1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
1617 lines
42 KiB
C
1617 lines
42 KiB
C
/*
|
|
** -----------------------------------------------------------------------------
|
|
**
|
|
** Perle Specialix driver for Linux
|
|
** Ported from existing RIO Driver for SCO sources.
|
|
*
|
|
* (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
**
|
|
** Module : rioinit.c
|
|
** SID : 1.3
|
|
** Last Modified : 11/6/98 10:33:43
|
|
** Retrieved : 11/6/98 10:33:49
|
|
**
|
|
** ident @(#)rioinit.c 1.3
|
|
**
|
|
** -----------------------------------------------------------------------------
|
|
*/
|
|
#ifdef SCCS_LABELS
|
|
static char *_rioinit_c_sccs_ = "@(#)rioinit.c 1.3";
|
|
#endif
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/errno.h>
|
|
#include <asm/io.h>
|
|
#include <asm/system.h>
|
|
#include <asm/string.h>
|
|
#include <asm/semaphore.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#include <linux/termios.h>
|
|
#include <linux/serial.h>
|
|
|
|
#include <linux/generic_serial.h>
|
|
|
|
|
|
#include "linux_compat.h"
|
|
#include "typdef.h"
|
|
#include "pkt.h"
|
|
#include "daemon.h"
|
|
#include "rio.h"
|
|
#include "riospace.h"
|
|
#include "top.h"
|
|
#include "cmdpkt.h"
|
|
#include "map.h"
|
|
#include "riotypes.h"
|
|
#include "rup.h"
|
|
#include "port.h"
|
|
#include "riodrvr.h"
|
|
#include "rioinfo.h"
|
|
#include "func.h"
|
|
#include "errors.h"
|
|
#include "pci.h"
|
|
|
|
#include "parmmap.h"
|
|
#include "unixrup.h"
|
|
#include "board.h"
|
|
#include "host.h"
|
|
#include "error.h"
|
|
#include "phb.h"
|
|
#include "link.h"
|
|
#include "cmdblk.h"
|
|
#include "route.h"
|
|
#include "control.h"
|
|
#include "cirrus.h"
|
|
#include "rioioctl.h"
|
|
#include "rio_linux.h"
|
|
|
|
#undef bcopy
|
|
#define bcopy rio_pcicopy
|
|
|
|
int RIOPCIinit(struct rio_info *p, int Mode);
|
|
|
|
#if 0
|
|
static void RIOAllocateInterrupts(struct rio_info *);
|
|
static int RIOReport(struct rio_info *);
|
|
static void RIOStopInterrupts(struct rio_info *, int, int);
|
|
#endif
|
|
|
|
static int RIOScrub(int, BYTE *, int);
|
|
|
|
#if 0
|
|
extern int rio_intr();
|
|
|
|
/*
|
|
** Init time code.
|
|
*/
|
|
void
|
|
rioinit( p, info )
|
|
struct rio_info * p;
|
|
struct RioHostInfo * info;
|
|
{
|
|
/*
|
|
** Multi-Host card support - taking the easy way out - sorry !
|
|
** We allocate and set up the Host and Port structs when the
|
|
** driver is called to 'install' the first host.
|
|
** We check for this first 'call' by testing the RIOPortp pointer.
|
|
*/
|
|
if ( !p->RIOPortp )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Allocating and setting up driver data structures\n");
|
|
|
|
RIOAllocDataStructs(p); /* allocate host/port structs */
|
|
RIOSetupDataStructs(p); /* setup topology structs */
|
|
}
|
|
|
|
RIOInitHosts( p, info ); /* hunt down the hardware */
|
|
|
|
RIOAllocateInterrupts(p); /* allocate interrupts */
|
|
RIOReport(p); /* show what we found */
|
|
}
|
|
|
|
/*
|
|
** Initialise the Cards
|
|
*/
|
|
void
|
|
RIOInitHosts(p, info)
|
|
struct rio_info * p;
|
|
struct RioHostInfo * info;
|
|
{
|
|
/*
|
|
** 15.10.1998 ARG - ESIL 0762 part fix
|
|
** If there is no ISA card definition - we always look for PCI cards.
|
|
** As we currently only support one host card this lets an ISA card
|
|
** definition take precedence over PLUG and PLAY.
|
|
** No ISA card - we are PLUG and PLAY with PCI.
|
|
*/
|
|
|
|
/*
|
|
** Note - for PCI both these will be zero, that's okay because
|
|
** RIOPCIInit() fills them in if a card is found.
|
|
*/
|
|
p->RIOHosts[p->RIONumHosts].Ivec = info->vector;
|
|
p->RIOHosts[p->RIONumHosts].PaddrP = info->location;
|
|
|
|
/*
|
|
** Check that we are able to accommodate another host
|
|
*/
|
|
if ( p->RIONumHosts >= RIO_HOSTS )
|
|
{
|
|
p->RIOFailed++;
|
|
return;
|
|
}
|
|
|
|
if ( info->bus & ISA_BUS )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (ISA)\n", p->RIONumHosts);
|
|
RIOISAinit(p, p->mode);
|
|
}
|
|
else
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "initialising card %d (PCI)\n", p->RIONumHosts);
|
|
RIOPCIinit(p, RIO_PCI_DEFAULT_MODE);
|
|
}
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Total hosts initialised so far : %d\n", p->RIONumHosts);
|
|
|
|
|
|
#ifdef FUTURE_RELEASE
|
|
if (p->bus & EISA_BUS)
|
|
/* EISA card */
|
|
RIOEISAinit(p, RIO_EISA_DEFAULT_MODE);
|
|
|
|
if (p->bus & MCA_BUS)
|
|
/* MCA card */
|
|
RIOMCAinit(p, RIO_MCA_DEFAULT_MODE);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** go through memory for an AT host that we pass in the device info
|
|
** structure and initialise
|
|
*/
|
|
void
|
|
RIOISAinit(p, mode)
|
|
struct rio_info * p;
|
|
int mode;
|
|
{
|
|
|
|
/* XXX Need to implement this. */
|
|
#if 0
|
|
p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec,
|
|
(int (*)())rio_intr, (char*)p->RIONumHosts);
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Set interrupt handler, intr_tid = 0x%x\n", p->intr_tid );
|
|
|
|
if (RIODoAT(p, p->RIOHosts[p->RIONumHosts].PaddrP, mode)) {
|
|
return;
|
|
}
|
|
else {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIODoAT failed\n");
|
|
p->RIOFailed++;
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
** RIODoAT :
|
|
**
|
|
** Map in a boards physical address, check that the board is there,
|
|
** test the board and if everything is okay assign the board an entry
|
|
** in the Rio Hosts structure.
|
|
*/
|
|
int
|
|
RIODoAT(p, Base, mode)
|
|
struct rio_info * p;
|
|
int Base;
|
|
int mode;
|
|
{
|
|
#define FOUND 1
|
|
#define NOT_FOUND 0
|
|
|
|
caddr_t cardAddr;
