aboutsummaryrefslogtreecommitdiff
path: root/Documentation/admin-guide/mm
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide/mm')
-rw-r--r--Documentation/admin-guide/mm/cma_debugfs.rst25
-rw-r--r--Documentation/admin-guide/mm/index.rst4
-rw-r--r--Documentation/admin-guide/mm/ksm.rst2
-rw-r--r--Documentation/admin-guide/mm/numa_memory_policy.rst2
-rw-r--r--Documentation/admin-guide/mm/numaperf.rst170
-rw-r--r--Documentation/admin-guide/mm/transhuge.rst2
6 files changed, 201 insertions, 4 deletions
diff --git a/Documentation/admin-guide/mm/cma_debugfs.rst b/Documentation/admin-guide/mm/cma_debugfs.rst
new file mode 100644
index 000000000000..4e06ffabd78a
--- /dev/null
+++ b/Documentation/admin-guide/mm/cma_debugfs.rst
@@ -0,0 +1,25 @@
+=====================
+CMA Debugfs Interface
+=====================
+
+The CMA debugfs interface is useful to retrieve basic information out of the
+different CMA areas and to test allocation/release in each of the areas.
+
+Each CMA zone represents a directory under <debugfs>/cma/, indexed by the
+kernel's CMA index. So the first CMA zone would be:
+
+ <debugfs>/cma/cma-0
+
+The structure of the files created under that directory is as follows:
+
+ - [RO] base_pfn: The base PFN (Page Frame Number) of the zone.
+ - [RO] count: Amount of memory in the CMA area.
+ - [RO] order_per_bit: Order of pages represented by one bit.
+ - [RO] bitmap: The bitmap of page states in the zone.
+ - [WO] alloc: Allocate N pages from that CMA area. For example::
+
+ echo 5 > <debugfs>/cma/cma-2/alloc
+
+would try to allocate 5 pages from the cma-2 area.
+
+ - [WO] free: Free N pages from that CMA area, similar to the above.
diff --git a/Documentation/admin-guide/mm/index.rst b/Documentation/admin-guide/mm/index.rst
index 8edb35f11317..11db46448354 100644
--- a/Documentation/admin-guide/mm/index.rst
+++ b/Documentation/admin-guide/mm/index.rst
@@ -11,7 +11,7 @@ processes address space and many other cool things.
Linux memory management is a complex system with many configurable
settings. Most of these settings are available via ``/proc``
filesystem and can be quired and adjusted using ``sysctl``. These APIs
-are described in Documentation/sysctl/vm.txt and in `man 5 proc`_.
+are described in Documentation/admin-guide/sysctl/vm.rst and in `man 5 proc`_.
.. _man 5 proc: http://man7.org/linux/man-pages/man5/proc.5.html
@@ -26,11 +26,13 @@ the Linux memory management.
:maxdepth: 1
concepts
+ cma_debugfs
hugetlbpage
idle_page_tracking
ksm
memory-hotplug
numa_memory_policy
+ numaperf
pagemap
soft-dirty
transhuge
diff --git a/Documentation/admin-guide/mm/ksm.rst b/Documentation/admin-guide/mm/ksm.rst
index 9303786632d1..874eb0c77d34 100644
--- a/Documentation/admin-guide/mm/ksm.rst
+++ b/Documentation/admin-guide/mm/ksm.rst
@@ -59,7 +59,7 @@ MADV_UNMERGEABLE is applied to a range which was never MADV_MERGEABLE.
If a region of memory must be split into at least one new MADV_MERGEABLE
or MADV_UNMERGEABLE region, the madvise may return ENOMEM if the process
-will exceed ``vm.max_map_count`` (see Documentation/sysctl/vm.txt).
+will exceed ``vm.max_map_count`` (see Documentation/admin-guide/sysctl/vm.rst).
