aboutsummaryrefslogtreecommitdiff
path: root/Documentation/dev-tools
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/dev-tools')
-rw-r--r--Documentation/dev-tools/conf.py10
-rw-r--r--Documentation/dev-tools/gcov.rst18
-rw-r--r--Documentation/dev-tools/index.rst1
-rw-r--r--Documentation/dev-tools/kasan.rst66
-rw-r--r--Documentation/dev-tools/kmemleak.rst50
-rw-r--r--Documentation/dev-tools/kselftest.rst150
-rw-r--r--Documentation/dev-tools/kunit/api/index.rst16
-rw-r--r--Documentation/dev-tools/kunit/api/test.rst11
-rw-r--r--Documentation/dev-tools/kunit/faq.rst62
-rw-r--r--Documentation/dev-tools/kunit/index.rst79
-rw-r--r--Documentation/dev-tools/kunit/start.rst180
-rw-r--r--Documentation/dev-tools/kunit/usage.rst576
-rw-r--r--Documentation/dev-tools/sparse.rst5
13 files changed, 1186 insertions, 38 deletions
diff --git a/Documentation/dev-tools/conf.py b/Documentation/dev-tools/conf.py
deleted file mode 100644
index 7faafa3f7888..000000000000
--- a/Documentation/dev-tools/conf.py
+++ /dev/null
@@ -1,10 +0,0 @@
-# -*- coding: utf-8; mode: python -*-
-
-project = "Development tools for the kernel"
-
-tags.add("subproject")
-
-latex_documents = [
- ('index', 'dev-tools.tex', project,
- 'The kernel development community', 'manual'),
-]
diff --git a/Documentation/dev-tools/gcov.rst b/Documentation/dev-tools/gcov.rst
index 69a7d90c320a..46aae52a41d0 100644
--- a/Documentation/dev-tools/gcov.rst
+++ b/Documentation/dev-tools/gcov.rst
@@ -34,10 +34,6 @@ Configure the kernel with::
CONFIG_DEBUG_FS=y
CONFIG_GCOV_KERNEL=y
-select the gcc's gcov format, default is autodetect based on gcc version::
-
- CONFIG_GCOV_FORMAT_AUTODETECT=y
-
and to get coverage data for the entire kernel::
CONFIG_GCOV_PROFILE_ALL=y
@@ -169,6 +165,20 @@ b) gcov is run on the BUILD machine
[user@build] gcov -o /tmp/coverage/tmp/out/init main.c
+Note on compilers
+-----------------
+
+GCC and LLVM gcov tools are not necessarily compatible. Use gcov_ to work with
+GCC-generated .gcno and .gcda files, and use llvm-cov_ for Clang.
+
+.. _gcov: http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
+.. _llvm-cov: https://llvm.org/docs/CommandGuide/llvm-cov.html
+
+Build differences between GCC and Clang gcov are handled by Kconfig. It
+automatically selects the appropriate gcov format depending on the detected
+toolchain.
+
+
Troubleshooting
---------------
diff --git a/Documentation/dev-tools/index.rst b/Documentation/dev-tools/index.rst
index b0522a4dd107..09dee10d2592 100644
--- a/Documentation/dev-tools/index.rst
+++ b/Documentation/dev-tools/index.rst
@@ -24,6 +24,7 @@ whole; patches welcome!
gdb-kernel-debugging
kgdb
kselftest
+ kunit/index
.. only:: subproject and html
diff --git a/Documentation/dev-tools/kasan.rst b/Documentation/dev-tools/kasan.rst
index b72d07d70239..e4d66e7c50de 100644
--- a/Documentation/dev-tools/kasan.rst
+++ b/Documentation/dev-tools/kasan.rst
@@ -41,6 +41,9 @@ smaller binary while the latter is 1.1 - 2 times faster.
Both KASAN modes work with both SLUB and SLAB memory allocators.
For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
+To augment reports with last allocation and freeing stack of the physical page,
+it is recommended to enable also CONFIG_PAGE_OWNER and boot with page_owner=on.
+
To disable instrumentation for specific files or directories, add a line
similar to the following to the respective kernel Makefile:
@@ -215,3 +218,66 @@ brk handler is used to print bug reports.
A potential expansion of this mode is a hardware tag-based mode, which would
use hardware memory tagging support instead of compiler instrumentation and
manual shadow memory manipulation.
+
+What memory accesses are sanitised by KASAN?
+--------------------------------------------
+
+The kernel maps memory in a number of different parts of the address
+space. This poses something of a problem for KASAN, which requires
+that all addresses accessed by instrumented code have a valid shadow
+region.
+
+The range of kernel virtual addresses is large: there is not enough
+real memory to support a real shadow region for every address that
+could be accessed by the kernel.
+
+By default
+~~~~~~~~~~
+
+By default, architectures only map real memory over the shadow region
+for the linear mapping (and potentially other small areas). For all
+other areas - such as vmalloc and vmemmap space - a single read-only
+page is mapped over the shadow area. This read-only shadow page
+declares all memory accesses as permitted.
+
+This presents a problem for modules: they do not live in the linear
+mapping, but in a dedicated module space. By hooking in to the module
+allocator, KASAN can temporarily map real shadow memory to cover
+them. This allows detection of invalid accesses to module globals, for
+example.
+
+This also creates an incompatibility with ``VMAP_STACK``: if the stack
+lives in vmalloc space, it will be shadowed by the read-only page, and
+the kernel will fault when trying to set up the shadow data for stack
+variables.
+
+CONFIG_KASAN_VMALLOC
+~~~~~~~~~~~~~~~~~~~~
+
+With ``CONFIG_KASAN_VMALLOC``, KASAN can cover vmalloc space at the
+cost of greater memory usage. Currently this is only supported on x86.
+
+This works by hooking into vmalloc and vmap, and dynamically
+allocating real shadow memory to back the mappings.
+
+Most mappings in vmalloc space are small, requiring less than a full
+page of shadow space. Allocating a full shadow page per mapping would
+therefore be wasteful. Furthermore, to ensure that different mappings
+use different shadow pages, mappings would have to be aligned to
+``KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE``.
