linux-IllusionX/arch/parisc/math-emu/dbl_float.h
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

847 lines
36 KiB
C

/*
* Linux/PA-RISC Project (http://www.parisc-linux.org/)
*
* Floating-point emulation code
* Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef __NO_PA_HDRS
PA header file -- do not include this header file for non-PA builds.
#endif
/* 32-bit word grabing functions */
#define Dbl_firstword(value) Dallp1(value)
#define Dbl_secondword(value) Dallp2(value)
#define Dbl_thirdword(value) dummy_location
#define Dbl_fourthword(value) dummy_location
#define Dbl_sign(object) Dsign(object)
#define Dbl_exponent(object) Dexponent(object)
#define Dbl_signexponent(object) Dsignexponent(object)
#define Dbl_mantissap1(object) Dmantissap1(object)
#define Dbl_mantissap2(object) Dmantissap2(object)
#define Dbl_exponentmantissap1(object) Dexponentmantissap1(object)
#define Dbl_allp1(object) Dallp1(object)
#define Dbl_allp2(object) Dallp2(object)
/* dbl_and_signs ands the sign bits of each argument and puts the result
* into the first argument. dbl_or_signs ors those same sign bits */
#define Dbl_and_signs( src1dst, src2) \
Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst)
#define Dbl_or_signs( src1dst, src2) \
Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst)
/* The hidden bit is always the low bit of the exponent */
#define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1)
#define Dbl_clear_signexponent_set_hidden(srcdst) \
Deposit_dsignexponent(srcdst,1)
#define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31)
#define Dbl_clear_signexponent(srcdst) \
Dallp1(srcdst) &= Dmantissap1((unsigned int)-1)
/* Exponent field for doubles has already been cleared and may be
* included in the shift. Here we need to generate two double width
* variable shifts. The insignificant bits can be ignored.
* MTSAR f(varamount)
* VSHD srcdst.high,srcdst.low => srcdst.low
* VSHD 0,srcdst.high => srcdst.high
* This is very difficult to model with C expressions since the shift amount
* could exceed 32. */
/* varamount must be less than 64 */
#define Dbl_rightshift(srcdstA, srcdstB, varamount) \
{if((varamount) >= 32) { \
Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32); \
Dallp1(srcdstA)=0; \
} \
else if(varamount > 0) { \
Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), \
(varamount), Dallp2(srcdstB)); \
Dallp1(srcdstA) >>= varamount; \
} }
/* varamount must be less than 64 */
#define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount) \
{if((varamount) >= 32) { \
Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \
Dallp1(srcdstA) &= ((unsigned int)1<<31); /* clear expmant field */ \
} \
else if(varamount > 0) { \
Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \
(varamount), Dallp2(srcdstB)); \
Deposit_dexponentmantissap1(srcdstA, \
(Dexponentmantissap1(srcdstA)>>varamount)); \
} }
/* varamount must be less than 64 */
#define Dbl_leftshift(srcdstA, srcdstB, varamount) \
{if((varamount) >= 32) { \
Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32); \
Dallp2(srcdstB)=0; \
} \
else { \
if ((varamount) > 0) { \
Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) | \
(Dallp2(srcdstB) >> (32-(varamount))); \
Dallp2(srcdstB) <<= varamount; \
} \
} }
#define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb) \
Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta)); \
Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))
#define Dbl_rightshiftby1_withextent(leftb,right,dst) \
Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \
Extlow(right)
#define Dbl_arithrightshiftby1(srcdstA,srcdstB) \
Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\
Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1
/* Sign extend the sign bit with an integer destination */
#define Dbl_signextendedsign(value) Dsignedsign(value)
#define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0)
/* Singles and doubles may include the sign and exponent fields. The
* hidden bit and the hidden overflow must be included. */
#define Dbl_increment(dbl_valueA,dbl_valueB) \
if( (Dallp2(dbl_valueB) += 1) == 0 ) Dallp1(dbl_valueA) += 1
#define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \
if( (Dmantissap2(dbl_valueB) += 1) == 0 ) \
Deposit_dmantissap1(dbl_valueA,dbl_valueA+1)
#define Dbl_decrement(dbl_valueA,dbl_valueB) \
if( Dallp2(dbl_valueB) == 0 ) Dallp1(dbl_valueA) -= 1; \
Dallp2(dbl_valueB) -= 1
#define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0)
#define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0)
