diff options
Diffstat (limited to 'Documentation/core-api')
-rw-r--r-- | Documentation/core-api/cleanup.rst | 8 | ||||
-rw-r--r-- | Documentation/core-api/cpu_hotplug.rst | 10 | ||||
-rw-r--r-- | Documentation/core-api/folio_queue.rst | 212 | ||||
-rw-r--r-- | Documentation/core-api/index.rst | 3 | ||||
-rw-r--r-- | Documentation/core-api/memory-allocation.rst | 5 | ||||
-rw-r--r-- | Documentation/core-api/packing.rst | 71 | ||||
-rw-r--r-- | Documentation/core-api/printk-formats.rst | 4 | ||||
-rw-r--r-- | Documentation/core-api/unaligned-memory-access.rst | 2 | ||||
-rw-r--r-- | Documentation/core-api/union_find.rst | 106 |
9 files changed, 411 insertions, 10 deletions
diff --git a/Documentation/core-api/cleanup.rst b/Documentation/core-api/cleanup.rst new file mode 100644 index 000000000000..527eb2f8ec6e --- /dev/null +++ b/Documentation/core-api/cleanup.rst @@ -0,0 +1,8 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=========================== +Scope-based Cleanup Helpers +=========================== + +.. kernel-doc:: include/linux/cleanup.h + :doc: scope-based cleanup helpers diff --git a/Documentation/core-api/cpu_hotplug.rst b/Documentation/core-api/cpu_hotplug.rst index dcb0e379e5e8..a21dbf261be7 100644 --- a/Documentation/core-api/cpu_hotplug.rst +++ b/Documentation/core-api/cpu_hotplug.rst @@ -737,8 +737,9 @@ can process the event further. When changes to the CPUs in the system occur, the sysfs file /sys/devices/system/cpu/crash_hotplug contains '1' if the kernel -updates the kdump capture kernel list of CPUs itself (via elfcorehdr), -or '0' if userspace must update the kdump capture kernel list of CPUs. +updates the kdump capture kernel list of CPUs itself (via elfcorehdr and +other relevant kexec segment), or '0' if userspace must update the kdump +capture kernel list of CPUs. The availability depends on the CONFIG_HOTPLUG_CPU kernel configuration option. @@ -750,8 +751,9 @@ file can be used in a udev rule as follows: SUBSYSTEM=="cpu", ATTRS{crash_hotplug}=="1", GOTO="kdump_reload_end" For a CPU hot un/plug event, if the architecture supports kernel updates -of the elfcorehdr (which contains the list of CPUs), then the rule skips -the unload-then-reload of the kdump capture kernel. +of the elfcorehdr (which contains the list of CPUs) and other relevant +kexec segments, then the rule skips the unload-then-reload of the kdump +capture kernel. Kernel Inline Documentations Reference ====================================== diff --git a/Documentation/core-api/folio_queue.rst b/Documentation/core-api/folio_queue.rst new file mode 100644 index 000000000000..1fe7a9bc4b8d --- /dev/null +++ b/Documentation/core-api/folio_queue.rst @@ -0,0 +1,212 @@ +.. SPDX-License-Identifier: GPL-2.0+ + +=========== +Folio Queue +=========== + +:Author: David Howells <[email protected]> + +.. Contents: + + * Overview + * Initialisation + * Adding and removing folios + * Querying information about a folio + * Querying information about a folio_queue + * Folio queue iteration + * Folio marks + * Lockless simultaneous production/consumption issues + + +Overview +======== + +The folio_queue struct forms a single segment in a segmented list of folios +that can be used to form an I/O buffer. As such, the list can be iterated over +using the ITER_FOLIOQ iov_iter type. + +The publicly accessible members of the structure are:: + + struct folio_queue { + struct folio_queue *next; + struct folio_queue *prev; + ... + }; + +A pair of pointers are provided, ``next`` and ``prev``, that point to the +segments on either side of the segment being accessed. Whilst this is a +doubly-linked list, it is intentionally not a circular list; the outward +sibling pointers in terminal segments should be NULL. + +Each segment in the list also stores: + + * an ordered sequence of folio pointers, + * the size of each folio and + * three 1-bit marks per folio, + +but hese should not be accessed directly as the underlying data structure may +change, but rather the access functions outlined below should be used. + +The facility can be made accessible by:: + + #include <linux/folio_queue.h> + +and to use the iterator:: + + #include <linux/uio.h> + + +Initialisation +============== + +A segment should be initialised by calling:: + + void folioq_init(struct folio_queue *folioq); + +with a pointer to the segment to be initialised. Note that this will not +necessarily initialise all the folio pointers, so care must be taken to check +the number of folios added. + + +Adding and removing folios +========================== + +Folios can be set in the next unused slot in a segment struct by calling one +of:: + + unsigned int folioq_append(struct folio_queue *folioq, + struct folio *folio); + + unsigned int folioq_append_mark(struct folio_queue *folioq, + struct folio *folio); + +Both functions update the stored folio count, store the folio and