+
+Instead, we share backing space across multiple mappings. We allocate
+a backing page when a mapping in vmalloc space uses a particular page
+of the shadow region. This page can be shared by other vmalloc
+mappings later on.
+
+We hook in to the vmap infrastructure to lazily clean up unused shadow
+memory.
+
+To avoid the difficulties around swapping mappings around, we expect
+that the part of the shadow region that covers the vmalloc space will
+not be covered by the early shadow page, but will be left
+unmapped. This will require changes in arch-specific code.
+
+This allows ``VMAP_STACK`` support on x86, and can simplify support of
+architectures that do not have a fixed module region.
diff --git a/Documentation/dev-tools/kmemleak.rst b/Documentation/dev-tools/kmemleak.rst
index e6f51260ff32..3a289e8a1d12 100644
--- a/Documentation/dev-tools/kmemleak.rst
+++ b/Documentation/dev-tools/kmemleak.rst
@@ -2,8 +2,8 @@ Kernel Memory Leak Detector
===========================
Kmemleak provides a way of detecting possible kernel memory leaks in a
-way similar to a tracing garbage collector
-(https://en.wikipedia.org/wiki/Garbage_collection_%28computer_science%29#Tracing_garbage_collectors),
+way similar to a `tracing garbage collector
+<https://en.wikipedia.org/wiki/Tracing_garbage_collection>`_,
with the difference that the orphan objects are not freed but only
reported via /sys/kernel/debug/kmemleak. A similar method is used by the
Valgrind tool (``memcheck --leak-check``) to detect the memory leaks in
@@ -15,10 +15,13 @@ Usage
CONFIG_DEBUG_KMEMLEAK in "Kernel hacking" has to be enabled. A kernel
thread scans the memory every 10 minutes (by default) and prints the
-number of new unreferenced objects found. To display the details of all
-the possible memory leaks::
+number of new unreferenced objects found. If the ``debugfs`` isn't already
+mounted, mount with::
# mount -t debugfs nodev /sys/kernel/debug/
+
+To display the details of all the possible scanned memory leaks::
+
# cat /sys/kernel/debug/kmemleak
To trigger an intermediate memory scan::
@@ -66,12 +69,15 @@ the kernel command line.
Memory may be allocated or freed before kmemleak is initialised and
these actions are stored in an early log buffer. The size of this buffer
-is configured via the CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE option.
+is configured via the CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE option.
If CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF are enabled, the kmemleak is
disabled by default. Passing ``kmemleak=on`` on the kernel command
line enables the function.
+If you are getting errors like "Error while writing to stdout" or "write_loop:
+Invalid argument", make sure kmemleak is properly enabled.
+
Basic Algorithm
---------------
@@ -218,3 +224,37 @@ the pointer is calculated by other methods than the usual container_of
macro or the pointer is stored in a location not scanned by kmemleak.
Page allocations and ioremap are not tracked.
+
+Testing with kmemleak-test
+--------------------------
+
+To check if you have all set up to use kmemleak, you can use the kmemleak-test
+module, a module that deliberately leaks memory. Set CONFIG_DEBUG_KMEMLEAK_TEST
+as module (it can't be used as bult-in) and boot the kernel with kmemleak
+enabled. Load the module and perform a scan with::
+
+ # modprobe kmemleak-test
+ # echo scan > /sys/kernel/debug/kmemleak
+
+Note that the you may not get results instantly or on the first scanning. When
+kmemleak gets results, it'll log ``kmemleak: <count of leaks> new suspected
+memory leaks``. Then read the file to see then::
+
+ # cat /sys/kernel/debug/kmemleak
+ unreferenced object 0xffff89862ca702e8 (size 32):
+ comm "modprobe", pid 2088, jiffies 4294680594 (age 375.486s)
+ hex dump (first 32 bytes):
+ 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
+ 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk.
+ backtrace:
+ [<00000000e0a73ec7>] 0xffffffffc01d2036
+ [<000000000c5d2a46>] do_one_initcall+0x41/0x1df
+ [<0000000046db7e0a>] do_init_module+0x55/0x200
+ [<00000000542b9814>] load_module+0x203c/0x2480
+ [<00000000c2850256>] __do_sys_finit_module+0xba/0xe0
+ [<000000006564e7ef>] do_syscall_64+0x43/0x110
+ [<000000007c873fa6>] entry_SYSCALL_64_after_hwframe+0x44/0xa9
+ ...
+
+Removing the module with ``rmmod kmemleak_test`` should also trigger some
+kmemleak results.
diff --git a/Documentation/dev-tools/kselftest.rst b/Documentation/dev-tools/kselftest.rst
index 7756f7a7c23b..ecdfdc9d4b03 100644
--- a/Documentation/dev-tools/kselftest.rst
+++ b/Documentation/dev-tools/kselftest.rst
@@ -7,6 +7,11 @@ directory. These are intended to be small tests to exercise individual code
paths in the kernel. Tests are intended to be run after building, installing
and booting a kernel.
+You can find additional information on Kselftest framework, how to
+write new tests using the framework on Kselftest wiki:
+
+https://kselftest.wiki.kernel.org/
+
On some systems, hot-plug tests could hang forever waiting for cpu and
memory to be ready to be offlined. A special hot-plug target is created
to run the full range of hot-plug tests. In default mode, hot-plug tests run
@@ -14,6 +19,10 @@ in safe mode with a limited scope. In limited mode, cpu-hotplug test is
run on a single cpu as opposed to all hotplug capable cpus, and memory
hotplug test is run on 2% of hotplug capable memory instead of 10%.
+kselftest runs as a userspace process. Tests that can be written/run in
+userspace may wish to use the `Test Harness`_. Tests that need to be
+run in kernel space may wish to use a `Test Module`_.
+
Running the selftests (hotplug tests are run in limited mode)
=============================================================
@@ -31,17 +40,32 @@ To build and run the tests with a single command, use::
Note that some tests will require root privileges.
-Build and run from user specific object directory (make O=dir)::
+Kselftest supports saving output files in a separate directory and then
+running tests. To locate output files in a separate directory two syntaxes
+are supported. In both cases the working directory must be the root of the
+kernel src. This is applicable to "Running a subset of selftests" section
+below.