#define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0)
#define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0)
#define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0)
#define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff)
#define Dbl_isnotzero(dbl_valueA,dbl_valueB) \
(Dallp1(dbl_valueA) || Dallp2(dbl_valueB))
#define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \
(Dhiddenhigh7mantissa(dbl_value)!=0)
#define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0)
#define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \
(Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
#define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0)
#define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0)
#define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \
(Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB))
#define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0)
#define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \
Dallp2(dbl_valueB)==0)
#define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0)
#define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0)
#define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0)
#define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0)
#define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \
(Dhiddenhigh3mantissa(dbl_value)==0)
#define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \
(Dhiddenhigh7mantissa(dbl_value)==0)
#define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0)
#define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0)
#define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \
(Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_isinfinity_exponent(dbl_value) \
(Dexponent(dbl_value)==DBL_INFINITY_EXPONENT)
#define Dbl_isnotinfinity_exponent(dbl_value) \
(Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT)
#define Dbl_isinfinity(dbl_valueA,dbl_valueB) \
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)
#define Dbl_isnan(dbl_valueA,dbl_valueB) \
(Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT && \
(Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0))
#define Dbl_isnotnan(dbl_valueA,dbl_valueB) \
(Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT || \
(Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0))
#define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) < Dallp2(dbl_op2b)))
#define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) > Dallp2(dbl_op2b)))
#define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) > Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) >= Dallp2(dbl_op2b)))
#define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
(Dallp1(dbl_op1a) < Dallp1(dbl_op2a) || \
(Dallp1(dbl_op1a) == Dallp1(dbl_op2a) && \
Dallp2(dbl_op1b) <= Dallp2(dbl_op2b)))
#define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \
((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) && \
(Dallp2(dbl_op1b) == Dallp2(dbl_op2b)))
#define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 8
#define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 7
#define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 4
#define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 3
#define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 2
#define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \
Dallp2(dbl_valueB) <<= 1
#define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 8
#define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 4
#define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 2
#define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \
Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \
Dallp1(dbl_valueA) >>= 1
/* This magnitude comparison uses the signless first words and
* the regular part2 words. The comparison is graphically:
*
* 1st greater? -------------
* |
* 1st less?-----------------+---------
* | |
* 2nd greater or equal----->| |
* False True
*/
#define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
((signlessleft <= signlessright) && \
( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) ))
#define Dbl_copytoint_exponentmantissap1(src,dest) \
dest = Dexponentmantissap1(src)
/* A quiet NaN has the high mantissa bit clear and at least on other (in this
* case the adjacent bit) bit set. */
#define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1)
#define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp)
#define Dbl_set_mantissa(desta,destb,valuea,valueb) \
Deposit_dmantissap1(desta,valuea); \
Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_mantissap1(desta,valuea) \
Deposit_dmantissap1(desta,valuea)
#define Dbl_set_mantissap2(destb,valueb) \
Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_exponentmantissa(desta,destb,valuea,valueb) \
Deposit_dexponentmantissap1(desta,valuea); \
Dmantissap2(destb) = Dmantissap2(valueb)
#define Dbl_set_exponentmantissap1(dest,value) \
Deposit_dexponentmantissap1(dest,value)
#define Dbl_copyfromptr(src,desta,destb) \
Dallp1(desta) = src->wd0; \
Dallp2(destb) = src->wd1
#define Dbl_copytoptr(srca,srcb,dest) \
dest->wd0 = Dallp1(srca); \
dest->wd1 = Dallp2(srcb)
/* An infinity is represented with the max exponent and a zero mantissa */
#define Dbl_setinfinity_exponent(dbl_value) \
Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT)
#define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB) \
Deposit_dexponentmantissap1(dbl_valueA, \
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) \
= (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = ((unsigned int)1<<31) | \
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign) \
Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))); \
Dmantissap2(dbl_valueB) = 0
#define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign)
#define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign)
#define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value))
#define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1)
#define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1)
#define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff
#define Dbl_setzero_exponent(dbl_value) \
Dallp1(dbl_value) &= 0x800fffff
#define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) &= 0xfff00000; \
Dallp2(dbl_valueB) = 0
#define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000
#define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0
#define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) &= 0x80000000; \
Dallp2(dbl_valueB) = 0
#define Dbl_setzero_exponentmantissap1(dbl_valueA) \
Dallp1(dbl_valueA) &= 0x80000000
#define Dbl_setzero(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0
#define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0
#define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0
#define Dbl_setnegativezero(dbl_value) \
Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0
#define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31
/* Use the following macro for both overflow & underflow conditions */
#define ovfl -
#define unfl +
#define Dbl_setwrapped_exponent(dbl_value,exponent,op) \
Deposit_dexponent(dbl_value,(exponent op DBL_WRAP))
#define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ) \
| ((unsigned int)1<<31); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB) \
Deposit_dexponentmantissap1(dbl_valueA, \
(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \
| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 ))); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
#define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) \
Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) \
<< (32-(1+DBL_EXP_LENGTH)) ; \
Dallp2(dbl_valueB) = 0
#define Dbl_setlargest(dbl_valueA,dbl_valueB,sign) \
Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | \
((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) | \
((1 << (32-(1+DBL_EXP_LENGTH))) - 1 ); \
Dallp2(dbl_valueB) = 0xFFFFFFFF
/* The high bit is always zero so arithmetic or logical shifts will work. */
#define Dbl_right_align(srcdstA,srcdstB,shift,extent) \
if( shift >= 32 ) \
{ \
/* Big shift requires examining the portion shift off \
the end to properly set inexact. */ \
if(shift < 64) \
{ \
if(shift > 32) \
{ \
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB), \
shift-32, Extall(extent)); \
if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \
} \
else Extall(extent) = Dallp2(srcdstB); \
Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32); \
} \
else \
{ \
Extall(extent) = Dallp1(srcdstA); \
if(Dallp2(srcdstB)) Ext_setone_low(extent); \
Dallp2(srcdstB) = 0; \
} \
Dallp1(srcdstA) = 0; \
} \
else \
{ \
/* Small alignment is simpler. Extension is easily set. */ \
if (shift > 0) \
{ \
Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \
Dallp2(srcdstB)); \
Dallp1(srcdstA) >>= shift; \
} \
else Extall(extent) = 0; \
}
/*
* Here we need to shift the result right to correct for an overshift
* (due to the exponent becoming negative) during normalization.
*/
#define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent) \
