linux-IllusionX/arch/mips/math-emu/sp_sub.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

184 lines
4.7 KiB
C

/* IEEE754 floating point arithmetic
* single precision
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
* http://www.algor.co.uk
*
* ########################################################################
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
*
* ########################################################################
*/
#include "ieee754sp.h"
ieee754sp ieee754sp_sub(ieee754sp x, ieee754sp y)
{
COMPXSP;
COMPYSP;
EXPLODEXSP;
EXPLODEYSP;
CLEARCX;
FLUSHXSP;
FLUSHYSP;
switch (CLPAIR(xc, yc)) {
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
SETCX(IEEE754_INVALID_OPERATION);
return ieee754sp_nanxcpt(ieee754sp_indef(), "sub", x, y);
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
return y;
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
return x;
/* Infinity handling
*/
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
if (xs != ys)
return x;
SETCX(IEEE754_INVALID_OPERATION);
return ieee754sp_xcpt(ieee754sp_indef(), "sub", x, y);
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
return ieee754sp_inf(ys ^ 1);
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
return x;
/* Zero handling
*/
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
if (xs != ys)
return x;
else
return ieee754sp_zero(ieee754_csr.rm ==
IEEE754_RD);
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
return x;
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
/* quick fix up */
DPSIGN(y) ^= 1;
return y;
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
SPDNORMX;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
SPDNORMY;
break;
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
SPDNORMX;
break;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
break;
}
/* flip sign of y and handle as add */
ys ^= 1;
assert(xm & SP_HIDDEN_BIT);
assert(ym & SP_HIDDEN_BIT);
/* provide guard,round and stick bit space */
xm <<= 3;
ym <<= 3;
if (xe > ye) {
/* have to shift y fraction right to align
*/
int s = xe - ye;
SPXSRSYn(s);
} else if (ye > xe) {
/* have to shift x fraction right to align
*/
int s = ye - xe;
SPXSRSXn(s);
}
assert(xe == ye);
assert(xe <= SP_EMAX);
if (xs == ys) {
/* generate 28 bit result of adding two 27 bit numbers
*/
xm = xm + ym;
xe = xe;
xs = xs;
if (xm >> (SP_MBITS + 1 + 3)) { /* carry out */
SPXSRSX1(); /* shift preserving sticky */
}
} else {
if (xm >= ym) {
xm = xm - ym;
xe = xe;
xs = xs;
} else {
xm = ym - xm;
xe = xe;
xs = ys;
}
if (xm == 0) {
if (ieee754_csr.rm == IEEE754_RD)
return ieee754sp_zero(1); /* round negative inf. => sign = -1 */
else
return ieee754sp_zero(0); /* other round modes => sign = 1 */
}
/* normalize to rounding precision
*/
while ((xm >> (SP_MBITS + 3)) == 0) {
xm <<= 1;
xe--;
}
}
SPNORMRET2(xs, xe, xm, "sub", x, y);
}