+
+To build, save output files in a separate directory with O= ::
$ make O=/tmp/kselftest kselftest
-Build and run KBUILD_OUTPUT directory (make KBUILD_OUTPUT=)::
+To build, save output files in a separate directory with KBUILD_OUTPUT ::
+
+ $ export KBUILD_OUTPUT=/tmp/kselftest; make kselftest
+
+The O= assignment takes precedence over the KBUILD_OUTPUT environment
+variable.
- $ make KBUILD_OUTPUT=/tmp/kselftest kselftest
+The above commands by default run the tests and print full pass/fail report.
+Kselftest supports "summary" option to make it easier to understand the test
+results. Please find the detailed individual test results for each test in
+/tmp/testname file(s) when summary option is specified. This is applicable
+to "Running a subset of selftests" section below.
-The above commands run the tests and print pass/fail summary to make it
-easier to understand the test results. Please find the detailed individual
-test results for each test in /tmp/testname file(s).
+To run kselftest with summary option enabled ::
+
+ $ make summary=1 kselftest
Running a subset of selftests
=============================
@@ -57,17 +81,29 @@ You can specify multiple tests to build and run::
$ make TARGETS="size timers" kselftest
-Build and run from user specific object directory (make O=dir)::
+To build, save output files in a separate directory with O= ::
$ make O=/tmp/kselftest TARGETS="size timers" kselftest
-Build and run KBUILD_OUTPUT directory (make KBUILD_OUTPUT=)::
+To build, save output files in a separate directory with KBUILD_OUTPUT ::
+
+ $ export KBUILD_OUTPUT=/tmp/kselftest; make TARGETS="size timers" kselftest
+
+Additionally you can use the "SKIP_TARGETS" variable on the make command
+line to specify one or more targets to exclude from the TARGETS list.
+
+To run all tests but a single subsystem::
+
+ $ make -C tools/testing/selftests SKIP_TARGETS=ptrace run_tests
- $ make KBUILD_OUTPUT=/tmp/kselftest TARGETS="size timers" kselftest
+You can specify multiple tests to skip::
-The above commands run the tests and print pass/fail summary to make it
-easier to understand the test results. Please find the detailed individual
-test results for each test in /tmp/testname file(s).
+ $ make SKIP_TARGETS="size timers" kselftest
+
+You can also specify a restricted list of tests to run together with a
+dedicated skiplist::
+
+ $ make TARGETS="bpf breakpoints size timers" SKIP_TARGETS=bpf kselftest
See the top-level tools/testing/selftests/Makefile for the list of all
possible targets.
@@ -161,11 +197,97 @@ Contributing new tests (details)
e.g: tools/testing/selftests/android/config
+Test Module
+===========
+
+Kselftest tests the kernel from userspace. Sometimes things need
+testing from within the kernel, one method of doing this is to create a
+test module. We can tie the module into the kselftest framework by
+using a shell script test runner. ``kselftest_module.sh`` is designed
+to facilitate this process. There is also a header file provided to
+assist writing kernel modules that are for use with kselftest:
+
+- ``tools/testing/kselftest/kselftest_module.h``
+- ``tools/testing/kselftest/kselftest_module.sh``
+
+How to use
+----------
+
+Here we show the typical steps to create a test module and tie it into
+kselftest. We use kselftests for lib/ as an example.
+
+1. Create the test module
+
+2. Create the test script that will run (load/unload) the module
+ e.g. ``tools/testing/selftests/lib/printf.sh``
+
+3. Add line to config file e.g. ``tools/testing/selftests/lib/config``
+
+4. Add test script to makefile e.g. ``tools/testing/selftests/lib/Makefile``
+
+5. Verify it works:
+
+.. code-block:: sh
+
+ # Assumes you have booted a fresh build of this kernel tree
+ cd /path/to/linux/tree
+ make kselftest-merge
+ make modules
+ sudo make modules_install
+ make TARGETS=lib kselftest
+
+Example Module
+--------------
+
+A bare bones test module might look like this:
+
+.. code-block:: c
+
+ // SPDX-License-Identifier: GPL-2.0+
+
+ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+
+ #include "../tools/testing/selftests/kselftest_module.h"
+
+ KSTM_MODULE_GLOBALS();
+
+ /*
+ * Kernel module for testing the foobinator
+ */
+
+ static int __init test_function()
+ {
+ ...
+ }
+
+ static void __init selftest(void)
+ {
+ KSTM_CHECK_ZERO(do_test_case("", 0));
+ }
+
+ KSTM_MODULE_LOADERS(test_foo);
+ MODULE_AUTHOR("John Developer <[email protected]>");
+ MODULE_LICENSE("GPL");
+
+Example test script
+-------------------
+
+.. code-block:: sh
+
+ #!/bin/bash
+ # SPDX-License-Identifier: GPL-2.0+
+ $(dirname $0)/../kselftest_module.sh "foo" test_foo
+
+
Test Harness
============
-The kselftest_harness.h file contains useful helpers to build tests. The tests
-from tools/testing/selftests/seccomp/seccomp_bpf.c can be used as example.
+The kselftest_harness.h file contains useful helpers to build tests. The
+test harness is for userspace testing, for kernel space testing see `Test
+Module`_ above.
+
+The tests from tools/testing/selftests/seccomp/seccomp_bpf.c can be used as
+example.
Example
-------
diff --git a/Documentation/dev-tools/kunit/api/index.rst b/Documentation/dev-tools/kunit/api/index.rst
new file mode 100644
index 000000000000..9b9bffe5d41a
--- /dev/null
+++ b/Documentation/dev-tools/kunit/api/index.rst
@@ -0,0 +1,16 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=============
+API Reference
+=============
+.. toctree::
+
+ test
+
+This section documents the KUnit kernel testing API. It is divided into the
+following sections:
+
+================================= ==============================================
+:doc:`test` documents all of the standard testing API
+ excluding mocking or mocking related features.
+================================= ==============================================
diff --git a/Documentation/dev-tools/kunit/api/test.rst b/Documentation/dev-tools/kunit/api/test.rst
new file mode 100644
index 000000000000..aaa97f17e5b3
--- /dev/null
+++ b/Documentation/dev-tools/kunit/api/test.rst
@@ -0,0 +1,11 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+========
+Test API
+========
+
+This file documents all of the standard testing API excluding mocking or mocking
+related features.