Extall(extent) = Dallp2(srcdstB) << 32 - (shift); \
Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) | \
(Dallp2(srcdstB) >> (shift)); \
Dallp1(srcdstA) = Dallp1(srcdstA) >> shift
#define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value)
#define Dbl_hidden(dbl_value) Dhidden(dbl_value)
#define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value)
/* The left argument is never smaller than the right argument */
#define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb) \
if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--; \
Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb); \
Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta)
/* Subtract right augmented with extension from left augmented with zeros and
* store into result and extension. */
#define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb) \
Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb); \
if( (Extall(extent) = 0-Extall(extent)) ) \
{ \
if((Dallp2(resultb)--) == 0) Dallp1(resulta)--; \
}
#define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb) \
/* If the sum of the low words is less than either source, then \
* an overflow into the next word occurred. */ \
Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta); \
if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \
Dallp1(resulta)++
#define Dbl_xortointp1(left,right,result) \
result = Dallp1(left) XOR Dallp1(right)
#define Dbl_xorfromintp1(left,right,result) \
Dallp1(result) = left XOR Dallp1(right)
#define Dbl_swap_lower(left,right) \
Dallp2(left) = Dallp2(left) XOR Dallp2(right); \
Dallp2(right) = Dallp2(left) XOR Dallp2(right); \
Dallp2(left) = Dallp2(left) XOR Dallp2(right)
/* Need to Initialize */
#define Dbl_makequietnan(desta,destb) \
Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
| (1<<(32-(1+DBL_EXP_LENGTH+2))); \
Dallp2(destb) = 0
#define Dbl_makesignalingnan(desta,destb) \
Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH)) \
| (1<<(32-(1+DBL_EXP_LENGTH+1))); \
Dallp2(destb) = 0
#define Dbl_normalize(dbl_opndA,dbl_opndB,exponent) \
while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) { \
Dbl_leftshiftby8(dbl_opndA,dbl_opndB); \
exponent -= 8; \
} \
if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) { \
Dbl_leftshiftby4(dbl_opndA,dbl_opndB); \
exponent -= 4; \
} \
while(Dbl_iszero_hidden(dbl_opndA)) { \
Dbl_leftshiftby1(dbl_opndA,dbl_opndB); \
exponent -= 1; \
}
#define Twoword_add(src1dstA,src1dstB,src2A,src2B) \
/* \
* want this macro to generate: \
* ADD src1dstB,src2B,src1dstB; \
* ADDC src1dstA,src2A,src1dstA; \
*/ \
if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \
Dallp1(src1dstA) += (src2A); \
Dallp2(src1dstB) += (src2B)
#define Twoword_subtract(src1dstA,src1dstB,src2A,src2B) \
/* \
* want this macro to generate: \
* SUB src1dstB,src2B,src1dstB; \
* SUBB src1dstA,src2A,src1dstA; \
*/ \
if ((src1dstB) < (src2B)) Dallp1(src1dstA)--; \
Dallp1(src1dstA) -= (src2A); \
Dallp2(src1dstB) -= (src2B)
#define Dbl_setoverflow(resultA,resultB) \
/* set result to infinity or largest number */ \
switch (Rounding_mode()) { \
case ROUNDPLUS: \
if (Dbl_isone_sign(resultA)) { \
Dbl_setlargestnegative(resultA,resultB); \
} \
else { \
Dbl_setinfinitypositive(resultA,resultB); \
} \
break; \
case ROUNDMINUS: \
if (Dbl_iszero_sign(resultA)) { \
Dbl_setlargestpositive(resultA,resultB); \
} \
else { \
Dbl_setinfinitynegative(resultA,resultB); \
} \
break; \
case ROUNDNEAREST: \
Dbl_setinfinity_exponentmantissa(resultA,resultB); \
break; \
case ROUNDZERO: \
Dbl_setlargest_exponentmantissa(resultA,resultB); \
}
#define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact) \
Dbl_clear_signexponent_set_hidden(opndp1); \
if (exponent >= (1-DBL_P)) { \
if (exponent >= -31) { \
guard = (Dallp2(opndp2) >> -exponent) & 1; \
if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \
if (exponent > -31) { \
Variable_shift_double(opndp1,opndp2,1-exponent,opndp2); \
Dallp1(opndp1) >>= 1-exponent; \
} \
else { \
Dallp2(opndp2) = Dallp1(opndp1); \
Dbl_setzerop1(opndp1); \
} \
} \
else { \
guard = (Dallp1(opndp1) >> -32-exponent) & 1; \
if (exponent == -32) sticky |= Dallp2(opndp2); \
else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \
Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent; \
Dbl_setzerop1(opndp1); \
} \
inexact = guard | sticky; \
} \
else { \
guard = 0; \
sticky |= (Dallp1(opndp1) | Dallp2(opndp2)); \
Dbl_setzero(opndp1,opndp2); \
inexact = sticky; \
}
/*
* The fused multiply add instructions requires a double extended format,
* with 106 bits of mantissa.