note its +size. The second function also sets the first mark for the folio added. Both +functions return the number of the slot used. [!] Note that no attempt is made +to check that the capacity wasn't overrun and the list will not be extended +automatically. + +A folio can be excised by calling:: + + void folioq_clear(struct folio_queue *folioq, unsigned int slot); + +This clears the slot in the array and also clears all the marks for that folio, +but doesn't change the folio count - so future accesses of that slot must check +if the slot is occupied. + + +Querying information about a folio +================================== + +Information about the folio in a particular slot may be queried by the +following function:: + + struct folio *folioq_folio(const struct folio_queue *folioq, + unsigned int slot); + +If a folio has not yet been set in that slot, this may yield an undefined +pointer. The size of the folio in a slot may be queried with either of:: + + unsigned int folioq_folio_order(const struct folio_queue *folioq, + unsigned int slot); + + size_t folioq_folio_size(const struct folio_queue *folioq, + unsigned int slot); + +The first function returns the size as an order and the second as a number of +bytes. + + +Querying information about a folio_queue +======================================== + +Information may be retrieved about a particular segment with the following +functions:: + + unsigned int folioq_nr_slots(const struct folio_queue *folioq); + + unsigned int folioq_count(struct folio_queue *folioq); + + bool folioq_full(struct folio_queue *folioq); + +The first function returns the maximum capacity of a segment. It must not be +assumed that this won't vary between segments. The second returns the number +of folios added to a segments and the third is a shorthand to indicate if the +segment has been filled to capacity. + +Not that the count and fullness are not affected by clearing folios from the +segment. These are more about indicating how many slots in the array have been +initialised, and it assumed that slots won't get reused, but rather the segment +will get discarded as the queue is consumed. + + +Folio marks +=========== + +Folios within a queue can also have marks assigned to them. These marks can be +used to note information such as if a folio needs folio_put() calling upon it. +There are three marks available to be set for each folio. + +The marks can be set by:: + + void folioq_mark(struct folio_queue *folioq, unsigned int slot); + void folioq_mark2(struct folio_queue *folioq, unsigned int slot); + void folioq_mark3(struct folio_queue *folioq, unsigned int slot); + +Cleared by:: + + void folioq_unmark(struct folio_queue *folioq, unsigned int slot); + void folioq_unmark2(struct folio_queue *folioq, unsigned int slot); + void folioq_unmark3(struct folio_queue *folioq, unsigned int slot); + +And the marks can be queried by:: + + bool folioq_is_marked(const struct folio_queue *folioq, unsigned int slot); + bool folioq_is_marked2(const struct folio_queue *folioq, unsigned int slot); + bool folioq_is_marked3(const struct folio_queue *folioq, unsigned int slot); + +The marks can be used for any purpose and are not interpreted by this API. + + +Folio queue iteration +===================== + +A list of segments may be iterated over using the I/O iterator facility using +an ``iov_iter`` iterator of ``ITER_FOLIOQ`` type. The iterator may be +initialised with:: + + void iov_iter_folio_queue(struct iov_iter *i, unsigned int direction, + const struct folio_queue *folioq, + unsigned int first_slot, unsigned int offset, + size_t count); + +This may be told to start at a particular segment, slot and offset within a +queue. The iov iterator functions will follow the next pointers when advancing +and prev pointers when reverting when needed. + + +Lockless simultaneous production/consumption issues +=================================================== + +If properly managed, the list can be extended by the producer at the head end +and shortened by the consumer at the tail end simultaneously without the need +to take locks. The ITER_FOLIOQ iterator inserts appropriate barriers to aid +with this. + +Care must be taken when simultaneously producing and consuming a list. If the +last segment is reached and the folios it refers to are entirely consumed by +the IOV iterators, an iov_iter struct will be left pointing to the last segment +with a slot number equal to the capacity of that segment. The iterator will +try to continue on from this if there's another segment available when it is +used again, but care must be taken lest the segment got removed and freed by +the consumer before the iterator was advanced. + +It is recommended that the queue always contain at least one segment, even if +that segment has never been filled or is entirely spent. This prevents the +head and tail pointers