|
|
|
|
/*
|
|
** Check to see if we actually have a board at this physical address.
|
|
*/
|
|
if ((cardAddr = RIOCheckForATCard(Base)) != 0) {
|
|
/*
|
|
** Now test the board to see if it is working.
|
|
*/
|
|
if (RIOBoardTest(Base, cardAddr, RIO_AT, 0) == RIO_SUCCESS) {
|
|
/*
|
|
** Fill out a slot in the Rio host structure.
|
|
*/
|
|
if (RIOAssignAT(p, Base, cardAddr, mode)) {
|
|
return(FOUND);
|
|
}
|
|
}
|
|
RIOMapout(Base, RIO_AT_MEM_SIZE, cardAddr);
|
|
}
|
|
return(NOT_FOUND);
|
|
}
|
|
|
|
caddr_t
|
|
RIOCheckForATCard(Base)
|
|
int Base;
|
|
{
|
|
int off;
|
|
struct DpRam *cardp; /* (Points at the host) */
|
|
caddr_t virtAddr;
|
|
unsigned char RIOSigTab[24];
|
|
/*
|
|
** Table of values to search for as prom signature of a host card
|
|
*/
|
|
strcpy(RIOSigTab, "JBJGPGGHINSMJPJR");
|
|
|
|
/*
|
|
** Hey! Yes, You reading this code! Yo, grab a load a this:
|
|
**
|
|
** IF the card is using WORD MODE rather than BYTE MODE
|
|
** then it will occupy 128K of PHYSICAL memory area. So,
|
|
** you might think that the following Mapin is wrong. Well,
|
|
** it isn't, because the SECOND 64K of occupied space is an
|
|
** EXACT COPY of the FIRST 64K. (good?), so, we need only
|
|
** map it in in one 64K block.
|
|
*/
|
|
if (RIOMapin(Base, RIO_AT_MEM_SIZE, &virtAddr) == -1) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't map the board in!\n");
|
|
return((caddr_t)0);
|
|
}
|
|
|
|
/*
|
|
** virtAddr points to the DP ram of the system.
|
|
** We now cast this to a pointer to a RIO Host,
|
|
** and have a rummage about in the PROM.
|
|
*/
|
|
cardp = (struct DpRam *)virtAddr;
|
|
|
|
for (off=0; RIOSigTab[off]; off++) {
|
|
if ((RBYTE(cardp->DpSignature[off]) & 0xFF) != RIOSigTab[off]) {
|
|
/*
|
|
** Signature mismatch - card not at this address
|
|
*/
|
|
RIOMapout(Base, RIO_AT_MEM_SIZE, virtAddr);
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Couldn't match the signature 0x%x 0x%x!\n",
|
|
(int)cardp, off);
|
|
return((caddr_t)0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** If we get here then we must have found a valid board so return
|
|
** its virtual address.
|
|
*/
|
|
return(virtAddr);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
** RIOAssignAT :
|
|
**
|
|
** Fill out the fields in the p->RIOHosts structure now we know we know
|
|
** we have a board present.
|
|
**
|
|
** bits < 0 indicates 8 bit operation requested,
|
|
** bits > 0 indicates 16 bit operation.
|
|
*/
|
|
int
|
|
RIOAssignAT(p, Base, virtAddr, mode)
|
|
struct rio_info * p;
|
|
int Base;
|
|
caddr_t virtAddr;
|
|
int mode;
|
|
{
|
|
int bits;
|
|
struct DpRam *cardp = (struct DpRam *)virtAddr;
|
|
|
|
if ((Base < ONE_MEG) || (mode & BYTE_ACCESS_MODE))
|
|
bits = BYTE_OPERATION;
|
|
else
|
|
bits = WORD_OPERATION;
|
|
|
|
/*
|
|
** Board has passed its scrub test. Fill in all the
|
|
** transient stuff.
|
|
*/
|
|
p->RIOHosts[p->RIONumHosts].Caddr = virtAddr;
|
|
p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)virtAddr;
|
|
|
|
/*
|
|
** Revision 01 AT host cards don't support WORD operations,
|
|
*/
|
|
if ( RBYTE(cardp->DpRevision) == 01 )
|
|
bits = BYTE_OPERATION;
|
|
|
|
p->RIOHosts[p->RIONumHosts].Type = RIO_AT;
|
|
p->RIOHosts[p->RIONumHosts].Copy = bcopy;
|
|
/* set this later */
|
|
p->RIOHosts[p->RIONumHosts].Slot = -1;
|
|
p->RIOHosts[p->RIONumHosts].Mode = SLOW_LINKS | SLOW_AT_BUS | bits;
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
|
|
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
|
|
p->RIOHosts[p->RIONumHosts].Mode |
|
|
INTERRUPT_DISABLE );
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
|
|
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
|
|
p->RIOHosts[p->RIONumHosts].Mode |
|
|
INTERRUPT_DISABLE );
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
|
|
p->RIOHosts[p->RIONumHosts].UniqueNum =
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)|
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)|
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)|
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24);
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Uniquenum 0x%x\n",p->RIOHosts[p->RIONumHosts].UniqueNum);
|
|
|
|
p->RIONumHosts++;
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Tests Passed at 0x%x\n", Base);
|
|
return(1);
|
|
}
|
|
#if 0
|
|
#ifdef FUTURE_RELEASE
|
|
int RIOMCAinit(int Mode)
|
|
{
|
|
uchar SlotNumber;
|
|
caddr_t Caddr;
|
|
uint Paddr;
|
|
uint Ivec;
|
|
int Handle;
|
|
int ret = 0;
|
|
|
|
/*
|
|
** Valid mode information for MCA cards
|
|
** is only FAST LINKS
|
|
*/
|
|
Mode = (Mode & FAST_LINKS) ? McaTpFastLinks : McaTpSlowLinks;
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIOMCAinit(%d)\n",Mode);
|
|
|
|
|
|
/*
|
|
** Check out each of the slots
|
|
*/
|
|
for (SlotNumber = 0; SlotNumber < McaMaxSlots; SlotNumber++) {
|
|
/*
|
|
** Enable the slot we want to talk to
|
|
*/
|
|
outb( McaSlotSelect, SlotNumber | McaSlotEnable );
|
|
|
|
/*
|
|
** Read the ID word from the slot
|
|
*/
|
|
if (((inb(McaIdHigh)<< 8)|inb(McaIdLow)) == McaRIOId)
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Potential MCA card in slot %d\n", SlotNumber);
|
|
|
|
/*
|
|
** Card appears to be a RIO MCA card!
|
|
*/
|
|
RIOMachineType |= (1<<RIO_MCA);
|
|
|
|
/*
|
|
** Just check we haven't found too many wonderful objects
|
|
*/
|
|
if ( RIONumHosts >= RIO_HOSTS )
|
|
{
|
|
Rprintf(RIOMesgTooManyCards);
|
|
return(ret);
|
|
}
|
|
|
|
/*
|
|
** McaIrqEnable contains the interrupt vector, and a card
|
|
** enable bit.
|
|
*/
|
|
Ivec = inb(McaIrqEnable);
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Ivec is %x\n", Ivec);
|
|
|
|
switch ( Ivec & McaIrqMask )
|
|
{
|
|
case McaIrq9:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ9\n");
|
|
break;
|
|
case McaIrq3:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ3\n");
|
|
break;
|
|
case McaIrq4:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ4\n");
|
|
break;
|
|
case McaIrq7:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ7\n");
|
|
break;
|
|
case McaIrq10:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ10\n");
|
|
break;
|
|
case McaIrq11:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ11\n");
|
|
break;
|
|
case McaIrq12:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ12\n");
|
|
break;
|
|
case McaIrq15:
|
|
rio_dprintk (RIO_DEBUG_INIT, "IRQ15\n");
|
|
break;
