elems | ++------+--------------------------------+---------------------------------------------+ +| 42 | Write performance | Non-blocking req 1 to 512 sg elems | ++------+--------------------------------+---------------------------------------------+ +| 43 | Read performance | Blocking req 1 to 512 sg elems | ++------+--------------------------------+---------------------------------------------+ +| 44 | Read performance | Non-blocking req 1 to 512 sg elems | ++------+--------------------------------+---------------------------------------------+ +| 45 | Reset test | | ++------+--------------------------------+---------------------------------------------+ +| 46 | Commands during read | No Set Block Count (CMD23) | ++------+--------------------------------+---------------------------------------------+ +| 47 | Commands during write | No Set Block Count (CMD23) | ++------+--------------------------------+---------------------------------------------+ +| 48 | Commands during read | Use Set Block Count (CMD23) | ++------+--------------------------------+---------------------------------------------+ +| 49 | Commands during write | Use Set Block Count (CMD23) | ++------+--------------------------------+---------------------------------------------+ +| 50 | Commands during non-blocking | Read - use Set Block Count (CMD23) | ++------+--------------------------------+---------------------------------------------+ +| 51 | Commands during non-blocking | Write - use Set Block Count (CMD23) | ++------+--------------------------------+---------------------------------------------+ + +Test Results +============ + +The results of the tests are logged in the kernel log. Each test logs the start, end, and result of the test. The possible results are: + +- **OK**: The test completed successfully. +- **FAILED**: The test failed. +- **UNSUPPORTED (by host)**: The test is unsupported by the host. +- **UNSUPPORTED (by card)**: The test is unsupported by the card. +- **ERROR**: An error occurred during the test. + +Example Kernel Log Output +========================= + +When running a test, you will see log entries similar to the following in the kernel log: + +.. code-block:: none + + [ 1234.567890] mmc0: Starting tests of card mmc0:0001... + [ 1234.567891] mmc0: Test case 4. Basic read (with data verification)... + [ 1234.567892] mmc0: Result: OK + [ 1234.567893] mmc0: Tests completed. + +In this example, test case 4 (Basic read with data verification) was executed, and the result was OK. + + +Contributing +============ + +Contributions to the `mmc_test` framework are welcome. Please follow the standard Linux kernel contribution guidelines and submit patches to the appropriate maintainers. + +Contact +======= + +For more information or to report issues, please contact the MMC subsystem maintainers. diff --git a/Documentation/driver-api/pwrseq.rst b/Documentation/driver-api/pwrseq.rst new file mode 100644 index 000000000000..a644084ded17 --- /dev/null +++ b/Documentation/driver-api/pwrseq.rst @@ -0,0 +1,95 @@ +.. SPDX-License-Identifier: GPL-2.0-only +.. Copyright 2024 Linaro Ltd. + +==================== +Power Sequencing API +==================== + +:Author: Bartosz Golaszewski + +Introduction +============ + +This framework is designed to abstract complex power-up sequences that are +shared between multiple logical devices in the linux kernel. + +The intention is to allow consumers to obtain a power sequencing handle +exposed by the power sequence provider and delegate the actual requesting and +control of the underlying resources as well as to allow the provider to +mitigate any potential conflicts between multiple users behind the scenes. + +Glossary +-------- + +The power sequencing API uses a number of terms specific to the subsystem: + +Unit + + A unit is a discreet chunk of a power sequence. For instance one unit may + enable a set of regulators, another may enable a specific GPIO. Units can + define dependencies in the form of other units that must be enabled before + it itself can be. + +Target + + A target is a set of units (composed of the "final" unit and its + dependencies) that a consumer selects by its name when requesting a handle + to the power sequencer. Via the dependency system, multiple targets may + share the same parts of a power sequence but ignore parts that are + irrelevant. + +Descriptor + + A handle passed by the pwrseq core to every consumer that serves as the + entry point to the provider layer. It ensures coherence between different + users and keeps reference counting consistent. + +Consumer interface +================== + +The consumer API is aimed to be as simple as possible. The driver interested in +getting a descriptor from the power sequencer should call pwrseq_get() and +specify the name of the target it wants to reach in the sequence after calling +pwrseq_power_up(). The descriptor can be released by calling pwrseq_put() and +the consumer can request the powering down of its target with +pwrseq_power_off(). Note that there is no guarantee that pwrseq_power_off() +will have any effect as there may be multiple users