from collapsing. + + +API Function Reference +====================== + +.. kernel-doc:: include/linux/folio_queue.h diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst index f147854700e4..6a875743dd4b 100644 --- a/Documentation/core-api/index.rst +++ b/Documentation/core-api/index.rst @@ -35,7 +35,9 @@ Library functionality that is used throughout the kernel. kobject kref + cleanup assoc_array + folio_queue xarray maple_tree idr @@ -49,6 +51,7 @@ Library functionality that is used throughout the kernel. wrappers/atomic_t wrappers/atomic_bitops floating-point + union_find Low level entry and exit ======================== diff --git a/Documentation/core-api/memory-allocation.rst b/Documentation/core-api/memory-allocation.rst index 8b84eb4bdae7..0f19dd524323 100644 --- a/Documentation/core-api/memory-allocation.rst +++ b/Documentation/core-api/memory-allocation.rst @@ -45,8 +45,9 @@ here we briefly outline their recommended usage: * If the allocation is performed from an atomic context, e.g interrupt handler, use ``GFP_NOWAIT``. This flag prevents direct reclaim and IO or filesystem operations. Consequently, under memory pressure - ``GFP_NOWAIT`` allocation is likely to fail. Allocations which - have a reasonable fallback should be using ``GFP_NOWARN``. + ``GFP_NOWAIT`` allocation is likely to fail. Users of this flag need + to provide a suitable fallback to cope with such failures where + appropriate. * If you think that accessing memory reserves is justified and the kernel will be stressed unless allocation succeeds, you may use ``GFP_ATOMIC``. * Untrusted allocations triggered from userspace should be a subject diff --git a/Documentation/core-api/packing.rst b/Documentation/core-api/packing.rst index 3ed13bc9a195..821691f23c54 100644 --- a/Documentation/core-api/packing.rst +++ b/Documentation/core-api/packing.rst @@ -151,6 +151,77 @@ the more significant 4-byte word. We always think of our offsets as if there were no quirk, and we translate them afterwards, before accessing the memory region. +Note on buffer lengths not multiple of 4 +---------------------------------------- + +To deal with memory layout quirks where groups of 4 bytes are laid out "little +endian" relative to each other, but "big endian" within the group itself, the +concept of groups of 4 bytes is intrinsic to the packing API (not to be +confused with the memory access, which is performed byte by byte, though). + +With buffer lengths not multiple of 4, this means one group will be incomplete. +Depending on the quirks, this may lead to discontinuities in the bit fields +accessible through the buffer. The packing API assumes discontinuities were not +the intention of the memory layout, so it avoids them by effectively logically +shortening the most significant group of 4 octets to the number of octets +actually available. + +Example with a 31 byte sized buffer given below. Physical buffer offsets are +implicit, and increase from left to right within a group, and from top to +bottom within a column. + +No quirks: + +:: + + 31 29 28 | Group 7 (most significant) + 27 26 25 24 | Group 6 + 23 22 21 20 | Group 5 + 19 18 17 16 | Group 4 + 15 14 13 12 | Group 3 + 11 10 9 8 | Group 2 + 7 6 5 4 | Group 1 + 3 2 1 0 | Group 0 (least significant) + +QUIRK_LSW32_IS_FIRST: + +:: + + 3 2 1 0 | Group 0 (least significant) + 7 6 5 4 | Group 1 + 11 10 9 8 | Group 2 + 15 14 13 12 | Group 3 + 19 18 17 16 | Group 4 + 23 22 21 20 | Group 5 + 27 26 25 24 | Group 6 + 30 29 28 | Group 7 (most significant) + +QUIRK_LITTLE_ENDIAN: + +:: + + 30 28 29 | Group 7 (most significant) + 24 25 26 27 | Group 6 + 20 21 22 23 | Group 5 + 16 17 18 19 | Group 4 + 12 13 14 15 | Group 3 + 8 9 10 11 | Group 2 + 4 5 6 7 | Group 1 + 0 1 2 3 | Group 0 (least significant) + +QUIRK_LITTLE_ENDIAN | QUIRK_LSW32_IS_FIRST: + +:: + + 0 1 2 3 | Group 0 (least significant) + 4 5 6 7 | Group 1 + 8 9 10 11 | Group 2 + 12 13 14 15 | Group 3 + 16 17 18 19 | Group 4 + 20 21 22 23 | Group 5 + 24 25 26 27 | Group 6 + 28 29 30 | Group 7 (most significant) + Intended use ------------ diff --git a/Documentation/core-api/printk-formats.rst b/Documentation/core-api/printk-formats.rst index 4451ef501936..14e093da3ccd 100644 --- a/Documentation/core-api/printk-formats.rst +++ b/Documentation/core-api/printk-formats.rst @@ -576,13 +576,12 @@ The field width is passed by value, the bitmap is passed by reference. Helper macros cpumask_pr_args() and nodemask_pr_args() are available to ease printing cpumask and nodemask. -Flags bitfields such as page flags, page_type, gfp_flags +Flags bitfields such as page flags and gfp_flags -------------------------------------------------------- :: %pGp 0x17ffffc0002036(referenced|uptodate|lru|active|private|node=0|zone=2|lastcpupid=0x1fffff) - %pGt 0xffffff7f(buddy) %pGg GFP_USER|GFP_DMA32|GFP_NOWARN %pGv read|exec|mayread|maywrite|mayexec|denywrite @@ -591,7 +590,6 @@ would construct the value. The type of flags is given by the third character. Currently supported are: - p - [p]age flags, expects value of type (``unsigned long *``) - - t - page [t]ype, expects value of type (``unsigned int *``) - v - [v]ma_flags, expects value of type (``unsigned long *``) - g - [g]fp_flags, expects value of type (``gfp_t *``) diff --git a/Documentation/core-api/unaligned-memory-access.rst b/Documentation/core-api/unaligned-memory-access.rst index 1ee82419d8aa..5ceeb80eb539 100644 --- a/Documentation/core-api/unaligned-memory-access.rst +++ b/Documentation/core-api/unaligned-memory-access.rst @@ -203,7 +203,7 @@ Avoiding unaligned accesses =========================== The easiest way to avoid unaligned access is to use the get_unaligned() and -put_unaligned() macros provided by the <asm/unaligned.h> header file. +put_unaligned() macros provided by the <linux/unaligned.h> header file. Going back to an earlier example of code that potentially causes unaligned access:: diff --git a/Documentation/core-api/union_find.rst b/Documentation/core-api/union_find.rst new file mode 100644 index 000000000000..6df8b94fdb5a --- /dev/null +++ b/Documentation/core-api/union_find.rst @@ -0,0 +1,106 @@ +.. SPDX-License-Identifier: GPL-2.0 + +==================== +Union-Find in Linux +==================== + + +:Date: June 21, 2024 +:Author: Xavier <[email protected]> + +What is union-find, and what is it used for? +------------------------------------------------ + +Union-find is a data structure used to handle the merging and querying +of disjoint sets. The primary operations supported by union-find are: + + Initialization: Resetting each element as an individual set, with + each set's initial parent node pointing to itself. + + Find: Determine which set a particular element belongs to, usually by + returning a “representative element” of that set. This operation + is used to check if two elements are in the same set. + + Union: Merge two sets into one. + +As a data structure used to maintain sets (groups), union-find is commonly +utilized to solve problems related to offline queries, dynamic connectivity, +and graph theory. It is also a key component in Kruskal's algorithm for +computing the minimum spanning tree, which is crucial in scenarios like +network routing. Consequently, union-find is widely referenced. Additionally, +union-find has applications in symbolic computation, register allocation, +and more. + +Space Complexity: O(n), where n is the number of nodes. + +Time Complexity: Using path compression can reduce the time complexity of +the find operation, and using union by rank can reduce the time complexity +of the union operation. These optimizations reduce the average time +complexity of each find and union operation to O(α(n)), where α(n) is the +inverse Ackermann function. This can be roughly considered a constant time +complexity for practical purposes. + +This document covers use of the Linux union-find implementation. For more +information on the nature and implementation of union-find, see: + + Wikipedia entry on union-find + https://en.wikipedia.org/wiki/Disjoint-set_data_structure + +Linux implementation of union-find +----------------------------------- + +Linux's union-find implementation resides in the file "lib/union_find.c". +To use it, "#include <linux/union_find.h>". + +The union-find data structure is defined as follows:: + + struct uf_node { + struct uf_node *parent; + unsigned int rank; + }; + +In this structure, parent points to the parent node of the current node. +The rank field represents the height of the current tree. During a union +operation, the tree with the smaller rank is attached under the tree with the +larger rank to maintain balance. + +Initializing union-find +----------------------- + +You can complete the initialization using either static or initialization +interface. Initialize the parent pointer to point to itself and set the rank +to 0. +Example:: + + struct uf_node my_node = UF_INIT_NODE(my_node); + +or + + uf_node_init(&my_node); + +Find the Root Node of union-find +-------------------------------- + +This operation is mainly used to determine whether two nodes belong to the same +set in the union-find. If they have the same root, they are in the same set. +During the find operation, path compression is performed to improve the +efficiency of subsequent find operations. +Example:: + + int connected; + struct uf_node *root1 = uf_find(&node_1); + struct uf_node *root2 = uf_find(&node_2); + if (root1 == root2) + connected = 1; + else + connected = 0; + +Union Two Sets in union-find +---------------------------- + +To union two sets in the union-find, you first find their respective root nodes +and then link the smaller node to the larger node based on the rank of the root +nodes. +Example:: + + uf_union(&node_1, &node_2); |