+
+.. kernel-doc:: include/kunit/test.h
+ :internal:
diff --git a/Documentation/dev-tools/kunit/faq.rst b/Documentation/dev-tools/kunit/faq.rst
new file mode 100644
index 000000000000..bf2095112d89
--- /dev/null
+++ b/Documentation/dev-tools/kunit/faq.rst
@@ -0,0 +1,62 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==========================
+Frequently Asked Questions
+==========================
+
+How is this different from Autotest, kselftest, etc?
+====================================================
+KUnit is a unit testing framework. Autotest, kselftest (and some others) are
+not.
+
+A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is supposed to
+test a single unit of code in isolation, hence the name. A unit test should be
+the finest granularity of testing and as such should allow all possible code
+paths to be tested in the code under test; this is only possible if the code
+under test is very small and does not have any external dependencies outside of
+the test's control like hardware.
+
+There are no testing frameworks currently available for the kernel that do not
+require installing the kernel on a test machine or in a VM and all require
+tests to be written in userspace and run on the kernel under test; this is true
+for Autotest, kselftest, and some others, disqualifying any of them from being
+considered unit testing frameworks.
+
+Does KUnit support running on architectures other than UML?
+===========================================================
+
+Yes, well, mostly.
+
+For the most part, the KUnit core framework (what you use to write the tests)
+can compile to any architecture; it compiles like just another part of the
+kernel and runs when the kernel boots. However, there is some infrastructure,
+like the KUnit Wrapper (``tools/testing/kunit/kunit.py``) that does not support
+other architectures.
+
+In short, this means that, yes, you can run KUnit on other architectures, but
+it might require more work than using KUnit on UML.
+
+For more information, see :ref:`kunit-on-non-uml`.
+
+What is the difference between a unit test and these other kinds of tests?
+==========================================================================
+Most existing tests for the Linux kernel would be categorized as an integration
+test, or an end-to-end test.
+
+- A unit test is supposed to test a single unit of code in isolation, hence the
+ name. A unit test should be the finest granularity of testing and as such
+ should allow all possible code paths to be tested in the code under test; this
+ is only possible if the code under test is very small and does not have any
+ external dependencies outside of the test's control like hardware.
+- An integration test tests the interaction between a minimal set of components,
+ usually just two or three. For example, someone might write an integration
+ test to test the interaction between a driver and a piece of hardware, or to
+ test the interaction between the userspace libraries the kernel provides and
+ the kernel itself; however, one of these tests would probably not test the
+ entire kernel along with hardware interactions and interactions with the
+ userspace.
+- An end-to-end test usually tests the entire system from the perspective of the
+ code under test. For example, someone might write an end-to-end test for the
+ kernel by installing a production configuration of the kernel on production
+ hardware with a production userspace and then trying to exercise some behavior
+ that depends on interactions between the hardware, the kernel, and userspace.
diff --git a/Documentation/dev-tools/kunit/index.rst b/Documentation/dev-tools/kunit/index.rst
new file mode 100644
index 000000000000..26ffb46bdf99
--- /dev/null
+++ b/Documentation/dev-tools/kunit/index.rst
@@ -0,0 +1,79 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=========================================
+KUnit - Unit Testing for the Linux Kernel
+=========================================
+
+.. toctree::
+ :maxdepth: 2
+
+ start
+ usage
+ api/index
+ faq
+
+What is KUnit?
+==============
+
+KUnit is a lightweight unit testing and mocking framework for the Linux kernel.
+These tests are able to be run locally on a developer's workstation without a VM
+or special hardware.
+
+KUnit is heavily inspired by JUnit, Python's unittest.mock, and
+Googletest/Googlemock for C++. KUnit provides facilities for defining unit test
+cases, grouping related test cases into test suites, providing common
+infrastructure for running tests, and much more.
+
+Get started now: :doc:`start`
+
+Why KUnit?
+==========
+
+A unit test is supposed to test a single unit of code in isolation, hence the
+name. A unit test should be the finest granularity of testing and as such should
+allow all possible code paths to be tested in the code under test; this is only
+possible if the code under test is very small and does not have any external
+dependencies outside of the test's control like hardware.
+
+Outside of KUnit, there are no testing frameworks currently
+available for the kernel that do not require installing the kernel on a test
+machine or in a VM and all require tests to be written in userspace running on
+the kernel; this is true for Autotest, and kselftest, disqualifying
+any of them from being considered unit testing frameworks.
+
+KUnit addresses the problem of being able to run tests without needing a virtual
+machine or actual hardware with User Mode Linux. User Mode Linux is a Linux
+architecture, like ARM or x86; however, unlike other architectures it compiles
+to a standalone program that can be run like any other program directly inside
+of a host operating system; to be clear, it does not require any virtualization
+support; it is just a regular program.
+
+KUnit is fast. Excluding build time, from invocation to completion KUnit can run
+several dozen tests in only 10 to 20 seconds; this might not sound like a big
+deal to some people, but having such fast and easy to run tests fundamentally
+changes the way you go about testing and even writing code in the first place.
+Linus himself said in his `git talk at Google
+<https://gist.github.com/lorn/1272686/revisions#diff-53c65572127855f1b003db4064a94573R874>`_:
+
+ "... a lot of people seem to think that performance is about doing the
+ same thing, just doing it faster, and that is not true. That is not what
+ performance is all about. If you can do something really fast, really
+ well, people will start using it differently."
+
+In this context Linus was talking about branching and merging,
+but this point also applies to testing. If your tests are slow, unreliable, are
+difficult to write, and require a special setup or special hardware to run,
+then you wait a lot longer to write tests, and you wait a lot longer to run
+tests; this means that tests are likely to break, unlikely to test a lot of
+things, and are unlikely to be rerun once they pass. If your tests are really
+fast, you run them all the time, every time you make a change, and every time
+someone sends you some code. Why trust that someone ran all their tests
+correctly on every change when you can just run them yourself in less time than
+it takes to read their test log?
+
+How do I use it?