|
|
}
|
|
|
|
/*
|
|
** If the card enable bit isn't set, then set it!
|
|
*/
|
|
if ((Ivec & McaCardEnable) != McaCardEnable) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable not set - setting!\n");
|
|
outb(McaIrqEnable,Ivec|McaCardEnable);
|
|
} else
|
|
rio_dprintk (RIO_DEBUG_INIT, "McaCardEnable already set\n");
|
|
|
|
/*
|
|
** Convert the IRQ enable mask into something useful
|
|
*/
|
|
Ivec = RIOMcaToIvec[Ivec & McaIrqMask];
|
|
|
|
/*
|
|
** Find the physical address
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INIT, "inb(McaMemory) is %x\n", inb(McaMemory));
|
|
Paddr = McaAddress(inb(McaMemory));
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "MCA card has Ivec %d Addr %x\n", Ivec, Paddr);
|
|
|
|
if ( Paddr != 0 )
|
|
{
|
|
|
|
/*
|
|
** Tell the memory mapper that we want to talk to it
|
|
*/
|
|
Handle = RIOMapin( Paddr, RIO_MCA_MEM_SIZE, &Caddr );
|
|
|
|
if ( Handle == -1 ) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n", RIO_MCA_MEM_SIZE, Paddr;
|
|
continue;
|
|
}
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr);
|
|
|
|
/*
|
|
** And check that it is actually there!
|
|
*/
|
|
if ( RIOBoardTest( Paddr,Caddr,RIO_MCA,SlotNumber ) == RIO_SUCCESS )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n");
|
|
rio_dprintk (RIO_DEBUG_INIT, "Slot %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n",
|
|
SlotNumber, RIO_MCA, Paddr, Caddr, Mode);
|
|
|
|
/*
|
|
** Board has passed its scrub test. Fill in all the
|
|
** transient stuff.
|
|
*/
|
|
p->RIOHosts[RIONumHosts].Slot = SlotNumber;
|
|
p->RIOHosts[RIONumHosts].Ivec = Ivec;
|
|
p->RIOHosts[RIONumHosts].Type = RIO_MCA;
|
|
p->RIOHosts[RIONumHosts].Copy = bcopy;
|
|
p->RIOHosts[RIONumHosts].PaddrP = Paddr;
|
|
p->RIOHosts[RIONumHosts].Caddr = Caddr;
|
|
p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr;
|
|
p->RIOHosts[RIONumHosts].Mode = Mode;
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt , 0xff);
|
|
p->RIOHosts[RIONumHosts].UniqueNum =
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)|
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)|
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)|
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24);
|
|
RIONumHosts++;
|
|
ret++;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
** It failed the test, so ignore it.
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n");
|
|
RIOMapout(Paddr, RIO_MCA_MEM_SIZE, Caddr );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Slot %d - Paddr zero!\n", SlotNumber);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber);
|
|
}
|
|
}
|
|
/*
|
|
** Now we have checked all the slots, turn off the MCA slot selector
|
|
*/
|
|
outb(McaSlotSelect,0);
|
|
rio_dprintk (RIO_DEBUG_INIT, "Slot %d NOT RIO\n", SlotNumber);
|
|
return ret;
|
|
}
|
|
|
|
int RIOEISAinit( int Mode )
|
|
{
|
|
static int EISADone = 0;
|
|
uint Paddr;
|
|
int PollIntMixMsgDone = 0;
|
|
caddr_t Caddr;
|
|
ushort Ident;
|
|
uchar EisaSlot;
|
|
uchar Ivec;
|
|
int ret = 0;
|
|
|
|
/*
|
|
** The only valid mode information for EISA hosts is fast or slow
|
|
** links.
|
|
*/
|
|
Mode = (Mode & FAST_LINKS) ? EISA_TP_FAST_LINKS : EISA_TP_SLOW_LINKS;
|
|
|
|
if ( EISADone )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit() - already done, return.\n");
|
|
return(0);
|
|
}
|
|
|
|
EISADone++;
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIOEISAinit()\n");
|
|
|
|
|
|
/*
|
|
** First check all cards to see if ANY are set for polled mode operation.
|
|
** If so, set ALL to polled.
|
|
*/
|
|
|
|
for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ )
|
|
{
|
|
Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) |
|
|
INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO);
|
|
|
|
if ( Ident == RIO_EISA_IDENT )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Found Specialix product\n");
|
|
|
|
if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Not Specialix RIO - Product number %x\n",
|
|
INBZ(EisaSlot, EISA_PRODUCT_NUMBER));
|
|
continue; /* next slot */
|
|
}
|
|
/*
|
|
** Its a Specialix RIO!
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO Revision %d\n",
|
|
INBZ(EisaSlot, EISA_REVISION_NUMBER));
|
|
|
|
RIOMachineType |= (1<<RIO_EISA);
|
|
|
|
/*
|
|
** Just check we haven't found too many wonderful objects
|
|
*/
|
|
if ( RIONumHosts >= RIO_HOSTS )
|
|
{
|
|
Rprintf(RIOMesgTooManyCards);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
** Ensure that the enable bit is set!
|
|
*/
|
|
OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT );
|
|
|
|
/*
|
|
** EISA_INTERRUPT_VEC contains the interrupt vector.
|
|
*/
|
|
Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC);
|
|
|
|
#ifdef RIODEBUG
|
|
switch ( Ivec & EISA_INTERRUPT_MASK )
|
|
{
|
|
case EISA_IRQ_3:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 3\n");
|
|
break;
|
|
case EISA_IRQ_4:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 4\n");
|
|
break;
|
|
case EISA_IRQ_5:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 5\n");
|
|
break;
|
|
case EISA_IRQ_6:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 6\n");
|
|
break;
|
|
case EISA_IRQ_7:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 7\n");
|
|
break;
|
|
case EISA_IRQ_9:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 9\n");
|
|
break;
|
|
case EISA_IRQ_10:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 10\n");
|
|
break;
|
|
case EISA_IRQ_11:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 11\n");
|
|
break;
|
|
case EISA_IRQ_12:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 12\n");
|
|
break;
|
|
case EISA_IRQ_14:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 14\n");
|
|
break;
|
|
case EISA_IRQ_15:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA IRQ 15\n");
|
|
break;
|
|
case EISA_POLLED:
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA POLLED\n");
|
|
break;
|
|
default:
|
|
rio_dprintk (RIO_DEBUG_INIT, NULL,DBG_INIT|DBG_FAIL,"Shagged interrupt number!\n");
|
|
Ivec &= EISA_CONTROL_MASK;
|
|
}
|
|
#endif
|
|
|
|
if ( (Ivec & EISA_INTERRUPT_MASK) ==
|
|
EISA_POLLED )
|
|
{
|
|
RIOWillPoll = 1;
|
|
break; /* From EisaSlot loop */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Do it all again now we know whether to change all cards to polled
|
|
** mode or not
|
|
*/
|
|
|
|
for ( EisaSlot=1; EisaSlot<=RIO_MAX_EISA_SLOTS; EisaSlot++ )
|
|
{
|
|
Ident = (INBZ(EisaSlot,EISA_PRODUCT_IDENT_HI)<<8) |
|
|
INBZ(EisaSlot,EISA_PRODUCT_IDENT_LO);
|
|
|
|
if ( Ident == RIO_EISA_IDENT )
|
|
{
|
|
if ( INBZ(EisaSlot,EISA_PRODUCT_NUMBER) != RIO_EISA_PRODUCT_CODE )
