linux-IllusionX/mm/sparse.c
Linus Torvalds c9f016e72b A set of X86 fixes:
- x2apic_disable() clears x2apic_state and x2apic_mode unconditionally,
     even when the state is X2APIC_ON_LOCKED, which prevents the kernel to
     disable it thereby creating inconsistent state.
 
     Reorder the logic so it actually works correctly
 
   - The XSTATE logic for handling LBR is incorrect as it assumes that
     XSAVES supports LBR when the CPU supports LBR. In fact both conditions
     need to be true. Otherwise the enablement of LBR in the IA32_XSS MSR
     fails and subsequently the machine crashes on the next XRSTORS
     operation because IA32_XSS is not initialized.
 
     Cache the XSTATE support bit during init and make the related functions
     use this cached information and the LBR CPU feature bit to cure this.
 
   - Cure a long standing bug in KASLR
 
     KASLR uses the full address space between PAGE_OFFSET and vaddr_end to
     randomize the starting points of the direct map, vmalloc and vmemmap
     regions.  It thereby limits the size of the direct map by using the
     installed memory size plus an extra configurable margin for hot-plug
     memory.  This limitation is done to gain more randomization space
     because otherwise only the holes between the direct map, vmalloc,
     vmemmap and vaddr_end would be usable for randomizing.
 
     The limited direct map size is not exposed to the rest of the kernel, so
     the memory hot-plug and resource management related code paths still
     operate under the assumption that the available address space can be
     determined with MAX_PHYSMEM_BITS.
 
     request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1
     downwards.  That means the first allocation happens past the end of the
     direct map and if unlucky this address is in the vmalloc space, which
     causes high_memory to become greater than VMALLOC_START and consequently
     causes iounmap() to fail for valid ioremap addresses.
 
     Cure this by exposing the end of the direct map via PHYSMEM_END and use
     that for the memory hot-plug and resource management related places
     instead of relying on MAX_PHYSMEM_BITS. In the KASLR case PHYSMEM_END
     maps to a variable which is initialized by the KASLR initialization and
     otherwise it is based on MAX_PHYSMEM_BITS as before.
 
   - Prevent a data leak in mmio_read(). The TDVMCALL exposes the value of
     an initialized variabled on the stack to the VMM. The variable is only
     required as output value, so it does not have to exposed to the VMM in
     the first place.
 
   - Prevent an array overrun in the resource control code on systems with
     Sub-NUMA Clustering enabled because the code failed to adjust the index
     by the number of SNC nodes per L3 cache.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmbUUu0THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodFsEADFgxq2wjnH+VpuaIhLiQIfUa7iVeUl
 bwHAakZRMJ+Cb8BsvaRCMdAWWF+cRdLabAHuh7MRJFFzzdwrVTswnxT9baUBBjEe
 Kd3ZeQOS4AvWxpJNQEDg9r7tYtavmml9ix+Jh0OF+YmXLIweQk5RhDN+ncha07cJ
 0DuPt4ngI24iyAyUX+7gZsRZiwoOm0HqImaRiisaspTbGpNwnrwFQCEioCdwnAv0
 H5S7WTAlsZURCINLBNT+fV5oPjk2E3Ckj/CCJGoG1LYedGUD/44M1Hj0Xsqm4pHF
 Zd0+CuFyYpGqkAuBY6moWOheYP8V2U+yhf9Rtvh8/+h3qxZ/yon5i0ycO/2wMjiF
 0NBomMeKh4PNyefYq8lHWK3kcXphrXH3yv09wVBDdLMXDy98beuS5NScGgza8148
 /nqq0l1uLUyM9TkWg9H+4wW73EzQW1DYIliDU3tC98u+E77kQbyCx+2f0WI2k+ar
 3wy7nYzyEJXl38NUTB+La4xXbhsELcaYQ/Q6scIsWAL+6+KlRb3FNBn+HT+KmOmF
 y702km/28C0uxrLk2OQCjX/zXQtXe2/4aoUzGqFf9atsifa0IBrc8YBzdIDB49Jt
 zz/MOAZTcz4jfyD3sRfYuG2QhBbdTz3f/kd3OryquitdAGozpoeztMIGs1PU2Y6s
 zInlLtUwaosadg==
 =T4i1
 -----END PGP SIGNATURE-----

Merge tag 'x86-urgent-2024-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fixes from Thomas Gleixner:

 - x2apic_disable() clears x2apic_state and x2apic_mode unconditionally,
   even when the state is X2APIC_ON_LOCKED, which prevents the kernel to
   disable it thereby creating inconsistent state.