+================
+
+* :doc:`start` - for new users of KUnit
+* :doc:`usage` - for a more detailed explanation of KUnit features
+* :doc:`api/index` - for the list of KUnit APIs used for testing
diff --git a/Documentation/dev-tools/kunit/start.rst b/Documentation/dev-tools/kunit/start.rst
new file mode 100644
index 000000000000..aeeddfafeea2
--- /dev/null
+++ b/Documentation/dev-tools/kunit/start.rst
@@ -0,0 +1,180 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===============
+Getting Started
+===============
+
+Installing dependencies
+=======================
+KUnit has the same dependencies as the Linux kernel. As long as you can build
+the kernel, you can run KUnit.
+
+KUnit Wrapper
+=============
+Included with KUnit is a simple Python wrapper that helps format the output to
+easily use and read KUnit output. It handles building and running the kernel, as
+well as formatting the output.
+
+The wrapper can be run with:
+
+.. code-block:: bash
+
+ ./tools/testing/kunit/kunit.py run
+
+Creating a kunitconfig
+======================
+The Python script is a thin wrapper around Kbuild as such, it needs to be
+configured with a ``kunitconfig`` file. This file essentially contains the
+regular Kernel config, with the specific test targets as well.
+
+.. code-block:: bash
+
+ git clone -b master https://kunit.googlesource.com/kunitconfig $PATH_TO_KUNITCONFIG_REPO
+ cd $PATH_TO_LINUX_REPO
+ ln -s $PATH_TO_KUNIT_CONFIG_REPO/kunitconfig kunitconfig
+
+You may want to add kunitconfig to your local gitignore.
+
+Verifying KUnit Works
+---------------------
+
+To make sure that everything is set up correctly, simply invoke the Python
+wrapper from your kernel repo:
+
+.. code-block:: bash
+
+ ./tools/testing/kunit/kunit.py run
+
+.. note::
+ You may want to run ``make mrproper`` first.
+
+If everything worked correctly, you should see the following:
+
+.. code-block:: bash
+
+ Generating .config ...
+ Building KUnit Kernel ...
+ Starting KUnit Kernel ...
+
+followed by a list of tests that are run. All of them should be passing.
+
+.. note::
+ Because it is building a lot of sources for the first time, the ``Building
+ kunit kernel`` step may take a while.
+
+Writing your first test
+=======================
+
+In your kernel repo let's add some code that we can test. Create a file
+``drivers/misc/example.h`` with the contents:
+
+.. code-block:: c
+
+ int misc_example_add(int left, int right);
+
+create a file ``drivers/misc/example.c``:
+
+.. code-block:: c
+
+ #include <linux/errno.h>
+
+ #include "example.h"
+
+ int misc_example_add(int left, int right)
+ {
+ return left + right;
+ }
+
+Now add the following lines to ``drivers/misc/Kconfig``:
+
+.. code-block:: kconfig
+
+ config MISC_EXAMPLE
+ bool "My example"
+
+and the following lines to ``drivers/misc/Makefile``:
+
+.. code-block:: make
+
+ obj-$(CONFIG_MISC_EXAMPLE) += example.o
+
+Now we are ready to write the test. The test will be in
+``drivers/misc/example-test.c``:
+
+.. code-block:: c
+
+ #include <kunit/test.h>
+ #include "example.h"
+
+ /* Define the test cases. */
+
+ static void misc_example_add_test_basic(struct kunit *test)
+ {
+ KUNIT_EXPECT_EQ(test, 1, misc_example_add(1, 0));
+ KUNIT_EXPECT_EQ(test, 2, misc_example_add(1, 1));
+ KUNIT_EXPECT_EQ(test, 0, misc_example_add(-1, 1));
+ KUNIT_EXPECT_EQ(test, INT_MAX, misc_example_add(0, INT_MAX));
+ KUNIT_EXPECT_EQ(test, -1, misc_example_add(INT_MAX, INT_MIN));
+ }
+
+ static void misc_example_test_failure(struct kunit *test)
+ {
+ KUNIT_FAIL(test, "This test never passes.");
+ }
+
+ static struct kunit_case misc_example_test_cases[] = {
+ KUNIT_CASE(misc_example_add_test_basic),
+ KUNIT_CASE(misc_example_test_failure),
+ {}
+ };
+
+ static struct kunit_suite misc_example_test_suite = {
+ .name = "misc-example",
+ .test_cases = misc_example_test_cases,
+ };
+ kunit_test_suite(misc_example_test_suite);
+
+Now add the following to ``drivers/misc/Kconfig``:
+
+.. code-block:: kconfig
+
+ config MISC_EXAMPLE_TEST
+ bool "Test for my example"
+ depends on MISC_EXAMPLE && KUNIT
+
+and the following to ``drivers/misc/Makefile``:
+
+.. code-block:: make
+
+ obj-$(CONFIG_MISC_EXAMPLE_TEST) += example-test.o
+
+Now add it to your ``kunitconfig``:
+
+.. code-block:: none
+
+ CONFIG_MISC_EXAMPLE=y
+ CONFIG_MISC_EXAMPLE_TEST=y
+
+Now you can run the test:
+
+.. code-block:: bash
+
+ ./tools/testing/kunit/kunit.py
+
+You should see the following failure:
+
+.. code-block:: none
+
+ ...
+ [16:08:57] [PASSED] misc-example:misc_example_add_test_basic
+ [16:08:57] [FAILED] misc-example:misc_example_test_failure
+ [16:08:57] EXPECTATION FAILED at drivers/misc/example-test.c:17
+ [16:08:57] This test never passes.
+ ...
+
+Congrats! You just wrote your first KUnit test!
+
+Next Steps
+==========
+* Check out the :doc:`usage` page for a more
+ in-depth explanation of KUnit.
diff --git a/Documentation/dev-tools/kunit/usage.rst b/Documentation/dev-tools/kunit/usage.rst
new file mode 100644
index 000000000000..c6e69634e274
--- /dev/null
+++ b/Documentation/dev-tools/kunit/usage.rst
@@ -0,0 +1,576 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===========
+Using KUnit
+===========
+
+The purpose of this document is to describe what KUnit is, how it works, how it
+is intended to be used, and all the concepts and terminology that are needed to
+understand it. This guide assumes a working knowledge of the Linux kernel and
+some basic knowledge of testing.