|
|
continue; /* next slot */
|
|
|
|
/*
|
|
** Its a Specialix RIO!
|
|
*/
|
|
|
|
/*
|
|
** Ensure that the enable bit is set!
|
|
*/
|
|
OUTBZ( EisaSlot, EISA_ENABLE, RIO_EISA_ENABLE_BIT );
|
|
|
|
/*
|
|
** EISA_INTERRUPT_VEC contains the interrupt vector.
|
|
*/
|
|
Ivec = INBZ(EisaSlot,EISA_INTERRUPT_VEC);
|
|
|
|
if ( RIOWillPoll )
|
|
{
|
|
/*
|
|
** If we are going to operate in polled mode, but this
|
|
** board is configured to be interrupt driven, display
|
|
** the message explaining the situation to the punter,
|
|
** assuming we haven't already done so.
|
|
*/
|
|
|
|
if ( !PollIntMixMsgDone &&
|
|
(Ivec & EISA_INTERRUPT_MASK) != EISA_POLLED )
|
|
{
|
|
Rprintf(RIOMesgAllPolled);
|
|
PollIntMixMsgDone = 1;
|
|
}
|
|
|
|
/*
|
|
** Ungraciously ignore whatever the board reports as its
|
|
** interrupt vector...
|
|
*/
|
|
|
|
Ivec &= ~EISA_INTERRUPT_MASK;
|
|
|
|
/*
|
|
** ...and force it to dance to the poll tune.
|
|
*/
|
|
|
|
Ivec |= EISA_POLLED;
|
|
}
|
|
|
|
/*
|
|
** Convert the IRQ enable mask into something useful (0-15)
|
|
*/
|
|
Ivec = RIOEisaToIvec(Ivec);
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA host in slot %d has Ivec 0x%x\n",
|
|
EisaSlot, Ivec);
|
|
|
|
/*
|
|
** Find the physical address
|
|
*/
|
|
Paddr = (INBZ(EisaSlot,EISA_MEMORY_BASE_HI)<<24) |
|
|
(INBZ(EisaSlot,EISA_MEMORY_BASE_LO)<<16);
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "EISA card has Ivec %d Addr %x\n", Ivec, Paddr);
|
|
|
|
if ( Paddr == 0 )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT,
|
|
"Board in slot %d configured for address zero!\n", EisaSlot);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
** Tell the memory mapper that we want to talk to it
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INIT, "About to map EISA card \n");
|
|
|
|
if (RIOMapin( Paddr, RIO_EISA_MEM_SIZE, &Caddr) == -1) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at %x\n",
|
|
RIO_EISA_MEM_SIZE,Paddr);
|
|
continue;
|
|
}
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Board mapped to vaddr 0x%x\n", Caddr);
|
|
|
|
/*
|
|
** And check that it is actually there!
|
|
*/
|
|
if ( RIOBoardTest( Paddr,Caddr,RIO_EISA,EisaSlot) == RIO_SUCCESS )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Board has passed test\n");
|
|
rio_dprintk (RIO_DEBUG_INIT,
|
|
"Slot %d. Ivec %d. Type %d. Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n",
|
|
EisaSlot,Ivec,RIO_EISA,Paddr,Caddr,Mode);
|
|
|
|
/*
|
|
** Board has passed its scrub test. Fill in all the
|
|
** transient stuff.
|
|
*/
|
|
p->RIOHosts[RIONumHosts].Slot = EisaSlot;
|
|
p->RIOHosts[RIONumHosts].Ivec = Ivec;
|
|
p->RIOHosts[RIONumHosts].Type = RIO_EISA;
|
|
p->RIOHosts[RIONumHosts].Copy = bcopy;
|
|
p->RIOHosts[RIONumHosts].PaddrP = Paddr;
|
|
p->RIOHosts[RIONumHosts].Caddr = Caddr;
|
|
p->RIOHosts[RIONumHosts].CardP = (struct DpRam *)Caddr;
|
|
p->RIOHosts[RIONumHosts].Mode = Mode;
|
|
/*
|
|
** because the EISA prom is mapped into IO space, we
|
|
** need to copy the unqiue number into the memory area
|
|
** that it would have occupied, so that the download
|
|
** code can determine its ID and card type.
|
|
*/
|
|
WBYTE(p->RIOHosts[RIONumHosts].Unique[0],INBZ(EisaSlot,EISA_UNIQUE_NUM_0));
|
|
WBYTE(p->RIOHosts[RIONumHosts].Unique[1],INBZ(EisaSlot,EISA_UNIQUE_NUM_1));
|
|
WBYTE(p->RIOHosts[RIONumHosts].Unique[2],INBZ(EisaSlot,EISA_UNIQUE_NUM_2));
|
|
WBYTE(p->RIOHosts[RIONumHosts].Unique[3],INBZ(EisaSlot,EISA_UNIQUE_NUM_3));
|
|
p->RIOHosts[RIONumHosts].UniqueNum =
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[0])&0xFF)<<0)|
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[1])&0xFF)<<8)|
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[2])&0xFF)<<16)|
|
|
((RBYTE(p->RIOHosts[RIONumHosts].Unique[3])&0xFF)<<24);
|
|
INBZ(EisaSlot,EISA_INTERRUPT_RESET);
|
|
RIONumHosts++;