   Reorder the logic so it actually works correctly

 - The XSTATE logic for handling LBR is incorrect as it assumes that
   XSAVES supports LBR when the CPU supports LBR. In fact both
   conditions need to be true. Otherwise the enablement of LBR in the
   IA32_XSS MSR fails and subsequently the machine crashes on the next
   XRSTORS operation because IA32_XSS is not initialized.

   Cache the XSTATE support bit during init and make the related
   functions use this cached information and the LBR CPU feature bit to
   cure this.

 - Cure a long standing bug in KASLR

   KASLR uses the full address space between PAGE_OFFSET and vaddr_end
   to randomize the starting points of the direct map, vmalloc and
   vmemmap regions. It thereby limits the size of the direct map by
   using the installed memory size plus an extra configurable margin for
   hot-plug memory. This limitation is done to gain more randomization
   space because otherwise only the holes between the direct map,
   vmalloc, vmemmap and vaddr_end would be usable for randomizing.

   The limited direct map size is not exposed to the rest of the kernel,
   so the memory hot-plug and resource management related code paths
   still operate under the assumption that the available address space
   can be determined with MAX_PHYSMEM_BITS.

   request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1
   downwards. That means the first allocation happens past the end of
   the direct map and if unlucky this address is in the vmalloc space,
   which causes high_memory to become greater than VMALLOC_START and
   consequently causes iounmap() to fail for valid ioremap addresses.

   Cure this by exposing the end of the direct map via PHYSMEM_END and
   use that for the memory hot-plug and resource management related
   places instead of relying on MAX_PHYSMEM_BITS. In the KASLR case
   PHYSMEM_END maps to a variable which is initialized by the KASLR
   initialization and otherwise it is based on MAX_PHYSMEM_BITS as
   before.

 - Prevent a data leak in mmio_read(). The TDVMCALL exposes the value of
   an initialized variabled on the stack to the VMM. The variable is
   only required as output value, so it does not have to exposed to the
   VMM in the first place.

 - Prevent an array overrun in the resource control code on systems with
   Sub-NUMA Clustering enabled because the code failed to adjust the
   index by the number of SNC nodes per L3 cache.

* tag 'x86-urgent-2024-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/resctrl: Fix arch_mbm_* array overrun on SNC
  x86/tdx: Fix data leak in mmio_read()
  x86/kaslr: Expose and use the end of the physical memory address space
  x86/fpu: Avoid writing LBR bit to IA32_XSS unless supported
  x86/apic: Make x2apic_disable() work correctly
2024-09-01 14:43:08 -07:00