Like other madvise calls, they are intended for use on mapped areas of
the user address space: they will report ENOMEM if the specified range
diff --git a/Documentation/admin-guide/mm/numa_memory_policy.rst b/Documentation/admin-guide/mm/numa_memory_policy.rst
index d78c5b315f72..8463f5538fda 100644
--- a/Documentation/admin-guide/mm/numa_memory_policy.rst
+++ b/Documentation/admin-guide/mm/numa_memory_policy.rst
@@ -15,7 +15,7 @@ document attempts to describe the concepts and APIs of the 2.6 memory policy
support.
Memory policies should not be confused with cpusets
-(``Documentation/cgroup-v1/cpusets.txt``)
+(``Documentation/admin-guide/cgroup-v1/cpusets.rst``)
which is an administrative mechanism for restricting the nodes from which
memory may be allocated by a set of processes. Memory policies are a
programming interface that a NUMA-aware application can take advantage of. When
diff --git a/Documentation/admin-guide/mm/numaperf.rst b/Documentation/admin-guide/mm/numaperf.rst
new file mode 100644
index 000000000000..a80c3c37226e
--- /dev/null
+++ b/Documentation/admin-guide/mm/numaperf.rst
@@ -0,0 +1,170 @@
+.. _numaperf:
+
+=============
+NUMA Locality
+=============
+
+Some platforms may have multiple types of memory attached to a compute
+node. These disparate memory ranges may share some characteristics, such
+as CPU cache coherence, but may have different performance. For example,
+different media types and buses affect bandwidth and latency.
+
+A system supports such heterogeneous memory by grouping each memory type
+under different domains, or "nodes", based on locality and performance
+characteristics. Some memory may share the same node as a CPU, and others
+are provided as memory only nodes. While memory only nodes do not provide
+CPUs, they may still be local to one or more compute nodes relative to
+other nodes. The following diagram shows one such example of two compute
+nodes with local memory and a memory only node for each of compute node::
+
+ +------------------+ +------------------+
+ | Compute Node 0 +-----+ Compute Node 1 |
+ | Local Node0 Mem | | Local Node1 Mem |
+ +--------+---------+ +--------+---------+
+ | |
+ +--------+---------+ +--------+---------+
+ | Slower Node2 Mem | | Slower Node3 Mem |
+ +------------------+ +--------+---------+
+
+A "memory initiator" is a node containing one or more devices such as
+CPUs or separate memory I/O devices that can initiate memory requests.
+A "memory target" is a node containing one or more physical address
+ranges accessible from one or more memory initiators.
+
+When multiple memory initiators exist, they may not all have the same
+performance when accessing a given memory target. Each initiator-target
+pair may be organized into different ranked access classes to represent
+this relationship. The highest performing initiator to a given target
+is considered to be one of that target's local initiators, and given
+the highest access class, 0. Any given target may have one or more
+local initiators, and any given initiator may have multiple local
+memory targets.
+
+To aid applications matching memory targets with their initiators, the
+kernel provides symlinks to each other. The following example lists the
+relationship for the access class "0" memory initiators and targets::
+
+ # symlinks -v /sys/devices/system/node/nodeX/access0/targets/
+ relative: /sys/devices/system/node/nodeX/access0/targets/nodeY -> ../../nodeY
+
+ # symlinks -v /sys/devices/system/node/nodeY/access0/initiators/
+ relative: /sys/devices/system/node/nodeY/access0/initiators/nodeX -> ../../nodeX
+
+A memory initiator may have multiple memory targets in the same access
+class. The target memory's initiators in a given class indicate the
+nodes' access characteristics share the same performance relative to other
+linked initiator nodes. Each target within an initiator's access class,
+though, do not necessarily perform the same as each other.
+
+================
+NUMA Performance
+================
+
+Applications may wish to consider which node they want their memory to
+be allocated from based on the node's performance characteristics. If
+the system provides these attributes, the kernel exports them under the
+node sysfs hierarchy by appending the attributes directory under the
+memory node's access class 0 initiators as follows::
+
+ /sys/devices/system/node/nodeY/access0/initiators/
+
+These attributes apply only when accessed from nodes that have the
+are linked under the this access's inititiators.