of the underlying resources +who may keep them active. + +Provider interface +================== + +The provider API is admittedly not nearly as straightforward as the one for +consumers but it makes up for it in flexibility. + +Each provider can logically split the power-up sequence into descrete chunks +(units) and define their dependencies. They can then expose named targets that +consumers may use as the final point in the sequence that they wish to reach. + +To that end the providers fill out a set of configuration structures and +register with the pwrseq subsystem by calling pwrseq_device_register(). + +Dynamic consumer matching +------------------------- + +The main difference between pwrseq and other linux kernel providers is the +mechanism for dynamic matching of consumers and providers. Every power sequence +provider driver must implement the `match()` callback and pass it to the pwrseq +core when registering with the subsystems. + +When a client requests a sequencer handle, the core will call this callback for +every registered provider and let it flexibly figure out whether the proposed +client device is indeed its consumer. For example: if the provider binds to the +device-tree node representing a power management unit of a chipset and the +consumer driver controls one of its modules, the provider driver may parse the +relevant regulator supply properties in device tree and see if they lead from +the PMU to the consumer. + +API reference +============= + +.. kernel-doc:: include/linux/pwrseq/provider.h + :internal: + +.. kernel-doc:: drivers/power/sequencing/core.c + :export: diff --git a/Documentation/driver-api/thermal/sysfs-api.rst b/Documentation/driver-api/thermal/sysfs-api.rst index 978198f8a18b..c803b89b7248 100644 --- a/Documentation/driver-api/thermal/sysfs-api.rst +++ b/Documentation/driver-api/thermal/sysfs-api.rst @@ -58,10 +58,9 @@ temperature) and throttle appropriate devices. ops: thermal zone device call-backs. - .bind: - bind the thermal zone device with a thermal cooling device. - .unbind: - unbind the thermal zone device with a thermal cooling device. + .should_bind: + check whether or not a given cooling device should be bound to + a given trip point in this thermal zone. .get_temp: get the current temperature of the thermal zone. .set_trips: @@ -246,56 +245,6 @@ temperature) and throttle appropriate devices. It deletes the corresponding entry from /sys/class/thermal folder and unbinds itself from all the thermal zone devices using it. -1.3 interface for binding a thermal zone device with a thermal cooling device ------------------------------------------------------------------------------ - - :: - - int thermal_zone_bind_cooling_device(struct thermal_zone_device *tz, - int trip, struct thermal_cooling_device *cdev, - unsigned long upper, unsigned long lower, unsigned int weight); - - This interface function binds a thermal cooling device to a particular trip - point of a thermal zone device. - - This function is usually called in the thermal zone device .bind callback. - - tz: - the thermal zone device - cdev: - thermal cooling device - trip: - indicates which trip point in this thermal zone the cooling device - is associated with. - upper: - the Maximum cooling state for this trip point. - THERMAL_NO_LIMIT means no upper limit, - and the cooling device can be in max_state. - lower: - the Minimum cooling state can be used for this trip point. - THERMAL_NO_LIMIT means no lower limit, - and the cooling device can be in cooling state 0. - weight: - the influence of this cooling device in this thermal - zone. See 1.4.1 below for more information. - - :: - - int thermal_zone_unbind_cooling_device(struct thermal_zone_device *tz, - int trip, struct thermal_cooling_device *cdev); - - This interface function unbinds a thermal cooling device from a particular - trip point of a thermal zone device. This function is usually called in - the thermal zone device .unbind callback. - - tz: - the thermal zone device - cdev: - thermal cooling device - trip: - indicates which trip point in this thermal zone the cooling device - is associated with. - 1.4 Thermal Zone Parameters --------------------------- @@ -366,8 +315,6 @@ Thermal cooling device sys I/F, created once it's registered:: Then next two dynamic attributes are created/removed in pairs. They represent the relationship between a thermal zone and its associated cooling device. -They are created/removed for each successful execution of -thermal_zone_bind_cooling_device/thermal_zone_unbind_cooling_device. :: @@ -459,14 +406,7 @@ are supposed to implement the callback. If they don't, the thermal framework calculated the trend by comparing the previous and the current temperature values. -4.2. get_thermal_instance -------------------------- - -This function returns the thermal_instance corresponding to a given -{thermal_zone, cooling_device, trip_point} combination. Returns NULL -if such an instance does not exist. - -4.3. thermal_cdev_update +4.2. thermal_cdev_update ------------------------ This function serves as an arbitrator to set the state of a cooling |