|
|
ret++;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
** It failed the test, so ignore it.
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INIT, "TEST FAILED\n");
|
|
|
|
RIOMapout(Paddr, RIO_EISA_MEM_SIZE, Caddr );
|
|
}
|
|
}
|
|
}
|
|
if (RIOMachineType & RIO_EISA)
|
|
return ret+1;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifndef linux
|
|
|
|
#define CONFIG_ADDRESS 0xcf8
|
|
#define CONFIG_DATA 0xcfc
|
|
#define FORWARD_REG 0xcfa
|
|
|
|
|
|
static int
|
|
read_config(int bus_number, int device_num, int r_number)
|
|
{
|
|
unsigned int cav;
|
|
unsigned int val;
|
|
|
|
/*
|
|
Build config_address_value:
|
|
|
|
31 24 23 16 15 11 10 8 7 0
|
|
------------------------------------------------------
|
|
|1| 0000000 | bus_number | device # | 000 | register |
|
|
------------------------------------------------------
|
|
*/
|
|
|
|
cav = r_number & 0xff;
|
|
cav |= ((device_num & 0x1f) << 11);
|
|
cav |= ((bus_number & 0xff) << 16);
|
|
cav |= 0x80000000; /* Enable bit */
|
|
outpd(CONFIG_ADDRESS,cav);
|
|
val = inpd(CONFIG_DATA);
|
|
outpd(CONFIG_ADDRESS,0);
|
|
return val;
|
|
}
|
|
|
|
static
|
|
write_config(bus_number,device_num,r_number,val)
|
|
{
|
|
unsigned int cav;
|
|
|
|
/*
|
|
Build config_address_value:
|
|
|
|
31 24 23 16 15 11 10 8 7 0
|
|
------------------------------------------------------
|
|
|1| 0000000 | bus_number | device # | 000 | register |
|
|
------------------------------------------------------
|
|
*/
|
|
|
|
cav = r_number & 0xff;
|
|
cav |= ((device_num & 0x1f) << 11);
|
|
cav |= ((bus_number & 0xff) << 16);
|
|
cav |= 0x80000000; /* Enable bit */
|
|
outpd(CONFIG_ADDRESS, cav);
|
|
outpd(CONFIG_DATA, val);
|
|
outpd(CONFIG_ADDRESS, 0);
|
|
return val;
|
|
}
|
|
#else
|
|
/* XXX Implement these... */
|
|
static int
|
|
read_config(int bus_number, int device_num, int r_number)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
write_config(int bus_number, int device_num, int r_number)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
int
|
|
RIOPCIinit(p, Mode)
|
|
struct rio_info *p;
|
|
int Mode;
|
|
{
|
|
#define MAX_PCI_SLOT 32
|
|
#define RIO_PCI_JET_CARD 0x200011CB
|
|
|
|
static int slot; /* count of machine's PCI slots searched so far */
|
|
caddr_t Caddr; /* Virtual address of the current PCI host card. */
|
|
unsigned char Ivec; /* interrupt vector for the current PCI host */
|
|
unsigned long Paddr; /* Physical address for the current PCI host */
|
|
int Handle; /* Handle to Virtual memory allocated for current PCI host */
|
|
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Search for a RIO PCI card - start at slot %d\n", slot);
|
|
|
|
/*
|
|
** Initialise the search status
|
|
*/
|
|
p->RIOLastPCISearch = RIO_FAIL;
|
|
|
|
while ( (slot < MAX_PCI_SLOT) & (p->RIOLastPCISearch != RIO_SUCCESS) )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Currently testing slot %d\n", slot);
|
|
|
|
if (read_config(0,slot,0) == RIO_PCI_JET_CARD) {
|
|
p->RIOHosts[p->RIONumHosts].Ivec = 0;
|
|
Paddr = read_config(0,slot,0x18);
|
|
Paddr = Paddr - (Paddr & 0x1); /* Mask off the io bit */
|
|
|
|
if ( (Paddr == 0) || ((Paddr & 0xffff0000) == 0xffff0000) ) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "Goofed up slot\n"); /* what! */
|
|
slot++;
|
|
continue;
|
|
}
|
|
|
|
p->RIOHosts[p->RIONumHosts].PaddrP = Paddr;
|
|
Ivec = (read_config(0,slot,0x3c) & 0xff);
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "PCI Host at 0x%x, Intr %d\n", (int)Paddr, Ivec);
|
|
|
|
Handle = RIOMapin( Paddr, RIO_PCI_MEM_SIZE, &Caddr );
|
|
if (Handle == -1) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "Couldn't map %d bytes at 0x%x\n", RIO_PCI_MEM_SIZE, (int)Paddr);
|
|
slot++;
|
|
continue;
|
|
}
|
|
p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32;
|
|
p->intr_tid = iointset(p->RIOHosts[p->RIONumHosts].Ivec,
|
|
(int (*)())rio_intr, (char *)p->RIONumHosts);
|
|
if (RIOBoardTest( Paddr, Caddr, RIO_PCI, 0 ) == RIO_SUCCESS) {
|
|
rio_dprintk (RIO_DEBUG_INIT, ("Board has passed test\n");
|
|
rio_dprintk (RIO_DEBUG_INIT, ("Paddr 0x%x. Caddr 0x%x. Mode 0x%x.\n", Paddr, Caddr, Mode);
|
|
|
|
/*
|
|
** Board has passed its scrub test. Fill in all the
|
|
** transient stuff.
|
|
*/
|
|
p->RIOHosts[p->RIONumHosts].Slot = 0;
|
|
p->RIOHosts[p->RIONumHosts].Ivec = Ivec + 32;
|
|
p->RIOHosts[p->RIONumHosts].Type = RIO_PCI;
|
|
p->RIOHosts[p->RIONumHosts].Copy = rio_pcicopy;
|
|
p->RIOHosts[p->RIONumHosts].PaddrP = Paddr;
|
|
p->RIOHosts[p->RIONumHosts].Caddr = Caddr;
|
|
p->RIOHosts[p->RIONumHosts].CardP = (struct DpRam *)Caddr;
|
|
p->RIOHosts[p->RIONumHosts].Mode = Mode;
|
|
|
|
#if 0
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
|
|
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
|
|
p->RIOHosts[p->RIONumHosts].Mode |
|
|
INTERRUPT_DISABLE );
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].Control,
|
|
BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
|
|
p->RIOHosts[p->RIONumHosts].Mode |
|
|
INTERRUPT_DISABLE );
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt,0xff);
|
|
#else
|
|
WBYTE(p->RIOHosts[p->RIONumHosts].ResetInt, 0xff);
|
|
#endif
|
|
p->RIOHosts[p->RIONumHosts].UniqueNum =
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[0])&0xFF)<<0)|
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[1])&0xFF)<<8)|
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[2])&0xFF)<<16)|
|
|
((RBYTE(p->RIOHosts[p->RIONumHosts].Unique[3])&0xFF)<<24);
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Unique no 0x%x.\n",
|
|
p->RIOHosts[p->RIONumHosts].UniqueNum);
|
|
|
|
p->RIOLastPCISearch = RIO_SUCCESS;
|
|
p->RIONumHosts++;
|
|
}
|
|
}
|
|
slot++;
|
|
}
|
|
|
|
if ( slot >= MAX_PCI_SLOT ) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "All %d PCI slots have tested for RIO cards !!!\n",
|
|
MAX_PCI_SLOT);
|
|
}
|
|
|
|
|
|
/*
|
|
** I don't think we want to do this anymore
|
|
**
|
|
|
|
if (!p->RIOLastPCISearch == RIO_FAIL ) {
|
|
p->RIOFailed++;
|
|
}
|
|
|
|
**
|
|
*/
|
|
}
|
|
|
|
#ifdef FUTURE_RELEASE
|
|
void riohalt( void )
|
|
{
|
|
int host;
|
|
for ( host=0; host<p->RIONumHosts; host++ )
|
|
{
|
|
rio_dprintk (RIO_DEBUG_INIT, "Stop host %d\n", host);
|
|
(void)RIOBoardTest( p->RIOHosts[host].PaddrP, p->RIOHosts[host].Caddr, p->RIOHosts[host].Type,p->RIOHosts[host].Slot );
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
static uchar val[] = {
|
|
#ifdef VERY_LONG_TEST
|
|
0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
|
0xa5, 0xff, 0x5a, 0x00, 0xff, 0xc9, 0x36,
|
|
#endif
|
|
0xff, 0x00, 0x00 };
|
|
|
|
#define TEST_END sizeof(val)