+
+For a high level introduction to KUnit, including setting up KUnit for your
+project, see :doc:`start`.
+
+Organization of this document
+=============================
+
+This document is organized into two main sections: Testing and Isolating
+Behavior. The first covers what a unit test is and how to use KUnit to write
+them. The second covers how to use KUnit to isolate code and make it possible
+to unit test code that was otherwise un-unit-testable.
+
+Testing
+=======
+
+What is KUnit?
+--------------
+
+"K" is short for "kernel" so "KUnit" is the "(Linux) Kernel Unit Testing
+Framework." KUnit is intended first and foremost for writing unit tests; it is
+general enough that it can be used to write integration tests; however, this is
+a secondary goal. KUnit has no ambition of being the only testing framework for
+the kernel; for example, it does not intend to be an end-to-end testing
+framework.
+
+What is Unit Testing?
+---------------------
+
+A `unit test <https://martinfowler.com/bliki/UnitTest.html>`_ is a test that
+tests code at the smallest possible scope, a *unit* of code. In the C
+programming language that's a function.
+
+Unit tests should be written for all the publicly exposed functions in a
+compilation unit; so that is all the functions that are exported in either a
+*class* (defined below) or all functions which are **not** static.
+
+Writing Tests
+-------------
+
+Test Cases
+~~~~~~~~~~
+
+The fundamental unit in KUnit is the test case. A test case is a function with
+the signature ``void (*)(struct kunit *test)``. It calls a function to be tested
+and then sets *expectations* for what should happen. For example:
+
+.. code-block:: c
+
+ void example_test_success(struct kunit *test)
+ {
+ }
+
+ void example_test_failure(struct kunit *test)
+ {
+ KUNIT_FAIL(test, "This test never passes.");
+ }
+
+In the above example ``example_test_success`` always passes because it does
+nothing; no expectations are set, so all expectations pass. On the other hand
+``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, which is
+a special expectation that logs a message and causes the test case to fail.
+
+Expectations
+~~~~~~~~~~~~
+An *expectation* is a way to specify that you expect a piece of code to do
+something in a test. An expectation is called like a function. A test is made
+by setting expectations about the behavior of a piece of code under test; when
+one or more of the expectations fail, the test case fails and information about
+the failure is logged. For example:
+
+.. code-block:: c
+
+ void add_test_basic(struct kunit *test)
+ {
+ KUNIT_EXPECT_EQ(test, 1, add(1, 0));
+ KUNIT_EXPECT_EQ(test, 2, add(1, 1));
+ }
+
+In the above example ``add_test_basic`` makes a number of assertions about the
+behavior of a function called ``add``; the first parameter is always of type
+``struct kunit *``, which contains information about the current test context;
+the second parameter, in this case, is what the value is expected to be; the
+last value is what the value actually is. If ``add`` passes all of these
+expectations, the test case, ``add_test_basic`` will pass; if any one of these
+expectations fail, the test case will fail.
+
+It is important to understand that a test case *fails* when any expectation is
+violated; however, the test will continue running, potentially trying other
+expectations until the test case ends or is otherwise terminated. This is as
+opposed to *assertions* which are discussed later.
+
+To learn about more expectations supported by KUnit, see :doc:`api/test`.
+
+.. note::
+ A single test case should be pretty short, pretty easy to understand,
+ focused on a single behavior.
+
+For example, if we wanted to properly test the add function above, we would
+create additional tests cases which would each test a different property that an
+add function should have like this:
+
+.. code-block:: c
+
+ void add_test_basic(struct kunit *test)
+ {
+ KUNIT_EXPECT_EQ(test, 1, add(1, 0));
+ KUNIT_EXPECT_EQ(test, 2, add(1, 1));
+ }
+
+ void add_test_negative(struct kunit *test)
+ {
+ KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
+ }
+
+ void add_test_max(struct kunit *test)
+ {
+ KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
+ KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
+ }
+
+ void add_test_overflow(struct kunit *test)
+ {
+ KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
+ }
+
+Notice how it is immediately obvious what all the properties that we are testing
+for are.
+
+Assertions
+~~~~~~~~~~
+
+KUnit also has the concept of an *assertion*. An assertion is just like an
+expectation except the assertion immediately terminates the test case if it is
+not satisfied.
+
+For example:
+
+.. code-block:: c
+
+ static void mock_test_do_expect_default_return(struct kunit *test)
+ {
+ struct mock_test_context *ctx = test->priv;
+ struct mock *mock = ctx->mock;
+ int param0 = 5, param1 = -5;
+ const char *two_param_types[] = {"int", "int"};
+ const void *two_params[] = {&param0, &param1};
+ const void *ret;
+
+ ret = mock->do_expect(mock,
+ "test_printk", test_printk,
+ two_param_types, two_params,
+ ARRAY_SIZE(two_params));
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ret);
+ KUNIT_EXPECT_EQ(test, -4, *((int *) ret));
+ }
+
+In this example, the method under test should return a pointer to a value, so
+if the pointer returned by the method is null or an errno, we don't want to
+bother continuing the test since the following expectation could crash the test
+case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us to bail out of the test case if
+the appropriate conditions have not been satisfied to complete the test.
+
+Test Suites
+~~~~~~~~~~~
+
+Now obviously one unit test isn't very helpful; the power comes from having
+many test cases covering all of your behaviors. Consequently it is common to
+have many *similar* tests; in order to reduce duplication in these closely
+related tests most unit testing frameworks provide the concept of a *test
+suite*, in KUnit we call it a *test suite*; all it is is just a collection of
+test cases for a unit of code with a set up function that gets invoked before
+every test cases and then a tear down function that gets invoked after every
+test case completes.
+
+Example:
+
+.. code-block:: c
+
+ static struct kunit_case example_test_cases[] = {
+ KUNIT_CASE(example_test_foo),
+ KUNIT_CASE(example_test_bar),
+ KUNIT_CASE(example_test_baz),
+ {}
+ };
+
+ static struct kunit_suite example_test_suite = {
+ .name = "example",
+ .init = example_test_init,
+ .exit = example_test_exit,
+ .test_cases = example_test_cases,
+ };
+ kunit_test_suite(example_test_suite);
+
+In the above example the test suite, ``example_test_suite``, would run the test
+cases ``example_test_foo``, ``example_test_bar``, and ``example_test_baz``,
+each would have ``example_test_init`` called immediately before it and would
+have ``example_test_exit`` called immediately after it.