+
+The performance characteristics the kernel provides for the local initiators
+are exported are as follows::
+
+ # tree -P "read*|write*" /sys/devices/system/node/nodeY/access0/initiators/
+ /sys/devices/system/node/nodeY/access0/initiators/
+ |-- read_bandwidth
+ |-- read_latency
+ |-- write_bandwidth
+ `-- write_latency
+
+The bandwidth attributes are provided in MiB/second.
+
+The latency attributes are provided in nanoseconds.
+
+The values reported here correspond to the rated latency and bandwidth
+for the platform.
+
+==========
+NUMA Cache
+==========
+
+System memory may be constructed in a hierarchy of elements with various
+performance characteristics in order to provide large address space of
+slower performing memory cached by a smaller higher performing memory. The
+system physical addresses memory initiators are aware of are provided
+by the last memory level in the hierarchy. The system meanwhile uses
+higher performing memory to transparently cache access to progressively
+slower levels.
+
+The term "far memory" is used to denote the last level memory in the
+hierarchy. Each increasing cache level provides higher performing
+initiator access, and the term "near memory" represents the fastest
+cache provided by the system.
+
+This numbering is different than CPU caches where the cache level (ex:
+L1, L2, L3) uses the CPU-side view where each increased level is lower
+performing. In contrast, the memory cache level is centric to the last
+level memory, so the higher numbered cache level corresponds to memory
+nearer to the CPU, and further from far memory.
+
+The memory-side caches are not directly addressable by software. When
+software accesses a system address, the system will return it from the
+near memory cache if it is present. If it is not present, the system
+accesses the next level of memory until there is either a hit in that
+cache level, or it reaches far memory.
+
+An application does not need to know about caching attributes in order
+to use the system. Software may optionally query the memory cache
+attributes in order to maximize the performance out of such a setup.
+If the system provides a way for the kernel to discover this information,
+for example with ACPI HMAT (Heterogeneous Memory Attribute Table),
+the kernel will append these attributes to the NUMA node memory target.
+
+When the kernel first registers a memory cache with a node, the kernel
+will create the following directory::
+
+ /sys/devices/system/node/nodeX/memory_side_cache/
+
+If that directory is not present, the system either does not not provide
+a memory-side cache, or that information is not accessible to the kernel.
+
+The attributes for each level of cache is provided under its cache
+level index::
+
+ /sys/devices/system/node/nodeX/memory_side_cache/indexA/
+ /sys/devices/system/node/nodeX/memory_side_cache/indexB/
+ /sys/devices/system/node/nodeX/memory_side_cache/indexC/
+
+Each cache level's directory provides its attributes. For example, the
+following shows a single cache level and the attributes available for
+software to query::
+
+ # tree sys/devices/system/node/node0/memory_side_cache/
+ /sys/devices/system/node/node0/memory_side_cache/
+ |-- index1
+ | |-- indexing
+ | |-- line_size
+ | |-- size
+ | `-- write_policy
+
+The "indexing" will be 0 if it is a direct-mapped cache, and non-zero
+for any other indexed based, multi-way associativity.
+
+The "line_size" is the number of bytes accessed from the next cache
+level on a miss.
+
+The "size" is the number of bytes provided by this cache level.
+
+The "write_policy" will be 0 for write-back, and non-zero for
+write-through caching.
+
+========
+See Also
+========
+
+[1] https://www.uefi.org/sites/default/files/resources/ACPI_6_2.pdf
+- Section 5.2.27
diff --git a/Documentation/admin-guide/mm/transhuge.rst b/Documentation/admin-guide/mm/transhuge.rst
index 7ab93a8404b9..bd5714547cee 100644
--- a/Documentation/admin-guide/mm/transhuge.rst
+++ b/Documentation/admin-guide/mm/transhuge.rst
@@ -53,7 +53,7 @@ disabled, there is ``khugepaged`` daemon that scans memory and
collapses sequences of basic pages into huge pages.
The THP behaviour is controlled via :ref:`sysfs <thp_sysfs>`
-interface and using madivse(2) and prctl(2) system calls.
+interface and using madvise(2) and prctl(2) system calls.
Transparent Hugepage Support maximizes the usefulness of free memory
if compared to the reservation approach of hugetlbfs by allowing all