|
|
|
|
/*
|
|
** RAM test a board.
|
|
** Nothing too complicated, just enough to check it out.
|
|
*/
|
|
int
|
|
RIOBoardTest(paddr, caddr, type, slot)
|
|
paddr_t paddr;
|
|
caddr_t caddr;
|
|
uchar type;
|
|
int slot;
|
|
{
|
|
struct DpRam *DpRam = (struct DpRam *)caddr;
|
|
char *ram[4];
|
|
int size[4];
|
|
int op, bank;
|
|
int nbanks;
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Reset host type=%d, DpRam=0x%x, slot=%d\n",
|
|
type,(int)DpRam, slot);
|
|
|
|
RIOHostReset(type, DpRam, slot);
|
|
|
|
/*
|
|
** Scrub the memory. This comes in several banks:
|
|
** DPsram1 - 7000h bytes
|
|
** DPsram2 - 200h bytes
|
|
** DPsram3 - 7000h bytes
|
|
** scratch - 1000h bytes
|
|
*/
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Setup ram/size arrays\n");
|
|
|
|
size[0] = DP_SRAM1_SIZE;
|
|
size[1] = DP_SRAM2_SIZE;
|
|
size[2] = DP_SRAM3_SIZE;
|
|
size[3] = DP_SCRATCH_SIZE;
|
|
|
|
ram[0] = (char *)&DpRam->DpSram1[0];
|
|
ram[1] = (char *)&DpRam->DpSram2[0];
|
|
ram[2] = (char *)&DpRam->DpSram3[0];
|
|
nbanks = (type == RIO_PCI) ? 3 : 4;
|
|
if (nbanks == 4)
|
|
ram[3] = (char *)&DpRam->DpScratch[0];
|
|
|
|
|
|
if (nbanks == 3) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Memory: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n",
|
|
(int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2]);
|
|
} else {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x), 0x%x(0x%x)\n",
|
|
(int)ram[0], size[0], (int)ram[1], size[1], (int)ram[2], size[2], (int)ram[3],
|
|
size[3]);
|
|
}
|
|
|
|
/*
|
|
** This scrub operation will test for crosstalk between
|
|
** banks. TEST_END is a magic number, and relates to the offset
|
|
** within the 'val' array used by Scrub.
|
|
*/
|
|
for (op=0; op<TEST_END; op++) {
|
|
for (bank=0; bank<nbanks; bank++) {
|
|
if (RIOScrub(op, (BYTE *)ram[bank], size[bank]) == RIO_FAIL) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: RIOScrub band %d, op %d failed\n",
|
|
bank, op);
|
|
return RIO_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "Test completed\n");
|
|
return RIO_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
** Scrub an area of RAM.
|
|
** Define PRETEST and POSTTEST for a more thorough checking of the
|
|
** state of the memory.
|
|
** Call with op set to an index into the above 'val' array to determine
|
|
** which value will be written into memory.
|
|
** Call with op set to zero means that the RAM will not be read and checked
|
|
** before it is written.
|
|
** Call with op not zero, and the RAM will be read and compated with val[op-1]
|
|
** to check that the data from the previous phase was retained.
|
|
*/
|
|
static int
|
|
RIOScrub(op, ram, size)
|
|
int op;
|
|
BYTE * ram;
|
|
int size;
|
|
{
|
|
int off;
|
|
unsigned char oldbyte;
|
|
unsigned char newbyte;
|
|
unsigned char invbyte;
|
|
unsigned short oldword;
|
|
unsigned short newword;
|
|
unsigned short invword;
|
|
unsigned short swapword;
|
|
|
|
if (op) {
|
|
oldbyte = val[op-1];
|
|
oldword = oldbyte | (oldbyte<<8);
|
|
} else
|
|
oldbyte = oldword = 0; /* Tell the compiler we've initilalized them. */
|
|
newbyte = val[op];
|
|
newword = newbyte | (newbyte<<8);
|
|
invbyte = ~newbyte;
|
|
invword = invbyte | (invbyte<<8);
|
|
|
|
/*
|
|
** Check that the RAM contains the value that should have been left there
|
|
** by the previous test (not applicable for pass zero)
|
|
*/
|
|
if (op) {
|
|
for (off=0; off<size; off++) {
|
|
if (RBYTE(ram[off]) != oldbyte) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 1: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off]));
|
|
return RIO_FAIL;
|
|
}
|
|
}
|
|
for (off=0; off<size; off+=2) {
|
|
if (*(ushort *)&ram[off] != oldword) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: WORD at offset 0x%x should have been=%x, was=%x\n",off,oldword,*(ushort *)&ram[off]);
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Pre Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
|
|
return RIO_FAIL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Now write the INVERSE of the test data into every location, using
|
|
** BYTE write operations, first checking before each byte is written
|
|
** that the location contains the old value still, and checking after
|
|
** the write that the location contains the data specified - this is
|
|
** the BYTE read/write test.
|
|
*/
|
|
for (off=0; off<size; off++) {
|
|
if (op && (RBYTE(ram[off]) != oldbyte)) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Pre Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, oldbyte, RBYTE(ram[off]));
|
|
return RIO_FAIL;
|
|
}
|
|
WBYTE(ram[off],invbyte);
|
|
if (RBYTE(ram[off]) != invbyte) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Byte Inv Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, invbyte, RBYTE(ram[off]));
|
|
return RIO_FAIL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** now, use WORD operations to write the test value into every location,
|
|
** check as before that the location contains the previous test value
|
|
** before overwriting, and that it contains the data value written
|
|
** afterwards.
|
|
** This is the WORD operation test.
|
|
*/
|
|
for (off=0; off<size; off+=2) {
|
|
if (*(ushort *)&ram[off] != invword) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: WORD at offset 0x%x should have been=%x, was=%x\n", off, invword, *(ushort *)&ram[off]);
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Word Inv Check: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
|
|
return RIO_FAIL;
|
|
}
|
|
|
|
*(ushort *)&ram[off] = newword;
|
|
if ( *(ushort *)&ram[off] != newword ) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]);
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
|
|
return RIO_FAIL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** now run through the block of memory again, first in byte mode
|
|
** then in word mode, and check that all the locations contain the
|
|
** required test data.
|
|
*/
|
|
for (off=0; off<size; off++) {
|
|
if (RBYTE(ram[off]) != newbyte) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Byte Check: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off]));
|
|
return RIO_FAIL;
|
|
}
|
|
}
|
|
|
|
for (off=0; off<size; off+=2) {
|
|
if ( *(ushort *)&ram[off] != newword ) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: WORD at offset 0x%x should have been=%x, was=%x\n", off, newword, *(ushort *)&ram[off]);
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: Post Word Check 2: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
|
|
return RIO_FAIL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** time to check out byte swapping errors
|
|
*/
|
|
swapword = invbyte | (newbyte << 8);
|
|
|
|
for (off=0; off<size; off+=2) {
|
|
WBYTE(ram[off],invbyte);
|
|
WBYTE(ram[off+1],newbyte);
|
|
}
|
|
|
|
for ( off=0; off<size; off+=2 ) {
|
|
if (*(ushort *)&ram[off] != swapword) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: WORD at offset 0x%x should have been=%x, was=%x\n", off, swapword, *((ushort *)&ram[off]));
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 1: BYTE at offset 0x%x is %x BYTE at offset 0x%x is %x\n", off, RBYTE(ram[off]), off+1, RBYTE(ram[off+1]));
|
|
return RIO_FAIL;
|
|
}
|
|
*((ushort *)&ram[off]) = ~swapword;
|
|
}
|
|
|
|
for (off=0; off<size; off+=2) {
|
|
if (RBYTE(ram[off]) != newbyte) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off, newbyte, RBYTE(ram[off]));
|
|
return RIO_FAIL;
|
|
}
|
|
if (RBYTE(ram[off+1]) != invbyte) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: SwapWord Check 2: BYTE at offset 0x%x should have been=%x, was=%x\n", off+1, invbyte, RBYTE(ram[off+1]));
|
|
return RIO_FAIL;
|
|
}
|
|
*((ushort *)&ram[off]) = newword;