+``kunit_test_suite(example_test_suite)`` registers the test suite with the
+KUnit test framework.
+
+.. note::
+ A test case will only be run if it is associated with a test suite.
+
+For a more information on these types of things see the :doc:`api/test`.
+
+Isolating Behavior
+==================
+
+The most important aspect of unit testing that other forms of testing do not
+provide is the ability to limit the amount of code under test to a single unit.
+In practice, this is only possible by being able to control what code gets run
+when the unit under test calls a function and this is usually accomplished
+through some sort of indirection where a function is exposed as part of an API
+such that the definition of that function can be changed without affecting the
+rest of the code base. In the kernel this primarily comes from two constructs,
+classes, structs that contain function pointers that are provided by the
+implementer, and architecture specific functions which have definitions selected
+at compile time.
+
+Classes
+-------
+
+Classes are not a construct that is built into the C programming language;
+however, it is an easily derived concept. Accordingly, pretty much every project
+that does not use a standardized object oriented library (like GNOME's GObject)
+has their own slightly different way of doing object oriented programming; the
+Linux kernel is no exception.
+
+The central concept in kernel object oriented programming is the class. In the
+kernel, a *class* is a struct that contains function pointers. This creates a
+contract between *implementers* and *users* since it forces them to use the
+same function signature without having to call the function directly. In order
+for it to truly be a class, the function pointers must specify that a pointer
+to the class, known as a *class handle*, be one of the parameters; this makes
+it possible for the member functions (also known as *methods*) to have access
+to member variables (more commonly known as *fields*) allowing the same
+implementation to have multiple *instances*.
+
+Typically a class can be *overridden* by *child classes* by embedding the
+*parent class* in the child class. Then when a method provided by the child
+class is called, the child implementation knows that the pointer passed to it is
+of a parent contained within the child; because of this, the child can compute
+the pointer to itself because the pointer to the parent is always a fixed offset
+from the pointer to the child; this offset is the offset of the parent contained
+in the child struct. For example:
+
+.. code-block:: c
+
+ struct shape {
+ int (*area)(struct shape *this);
+ };
+
+ struct rectangle {
+ struct shape parent;
+ int length;
+ int width;
+ };
+
+ int rectangle_area(struct shape *this)
+ {
+ struct rectangle *self = container_of(this, struct shape, parent);
+
+ return self->length * self->width;
+ };
+
+ void rectangle_new(struct rectangle *self, int length, int width)
+ {
+ self->parent.area = rectangle_area;
+ self->length = length;
+ self->width = width;
+ }
+
+In this example (as in most kernel code) the operation of computing the pointer
+to the child from the pointer to the parent is done by ``container_of``.
+
+Faking Classes
+~~~~~~~~~~~~~~
+
+In order to unit test a piece of code that calls a method in a class, the
+behavior of the method must be controllable, otherwise the test ceases to be a
+unit test and becomes an integration test.
+
+A fake just provides an implementation of a piece of code that is different than
+what runs in a production instance, but behaves identically from the standpoint
+of the callers; this is usually done to replace a dependency that is hard to
+deal with, or is slow.
+
+A good example for this might be implementing a fake EEPROM that just stores the
+"contents" in an internal buffer. For example, let's assume we have a class that
+represents an EEPROM:
+
+.. code-block:: c
+
+ struct eeprom {
+ ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
+ ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
+ };
+
+And we want to test some code that buffers writes to the EEPROM:
+
+.. code-block:: c
+
+ struct eeprom_buffer {
+ ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
+ int flush(struct eeprom_buffer *this);
+ size_t flush_count; /* Flushes when buffer exceeds flush_count. */
+ };
+
+ struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
+ void destroy_eeprom_buffer(struct eeprom *eeprom);
+
+We can easily test this code by *faking out* the underlying EEPROM:
+
+.. code-block:: c
+
+ struct fake_eeprom {
+ struct eeprom parent;
+ char contents[FAKE_EEPROM_CONTENTS_SIZE];
+ };
+
+ ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
+ {
+ struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
+
+ count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
+ memcpy(buffer, this->contents + offset, count);
+
+ return count;
+ }
+
+ ssize_t fake_eeprom_write(struct eeprom *this, size_t offset, const char *buffer, size_t count)
+ {
+ struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
+
+ count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
+ memcpy(this->contents + offset, buffer, count);
+
+ return count;
+ }
+
+ void fake_eeprom_init(struct fake_eeprom *this)
+ {
+ this->parent.read = fake_eeprom_read;
+ this->parent.write = fake_eeprom_write;
+ memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
+ }
+
+We can now use it to test ``struct eeprom_buffer``:
+
+.. code-block:: c
+
+ struct eeprom_buffer_test {
+ struct fake_eeprom *fake_eeprom;
+ struct eeprom_buffer *eeprom_buffer;
+ };
+
+ static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
+ {
+ struct eeprom_buffer_test *ctx = test->priv;
+ struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
+ struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
+ char buffer[] = {0xff};
+
+ eeprom_buffer->flush_count = SIZE_MAX;
+
+ eeprom_buffer->write(eeprom_buffer, buffer, 1);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
+
+ eeprom_buffer->write(eeprom_buffer, buffer, 1);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
+
+ eeprom_buffer->flush(eeprom_buffer);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
+ }
+
+ static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
+ {
+ struct eeprom_buffer_test *ctx = test->priv;
+ struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
+ struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
+ char buffer[] = {0xff};
+
+ eeprom_buffer->flush_count = 2;
+
+ eeprom_buffer->write(eeprom_buffer, buffer, 1);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
+
+ eeprom_buffer->write(eeprom_buffer, buffer, 1);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
+ }
+
+ static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
+ {
+ struct eeprom_buffer_test *ctx = test->priv;
+ struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
+ struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
+ char buffer[] = {0xff, 0xff};
+
+ eeprom_buffer->flush_count = 2;
+
+ eeprom_buffer->write(eeprom_buffer, buffer, 1);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
+
+ eeprom_buffer->write(eeprom_buffer, buffer, 2);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
+ /* Should have only flushed the first two bytes. */
+ KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
+ }
+
+ static int eeprom_buffer_test_init(struct kunit *test)
+ {
+ struct eeprom_buffer_test *ctx;
+
+ ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
+
+ ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
+ fake_eeprom_init(ctx->fake_eeprom);
+
+ ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
+ KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
+
+ test->priv = ctx;
+
+ return 0;
+ }
+
+ static void eeprom_buffer_test_exit(struct kunit *test)
+ {
+ struct eeprom_buffer_test *ctx = test->priv;
+
+ destroy_eeprom_buffer(ctx->eeprom_buffer);
+ }
+
+.. _kunit-on-non-uml:
+
+KUnit on non-UML architectures
+==============================
+
+By default KUnit uses UML as a way to provide dependencies for code under test.