*/
#define DBLEXT_THRESHOLD 106
#define Dblext_setzero(valA,valB,valC,valD) \
Dextallp1(valA) = 0; Dextallp2(valB) = 0; \
Dextallp3(valC) = 0; Dextallp4(valD) = 0
#define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0)
#define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0)
#define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0)
#define Dblext_isone_highp3(val) (Dexthighp3(val)!=0)
#define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0)
#define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \
Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0)
#define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \
Dextallp1(desta) = Dextallp4(srca); \
Dextallp2(destb) = Dextallp4(srcb); \
Dextallp3(destc) = Dextallp4(srcc); \
Dextallp4(destd) = Dextallp4(srcd)
#define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4) \
Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
Dextallp2(leftp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2); \
Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
Dextallp3(leftp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3); \
Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4); \
Dextallp4(leftp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4)
#define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1)
/* The high bit is always zero so arithmetic or logical shifts will work. */
#define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \
{int shiftamt, sticky; \
shiftamt = shift % 32; \
sticky = 0; \
switch (shift/32) { \
case 0: if (shiftamt > 0) { \
sticky = Dextallp4(srcdstD) << 32 - (shiftamt); \
Variable_shift_double(Dextallp3(srcdstC), \
Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD)); \
Variable_shift_double(Dextallp2(srcdstB), \
Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC)); \
Variable_shift_double(Dextallp1(srcdstA), \
Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB)); \
Dextallp1(srcdstA) >>= shiftamt; \
} \
break; \
case 1: if (shiftamt > 0) { \
sticky = (Dextallp3(srcdstC) << 31 - shiftamt) | \
Dextallp4(srcdstD); \
Variable_shift_double(Dextallp2(srcdstB), \
Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD)); \
Variable_shift_double(Dextallp1(srcdstA), \
Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC)); \
} \
else { \
sticky = Dextallp4(srcdstD); \
Dextallp4(srcdstD) = Dextallp3(srcdstC); \
Dextallp3(srcdstC) = Dextallp2(srcdstB); \
} \
Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt; \
Dextallp1(srcdstA) = 0; \
break; \
case 2: if (shiftamt > 0) { \
sticky = (Dextallp2(srcdstB) << 31 - shiftamt) | \
Dextallp3(srcdstC) | Dextallp4(srcdstD); \
Variable_shift_double(Dextallp1(srcdstA), \
Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD)); \
} \
else { \
sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD); \
Dextallp4(srcdstD) = Dextallp2(srcdstB); \
} \
Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt; \
Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
break; \
case 3: if (shiftamt > 0) { \
sticky = (Dextallp1(srcdstA) << 31 - shiftamt) | \
Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
Dextallp4(srcdstD); \
} \
else { \
sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) | \
Dextallp4(srcdstD); \
} \
Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt; \
Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0; \
Dextallp3(srcdstC) = 0; \
break; \
} \
if (sticky) Dblext_setone_lowmantissap4(srcdstD); \
}
/* The left argument is never smaller than the right argument */
#define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
if( Dextallp4(rightd) > Dextallp4(leftd) ) \
if( (Dextallp3(leftc)--) == 0) \
if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd); \
if( Dextallp3(rightc) > Dextallp3(leftc) ) \
if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--; \
Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc); \
if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \
Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb); \
Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta)
#define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \
/* If the sum of the low words is less than either source, then \
* an overflow into the next word occurred. */ \
if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \
Dextallp4(rightd)) \
if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \
Dextallp3(rightc)) \
if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
<= Dextallp2(rightb)) \
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
else \
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
Dextallp2(rightb)) \
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
else \
if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \
Dextallp3(rightc)) \
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \
<= Dextallp2(rightb)) \
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \
else \
if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \
Dextallp2(rightb)) \
Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \
else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)
#define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD) \
Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \
Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \
Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \
Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1
#define Dblext_leftshiftby8(valA,valB,valC,valD) \
Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \
Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \
Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \
Dextallp4(valD) <<= 8
#define Dblext_leftshiftby4(valA,valB,valC,valD) \
Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \
Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \
Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \
Dextallp4(valD) <<= 4
#define Dblext_leftshiftby3(valA,valB,valC,valD) \
Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \
Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \
Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \
Dextallp4(valD) <<= 3
#define Dblext_leftshiftby2(valA,valB,valC,valD) \
Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \
Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \
Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \
Dextallp4(valD) <<= 2
#define Dblext_leftshiftby1(valA,valB,valC,valD) \
Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \
Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \
Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \
Dextallp4(valD) <<= 1
#define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \
Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \
Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \
Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \
Dextallp1(valueA) >>= 4
#define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \
Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \
Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \
Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \
Dextallp1(valueA) >>= 1
#define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result)
#define Dblext_xorfromintp1(left,right,result) \
Dbl_xorfromintp1(left,right,result)
#define Dblext_copytoint_exponentmantissap1(src,dest) \
Dbl_copytoint_exponentmantissap1(src,dest)
#define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \
Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)
#define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \
Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \
Dextallp3(dest3) = 0; Dextallp4(dest4) = 0
#define Dblext_set_sign(dbl_value,sign) Dbl_set_sign(dbl_value,sign)
#define Dblext_clear_signexponent_set_hidden(srcdst) \
Dbl_clear_signexponent_set_hidden(srcdst)
#define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)
#define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)
#define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)
/*
* The Fourword_add() macro assumes that integers are 4 bytes in size.