|
|
}
|
|
return RIO_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
** try to ensure that every host is either in polled mode
|
|
** or is in interrupt mode. Only allow interrupt mode if
|
|
** all hosts can interrupt (why?)
|
|
** and force into polled mode if told to. Patch up the
|
|
** interrupt vector & salute The Queen when you've done.
|
|
*/
|
|
#if 0
|
|
static void
|
|
RIOAllocateInterrupts(p)
|
|
struct rio_info * p;
|
|
{
|
|
int Host;
|
|
|
|
/*
|
|
** Easy case - if we have been told to poll, then we poll.
|
|
*/
|
|
if (p->mode & POLLED_MODE) {
|
|
RIOStopInterrupts(p, 0, 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** check - if any host has been set to polled mode, then all must be.
|
|
*/
|
|
for (Host=0; Host<p->RIONumHosts; Host++) {
|
|
if ( (p->RIOHosts[Host].Type != RIO_AT) &&
|
|
(p->RIOHosts[Host].Ivec == POLLED) ) {
|
|
RIOStopInterrupts(p, 1, Host );
|
|
return;
|
|
}
|
|
}
|
|
for (Host=0; Host<p->RIONumHosts; Host++) {
|
|
if (p->RIOHosts[Host].Type == RIO_AT) {
|
|
if ( (p->RIOHosts[Host].Ivec - 32) == 0) {
|
|
RIOStopInterrupts(p, 2, Host );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** something has decided that we can't be doing with these
|
|
** new-fangled interrupt thingies. Set everything up to just
|
|
** poll.
|
|
*/
|
|
static void
|
|
RIOStopInterrupts(p, Reason, Host)
|
|
struct rio_info * p;
|
|
int Reason;
|
|
int Host;
|
|
{
|
|
#ifdef FUTURE_RELEASE
|
|
switch (Reason) {
|
|
case 0: /* forced into polling by rio_polled */
|
|
break;
|
|
case 1: /* SCU has set 'Host' into polled mode */
|
|
break;
|
|
case 2: /* there aren't enough interrupt vectors for 'Host' */
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
for (Host=0; Host<p->RIONumHosts; Host++ ) {
|
|
struct Host *HostP = &p->RIOHosts[Host];
|
|
|
|
switch (HostP->Type) {
|
|
case RIO_AT:
|
|
/*
|
|
** The AT host has it's interrupts disabled by clearing the
|
|
** int_enable bit.
|
|
*/
|
|
HostP->Mode &= ~INTERRUPT_ENABLE;
|
|
HostP->Ivec = POLLED;
|
|
break;
|
|
#ifdef FUTURE_RELEASE
|
|
case RIO_EISA:
|
|
/*
|
|
** The EISA host has it's interrupts disabled by setting the
|
|
** Ivec to zero
|
|
*/
|
|
HostP->Ivec = POLLED;
|
|
break;
|
|
#endif
|
|
case RIO_PCI:
|
|
/*
|
|
** The PCI host has it's interrupts disabled by clearing the
|
|
** int_enable bit, like a regular host card.
|
|
*/
|
|
HostP->Mode &= ~RIO_PCI_INT_ENABLE;
|
|
HostP->Ivec = POLLED;
|
|
break;
|
|
#ifdef FUTURE_RELEASE
|
|
case RIO_MCA:
|
|
/*
|
|
** There's always one, isn't there?
|
|
** The MCA host card cannot have it's interrupts disabled.
|
|
*/
|
|
RIOPatchVec(HostP);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** This function is called at init time to setup the data structures.
|
|
*/
|
|
void
|
|
RIOAllocDataStructs(p)
|
|
struct rio_info * p;
|
|
{
|
|
int port,
|
|
host,
|
|
tm;
|
|
|
|
p->RIOPortp = (struct Port *)sysbrk(RIO_PORTS * sizeof(struct Port));
|
|
if (!p->RIOPortp) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for port structures\n");
|
|
p->RIOFailed++;
|
|
return;
|
|
}
|
|
bzero( p->RIOPortp, sizeof(struct Port) * RIO_PORTS );
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for port structs\n");
|
|
rio_dprintk (RIO_DEBUG_INIT, "First RIO port struct @0x%x, size=0x%x bytes\n",
|
|
(int)p->RIOPortp, sizeof(struct Port));
|
|
|
|
for( port=0; port<RIO_PORTS; port++ ) {
|
|
p->RIOPortp[port].PortNum = port;
|
|
p->RIOPortp[port].TtyP = &p->channel[port];
|
|
sreset (p->RIOPortp[port].InUse); /* Let the first guy uses it */
|
|
p->RIOPortp[port].portSem = -1; /* Let the first guy takes it */
|
|
p->RIOPortp[port].ParamSem = -1; /* Let the first guy takes it */
|
|
p->RIOPortp[port].timeout_id = 0; /* Let the first guy takes it */
|
|
}
|
|
|
|
p->RIOHosts = (struct Host *)sysbrk(RIO_HOSTS * sizeof(struct Host));
|
|
if (!p->RIOHosts) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: No memory for host structures\n");
|
|
p->RIOFailed++;
|
|
return;
|
|
}
|
|
bzero(p->RIOHosts, sizeof(struct Host)*RIO_HOSTS);
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO-init: allocated and cleared memory for host structs\n");
|
|
rio_dprintk (RIO_DEBUG_INIT, "First RIO host struct @0x%x, size=0x%x bytes\n",
|
|
(int)p->RIOHosts, sizeof(struct Host));
|
|
|
|
for( host=0; host<RIO_HOSTS; host++ ) {
|
|
spin_lock_init (&p->RIOHosts[host].HostLock);
|
|
p->RIOHosts[host].timeout_id = 0; /* Let the first guy takes it */
|
|
}
|
|
/*
|
|
** check that the buffer size is valid, round down to the next power of
|
|
** two if necessary; if the result is zero, then, hey, no double buffers.
|
|
*/
|
|
for ( tm = 1; tm && tm <= p->RIOConf.BufferSize; tm <<= 1 )
|
|
;
|
|
tm >>= 1;
|
|
p->RIOBufferSize = tm;
|
|
p->RIOBufferMask = tm ? tm - 1 : 0;