+Under most circumstances KUnit's usage of UML should be treated as an
+implementation detail of how KUnit works under the hood. Nevertheless, there
+are instances where being able to run architecture specific code, or test
+against real hardware is desirable. For these reasons KUnit supports running on
+other architectures.
+
+Running existing KUnit tests on non-UML architectures
+-----------------------------------------------------
+
+There are some special considerations when running existing KUnit tests on
+non-UML architectures:
+
+* Hardware may not be deterministic, so a test that always passes or fails
+ when run under UML may not always do so on real hardware.
+* Hardware and VM environments may not be hermetic. KUnit tries its best to
+ provide a hermetic environment to run tests; however, it cannot manage state
+ that it doesn't know about outside of the kernel. Consequently, tests that
+ may be hermetic on UML may not be hermetic on other architectures.
+* Some features and tooling may not be supported outside of UML.
+* Hardware and VMs are slower than UML.
+
+None of these are reasons not to run your KUnit tests on real hardware; they are
+only things to be aware of when doing so.
+
+The biggest impediment will likely be that certain KUnit features and
+infrastructure may not support your target environment. For example, at this
+time the KUnit Wrapper (``tools/testing/kunit/kunit.py``) does not work outside
+of UML. Unfortunately, there is no way around this. Using UML (or even just a
+particular architecture) allows us to make a lot of assumptions that make it
+possible to do things which might otherwise be impossible.
+
+Nevertheless, all core KUnit framework features are fully supported on all
+architectures, and using them is straightforward: all you need to do is to take
+your kunitconfig, your Kconfig options for the tests you would like to run, and
+merge them into whatever config your are using for your platform. That's it!
+
+For example, let's say you have the following kunitconfig:
+
+.. code-block:: none
+
+ CONFIG_KUNIT=y
+ CONFIG_KUNIT_EXAMPLE_TEST=y
+
+If you wanted to run this test on an x86 VM, you might add the following config
+options to your ``.config``:
+
+.. code-block:: none
+
+ CONFIG_KUNIT=y
+ CONFIG_KUNIT_EXAMPLE_TEST=y
+ CONFIG_SERIAL_8250=y
+ CONFIG_SERIAL_8250_CONSOLE=y
+
+All these new options do is enable support for a common serial console needed
+for logging.
+
+Next, you could build a kernel with these tests as follows:
+
+
+.. code-block:: bash
+
+ make ARCH=x86 olddefconfig
+ make ARCH=x86
+
+Once you have built a kernel, you could run it on QEMU as follows:
+
+.. code-block:: bash
+
+ qemu-system-x86_64 -enable-kvm \
+ -m 1024 \
+ -kernel arch/x86_64/boot/bzImage \
+ -append 'console=ttyS0' \
+ --nographic
+
+Interspersed in the kernel logs you might see the following:
+
+.. code-block:: none
+
+ TAP version 14
+ # Subtest: example
+ 1..1
+ # example_simple_test: initializing
+ ok 1 - example_simple_test
+ ok 1 - example
+
+Congratulations, you just ran a KUnit test on the x86 architecture!
+
+Writing new tests for other architectures
+-----------------------------------------
+
+The first thing you must do is ask yourself whether it is necessary to write a
+KUnit test for a specific architecture, and then whether it is necessary to
+write that test for a particular piece of hardware. In general, writing a test
+that depends on having access to a particular piece of hardware or software (not
+included in the Linux source repo) should be avoided at all costs.
+
+Even if you only ever plan on running your KUnit test on your hardware
+configuration, other people may want to run your tests and may not have access
+to your hardware. If you write your test to run on UML, then anyone can run your
+tests without knowing anything about your particular setup, and you can still
+run your tests on your hardware setup just by compiling for your architecture.
+
+.. important::
+ Always prefer tests that run on UML to tests that only run under a particular
+ architecture, and always prefer tests that run under QEMU or another easy
+ (and monitarily free) to obtain software environment to a specific piece of
+ hardware.
+
+Nevertheless, there are still valid reasons to write an architecture or hardware
+specific test: for example, you might want to test some code that really belongs
+in ``arch/some-arch/*``. Even so, try your best to write the test so that it
+does not depend on physical hardware: if some of your test cases don't need the
+hardware, only require the hardware for tests that actually need it.
+
+Now that you have narrowed down exactly what bits are hardware specific, the
+actual procedure for writing and running the tests is pretty much the same as
+writing normal KUnit tests. One special caveat is that you have to reset
+hardware state in between test cases; if this is not possible, you may only be
+able to run one test case per invocation.
+
+.. TODO([email protected]): Add an actual example of an architecture
+ dependent KUnit test.
diff --git a/Documentation/dev-tools/sparse.rst b/Documentation/dev-tools/sparse.rst
index c401c952a340..6f4870528226 100644
--- a/Documentation/dev-tools/sparse.rst
+++ b/Documentation/dev-tools/sparse.rst
@@ -81,11 +81,6 @@ of sparse using git to clone::
git://git.kernel.org/pub/scm/devel/sparse/sparse.git
-DaveJ has hourly generated tarballs of the git tree available at::
-
- http://www.codemonkey.org.uk/projects/git-snapshots/sparse/
-
-
Once you have it, just do::
make