* It will break if this is not the case.
*/
#define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \
/* \
* want this macro to generate: \
* ADD src1dstD,src2D,src1dstD; \
* ADDC src1dstC,src2C,src1dstC; \
* ADDC src1dstB,src2B,src1dstB; \
* ADDC src1dstA,src2A,src1dstA; \
*/ \
if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \
if ((unsigned int)(src1dstC += (src2C) + 1) <= \
(unsigned int)(src2C)) { \
if ((unsigned int)(src1dstB += (src2B) + 1) <= \
(unsigned int)(src2B)) src1dstA++; \
} \
else if ((unsigned int)(src1dstB += (src2B)) < \
(unsigned int)(src2B)) src1dstA++; \
} \
else { \
if ((unsigned int)(src1dstC += (src2C)) < \
(unsigned int)(src2C)) { \
if ((unsigned int)(src1dstB += (src2B) + 1) <= \
(unsigned int)(src2B)) src1dstA++; \
} \
else if ((unsigned int)(src1dstB += (src2B)) < \
(unsigned int)(src2B)) src1dstA++; \
} \
src1dstA += (src2A)
#define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \
{int shiftamt, sticky; \
is_tiny = TRUE; \
if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) { \
switch (Rounding_mode()) { \
case ROUNDPLUS: \
if (Dbl_iszero_sign(opndp1)) { \
Dbl_increment(opndp1,opndp2); \
if (Dbl_isone_hiddenoverflow(opndp1)) \
is_tiny = FALSE; \
Dbl_decrement(opndp1,opndp2); \
} \
break; \
case ROUNDMINUS: \
if (Dbl_isone_sign(opndp1)) { \
Dbl_increment(opndp1,opndp2); \
if (Dbl_isone_hiddenoverflow(opndp1)) \
is_tiny = FALSE; \
Dbl_decrement(opndp1,opndp2); \
} \
break; \
case ROUNDNEAREST: \
if (Dblext_isone_highp3(opndp3) && \
(Dblext_isone_lowp2(opndp2) || \
Dblext_isnotzero_low31p3(opndp3))) { \
Dbl_increment(opndp1,opndp2); \
if (Dbl_isone_hiddenoverflow(opndp1)) \
is_tiny = FALSE; \
Dbl_decrement(opndp1,opndp2); \
} \
break; \
} \
} \
Dblext_clear_signexponent_set_hidden(opndp1); \
if (exponent >= (1-QUAD_P)) { \
shiftamt = (1-exponent) % 32; \
switch((1-exponent)/32) { \
case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt); \
Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4); \
Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3); \
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2); \
Dextallp1(opndp1) >>= shiftamt; \
break; \
case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | \
Dextallp4(opndp4); \
Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4); \
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3); \
Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt; \
Dextallp1(opndp1) = 0; \
break; \
case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) | \
Dextallp3(opndp3) | Dextallp4(opndp4); \
Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4); \
Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt; \
Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
break; \
case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) | \
Dextallp2(opndp2) | Dextallp3(opndp3) | \
Dextallp4(opndp4); \
Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt; \
Dextallp1(opndp1) = Dextallp2(opndp2) = 0; \
Dextallp3(opndp3) = 0; \
break; \
} \
} \
else { \
sticky = Dextallp1(opndp1) | Dextallp2(opndp2) | \
Dextallp3(opndp3) | Dextallp4(opndp4); \
Dblext_setzero(opndp1,opndp2,opndp3,opndp4); \
} \
if (sticky) Dblext_setone_lowmantissap4(opndp4); \
exponent = 0; \
}