|
|
}
|
|
|
|
/*
|
|
** this function gets called whenever the data structures need to be
|
|
** re-setup, for example, after a riohalt (why did I ever invent it?)
|
|
*/
|
|
void
|
|
RIOSetupDataStructs(p)
|
|
struct rio_info * p;
|
|
{
|
|
int host, entry, rup;
|
|
|
|
for ( host=0; host<RIO_HOSTS; host++ ) {
|
|
struct Host *HostP = &p->RIOHosts[host];
|
|
for ( entry=0; entry<LINKS_PER_UNIT; entry++ ) {
|
|
HostP->Topology[entry].Unit = ROUTE_DISCONNECT;
|
|
HostP->Topology[entry].Link = NO_LINK;
|
|
}
|
|
bcopy("HOST X", HostP->Name, 7);
|
|
HostP->Name[5] = '1'+host;
|
|
for (rup=0; rup<(MAX_RUP + LINKS_PER_UNIT); rup++) {
|
|
if (rup < MAX_RUP) {
|
|
for (entry=0; entry<LINKS_PER_UNIT; entry++ ) {
|
|
HostP->Mapping[rup].Topology[entry].Unit = ROUTE_DISCONNECT;
|
|
HostP->Mapping[rup].Topology[entry].Link = NO_LINK;
|
|
}
|
|
RIODefaultName(p, HostP, rup);
|
|
}
|
|
spin_lock_init(&HostP->UnixRups[rup].RupLock);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int
|
|
RIODefaultName(p, HostP, UnitId)
|
|
struct rio_info * p;
|
|
struct Host * HostP;
|
|
uint UnitId;
|
|
{
|
|
#ifdef CHECK
|
|
CheckHost( Host );
|
|
CheckUnitId( UnitId );
|
|
#endif
|
|
bcopy("UNKNOWN RTA X-XX",HostP->Mapping[UnitId].Name,17);
|
|
HostP->Mapping[UnitId].Name[12]='1'+(HostP-p->RIOHosts);
|
|
if ((UnitId+1) > 9) {
|
|
HostP->Mapping[UnitId].Name[14]='0'+((UnitId+1)/10);
|
|
HostP->Mapping[UnitId].Name[15]='0'+((UnitId+1)%10);
|
|
}
|
|
else {
|
|
HostP->Mapping[UnitId].Name[14]='1'+UnitId;
|
|
HostP->Mapping[UnitId].Name[15]=0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define RIO_RELEASE "Linux"
|
|
#define RELEASE_ID "1.0"
|
|
|
|
#if 0
|
|
static int
|
|
RIOReport(p)
|
|
struct rio_info * p;
|
|
{
|
|
char * RIORelease = RIO_RELEASE;
|
|
char * RIORelID = RELEASE_ID;
|
|
int host;
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIO : Release: %s ID: %s\n", RIORelease, RIORelID);
|
|
|
|
if ( p->RIONumHosts==0 ) {
|
|
rio_dprintk (RIO_DEBUG_INIT, "\nNo Hosts configured\n");
|
|
return(0);
|
|
}
|
|
|
|
for ( host=0; host < p->RIONumHosts; host++ ) {
|
|
struct Host *HostP = &p->RIOHosts[host];
|
|
switch ( HostP->Type ) {
|
|
case RIO_AT:
|
|
rio_dprintk (RIO_DEBUG_INIT, "AT BUS : found the card at 0x%x\n", HostP->PaddrP);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static struct rioVersion stVersion;
|
|
|
|
struct rioVersion *
|
|
RIOVersid(void)
|
|
{
|
|
strlcpy(stVersion.version, "RIO driver for linux V1.0",
|
|
sizeof(stVersion.version));
|
|
strlcpy(stVersion.buildDate, __DATE__,
|
|
sizeof(stVersion.buildDate));
|
|
|
|
return &stVersion;
|
|
}
|
|
|
|
#if 0
|
|
int
|
|
RIOMapin(paddr, size, vaddr)
|
|
paddr_t paddr;
|
|
int size;
|
|
caddr_t * vaddr;
|
|
{
|
|
*vaddr = (caddr_t)permap( (long)paddr, size);
|
|
return ((int)*vaddr);
|
|
}
|
|
|
|
void
|
|
RIOMapout(paddr, size, vaddr)
|
|
paddr_t paddr;
|
|
long size;
|
|
caddr_t vaddr;
|
|
{
|
|
}
|
|
#endif
|
|
|
|
|
|
void
|
|
RIOHostReset(Type, DpRamP, Slot)
|
|
uint Type;
|
|
volatile struct DpRam *DpRamP;
|
|
uint Slot;
|
|
{
|
|
/*
|
|
** Reset the Tpu
|
|
*/
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: type 0x%x", Type);
|
|
switch ( Type ) {
|
|
case RIO_AT:
|
|
rio_dprintk (RIO_DEBUG_INIT, " (RIO_AT)\n");
|
|
WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
|
|
INTERRUPT_DISABLE | BYTE_OPERATION |
|
|
SLOW_LINKS | SLOW_AT_BUS);
|
|
WBYTE(DpRamP->DpResetTpu, 0xFF);
|
|
rio_udelay (3);
|
|
|
|
rio_dprintk (RIO_DEBUG_INIT, "RIOHostReset: Don't know if it worked. Try reset again\n");
|
|
WBYTE(DpRamP->DpControl, BOOT_FROM_RAM | EXTERNAL_BUS_OFF |
|
|
INTERRUPT_DISABLE | BYTE_OPERATION |
|
|
SLOW_LINKS | SLOW_AT_BUS);
|
|
WBYTE(DpRamP->DpResetTpu, 0xFF);
|
|
rio_udelay (3);
|
|
break;
|
|
#ifdef FUTURE_RELEASE
|
|
case RIO_EISA:
|
|
/*
|
|
** Bet this doesn't work!
|
|
*/
|
|
OUTBZ( Slot, EISA_CONTROL_PORT,
|
|
EISA_TP_RUN | EISA_TP_BUS_DISABLE |
|
|
EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM );
|
|
OUTBZ( Slot, EISA_CONTROL_PORT,
|
|
EISA_TP_RESET | EISA_TP_BUS_DISABLE |
|
|
EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM );
|
|
suspend( 3 );
|
|
OUTBZ( Slot, EISA_CONTROL_PORT,
|
|
EISA_TP_RUN | EISA_TP_BUS_DISABLE |
|
|
EISA_TP_SLOW_LINKS | EISA_TP_BOOT_FROM_RAM );
|
|
break;
|
|
case RIO_MCA:
|
|
WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable );
|
|
WBYTE(DpRamP->DpResetTpu , 0xFF );
|
|
suspend( 3 );
|
|
WBYTE(DpRamP->DpControl , McaTpBootFromRam | McaTpBusDisable );
|
|
WBYTE(DpRamP->DpResetTpu , 0xFF );
|
|
suspend( 3 );
|
|
break;
|
|
#endif
|
|
case RIO_PCI:
|
|
rio_dprintk (RIO_DEBUG_INIT, " (RIO_PCI)\n");
|
|
DpRamP->DpControl = RIO_PCI_BOOT_FROM_RAM;
|
|
DpRamP->DpResetInt = 0xFF;
|
|
DpRamP->DpResetTpu = 0xFF;
|
|
rio_udelay (100);
|
|
/* for (i=0; i<6000; i++); */
|
|
/* suspend( 3 ); */
|
|
break;
|
|
#ifdef FUTURE_RELEASE
|
|
default:
|
|
Rprintf(RIOMesgNoSupport,Type,DpRamP,Slot);
|
|
return;
|
|
#endif
|
|
|
|
default:
|
|
rio_dprintk (RIO_DEBUG_INIT, " (UNKNOWN)\n");
|
|
break;
|
|
}
|
|
return;
|
|
}
|