939 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* sparse memory mappings.
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/mmzone.h>
#include <linux/memblock.h>
#include <linux/compiler.h>
#include <linux/highmem.h>
#include <linux/export.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/bootmem_info.h>
#include <linux/vmstat.h>
#include "internal.h"
#include <asm/dma.h>
/*
* Permanent SPARSEMEM data:
*
* 1) mem_section - memory sections, mem_map's for valid memory
*/
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section **mem_section;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);
#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
* If we did not store the node number in the page then we have to
* do a lookup in the section_to_node_table in order to find which
* node the page belongs to.
*/
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif
int page_to_nid(const struct page *page)
{
return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);
static void set_section_nid(unsigned long section_nr, int nid)
{
section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
#endif
#ifdef CONFIG_SPARSEMEM_EXTREME
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
{
struct mem_section *section = NULL;
unsigned long array_size = SECTIONS_PER_ROOT *
sizeof(struct mem_section);
if (slab_is_available()) {
section = kzalloc_node(array_size, GFP_KERNEL, nid);
} else {
section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
nid);
if (!section)
panic("%s: Failed to allocate %lu bytes nid=%d\n",
__func__, array_size, nid);
}
return section;
}
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
struct mem_section *section;
/*
* An existing section is possible in the sub-section hotplug
* case. First hot-add instantiates, follow-on hot-add reuses
* the existing section.
*
* The mem_hotplug_lock resolves the apparent race below.
*/
if (mem_section[root])
return 0;
section = sparse_index_alloc(nid);
if (!section)
return -ENOMEM;
mem_section[root] = section;
return 0;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
return 0;
}
#endif
/*
* During early boot, before section_mem_map is used for an actual
* mem_map, we use section_mem_map to store the section's NUMA
* node. This keeps us from having to use another data structure. The
* node information is cleared just before we store the real mem_map.
*/
static inline unsigned long sparse_encode_early_nid(int nid)
{
return ((unsigned long)nid << SECTION_NID_SHIFT);
}
static inline int sparse_early_nid(struct mem_section *section)
{
return (section->section_mem_map >> SECTION_NID_SHIFT);
}
/* Validate the physical addressing limitations of the model */
static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn)
{
unsigned long max_sparsemem_pfn = (PHYSMEM_END + 1) >> PAGE_SHIFT;
/*
* Sanity checks - do not allow an architecture to pass
* in larger pfns than the maximum scope of sparsemem:
*/
if (*start_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*start_pfn = max_sparsemem_pfn;
*end_pfn = max_sparsemem_pfn;
} else if (*end_pfn > max_sparsemem_pfn) {
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
*start_pfn, *end_pfn, max_sparsemem_pfn);
WARN_ON_ONCE(1);
*end_pfn = max_sparsemem_pfn;
}
}
/*
* There are a number of times that we loop over NR_MEM_SECTIONS,
* looking for section_present() on each. But, when we have very
* large physical address spaces, NR_MEM_SECTIONS can also be
* very large which makes the loops quite long.
*
* Keeping track of this gives us an easy way to break out of
* those loops early.
*/
unsigned long __highest_present_section_nr;
static void __section_mark_present(struct mem_section *ms,
unsigned long section_nr)
{
if (section_nr > __highest_present_section_nr)
__highest_present_section_nr = section_nr;
ms->section_mem_map |= SECTION_MARKED_PRESENT;
}
#define for_each_present_section_nr(start, section_nr) \
for (section_nr = next_present_section_nr(start-1); \
section_nr != -1; \
section_nr = next_present_section_nr(section_nr))
static inline unsigned long first_present_section_nr(void)
{
return next_present_section_nr(-1);
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static void subsection_mask_set(unsigned long *map, unsigned long pfn,
unsigned long nr_pages)
{
int idx = subsection_map_index(pfn);
int end = subsection_map_index(pfn + nr_pages - 1);
bitmap_set(map, idx, end - idx + 1);
}
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
int end_sec_nr = pfn_to_section_nr(pfn + nr_pages - 1);
unsigned long nr, start_sec_nr = pfn_to_section_nr(pfn);
for (nr = start_sec_nr; nr <= end_sec_nr; nr++) {
struct mem_section *ms;
unsigned long pfns;
pfns = min(nr_pages, PAGES_PER_SECTION
- (pfn & ~PAGE_SECTION_MASK));
ms = __nr_to_section(nr);
subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
pfns, subsection_map_index(pfn),
subsection_map_index(pfn + pfns - 1));
pfn += pfns;
nr_pages -= pfns;
}
}
#else
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
{
}
#endif
/* Record a memory area against a node. */
static void __init memory_present(int nid, unsigned long start, unsigned long end)
{
unsigned long pfn;
start &= PAGE_SECTION_MASK;
mminit_validate_memmodel_limits(&start, &end);
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
sparse_index_init(section_nr, nid);
set_section_nid(section_nr, nid);
ms = __nr_to_section(section_nr);
if (!ms->section_mem_map) {
ms->section_mem_map = sparse_encode_early_nid(nid) |
SECTION_IS_ONLINE;
__section_mark_present(ms, section_nr);
}
}
}
/*
* Mark all memblocks as present using memory_present().
* This is a convenience function that is useful to mark all of the systems
* memory as present during initialization.
*/
static void __init memblocks_present(void)
{
unsigned long start, end;
int i, nid;
#ifdef CONFIG_SPARSEMEM_EXTREME
if (unlikely(!mem_section)) {
unsigned long size, align;
size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
align = 1 << (INTERNODE_CACHE_SHIFT);
mem_section = memblock_alloc(size, align);
if (!mem_section)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, size, align);
}
#endif
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
memory_present(nid, start, end);
}
/*
* Subtle, we encode the real pfn into the mem_map such that
* the identity pfn - section_mem_map will return the actual
* physical page frame number.
*/
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
unsigned long coded_mem_map =
(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
BUILD_BUG_ON(SECTION_MAP_LAST_BIT > PFN_SECTION_SHIFT);
BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
return coded_mem_map;
}
#ifdef CONFIG_MEMORY_HOTPLUG
/*
* Decode mem_map from the coded memmap
*/
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
/* mask off the extra low bits of information */
coded_mem_map &= SECTION_MAP_MASK;
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}
#endif /* CONFIG_MEMORY_HOTPLUG */
static void __meminit sparse_init_one_section(struct mem_section *ms,
unsigned long pnum, struct page *mem_map,
struct mem_section_usage *usage, unsigned long flags)
{
ms->section_mem_map &= ~SECTION_MAP_MASK;
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
| SECTION_HAS_MEM_MAP | flags;
ms->usage = usage;
}
static unsigned long usemap_size(void)
{
return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
}
size_t mem_section_usage_size(void)
{
return sizeof(struct mem_section_usage) + usemap_size();
}
#ifdef CONFIG_MEMORY_HOTREMOVE
static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
{
#ifndef CONFIG_NUMA
VM_BUG_ON(pgdat != &contig_page_data);
return __pa_symbol(&contig_page_data);
#else
return __pa(pgdat);
#endif
}
static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
struct mem_section_usage *usage;
unsigned long goal, limit;
int nid;
/*
* A page may contain usemaps for other sections preventing the
* page being freed and making a section unremovable while
* other sections referencing the usemap remain active. Similarly,
* a pgdat can prevent a section being removed. If section A
* contains a pgdat and section B contains the usemap, both
* sections become inter-dependent. This allocates usemaps
* from the same section as the pgdat where possible to avoid
* this problem.
*/
goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
limit = goal + (1UL << PA_SECTION_SHIFT);
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
again:
usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
if (!usage && limit) {
limit = MEMBLOCK_ALLOC_ACCESSIBLE;
goto again;
}
return usage;
}
static void __init check_usemap_section_nr(int nid,
struct mem_section_usage *usage)
{
unsigned long usemap_snr, pgdat_snr;
static unsigned long old_usemap_snr;
static unsigned long old_pgdat_snr;
struct pglist_data *pgdat = NODE_DATA(nid);
int usemap_nid;
/* First call */
if (!old_usemap_snr) {
old_usemap_snr = NR_MEM_SECTIONS;
old_pgdat_snr = NR_MEM_SECTIONS;
}
usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
if (usemap_snr == pgdat_snr)
return;
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
/* skip redundant message */
return;
old_usemap_snr = usemap_snr;
old_pgdat_snr = pgdat_snr;
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
if (usemap_nid != nid) {
pr_info("node %d must be removed before remove section %ld\n",
nid, usemap_snr);
return;
}
/*
* There is a circular dependency.
* Some platforms allow un-removable section because they will just
* gather other removable sections for dynamic partitioning.
* Just notify un-removable section's number here.
*/
pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
usemap_snr, pgdat_snr, nid);
}
#else
static struct mem_section_usage * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
unsigned long size)
{
return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
}
static void __init check_usemap_section_nr(int nid,
struct mem_section_usage *usage)
{
}
#endif /* CONFIG_MEMORY_HOTREMOVE */
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static unsigned long __init section_map_size(void)
{
return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
}
#else
static unsigned long __init section_map_size(void)
{
return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
}
struct page __init *__populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
unsigned long size = section_map_size();
struct page *map = sparse_buffer_alloc(size);
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
if (map)
return map;
map = memmap_alloc(size, size, addr, nid, false);
if (!map)
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
__func__, size, PAGE_SIZE, nid, &addr);
return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
static void *sparsemap_buf __meminitdata;
static void *sparsemap_buf_end __meminitdata;
static inline void __meminit sparse_buffer_free(unsigned long size)
{
WARN_ON(!sparsemap_buf || size == 0);
memblock_free(sparsemap_buf, size);
}
static void __init sparse_buffer_init(unsigned long size, int nid)
{
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
/*
* Pre-allocated buffer is mainly used by __populate_section_memmap
* and we want it to be properly aligned to the section size - this is
* especially the case for VMEMMAP which maps memmap to PMDs
*/
sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
sparsemap_buf_end = sparsemap_buf + size;
#ifndef CONFIG_SPARSEMEM_VMEMMAP
memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
#endif
}
static void __init sparse_buffer_fini(void)
{
unsigned long size = sparsemap_buf_end - sparsemap_buf;
if (sparsemap_buf && size > 0)
sparse_buffer_free(size);
sparsemap_buf = NULL;
}
void * __meminit sparse_buffer_alloc(unsigned long size)
{
void *ptr = NULL;
if (sparsemap_buf) {
ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
if (ptr + size > sparsemap_buf_end)
ptr = NULL;
else {
/* Free redundant aligned space */
if ((unsigned long)(ptr - sparsemap_buf) > 0)
sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
sparsemap_buf = ptr + size;
}
}
return ptr;
}
void __weak __meminit vmemmap_populate_print_last(void)
{
}
/*
* Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
* And number of present sections in this node is map_count.
*/
static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
unsigned long pnum_end,
unsigned long map_count)
{
struct mem_section_usage *usage;
unsigned long pnum;
struct page *map;
usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
mem_section_usage_size() * map_count);
if (!usage) {
pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
goto failed;
}
sparse_buffer_init(map_count * section_map_size(), nid);
for_each_present_section_nr(pnum_begin, pnum) {
unsigned long pfn = section_nr_to_pfn(pnum);
if (pnum >= pnum_end)
break;
map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
nid, NULL, NULL);
if (!map) {
pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
__func__, nid);
pnum_begin = pnum;
sparse_buffer_fini();
goto failed;
}
check_usemap_section_nr(nid, usage);
sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
SECTION_IS_EARLY);
usage = (void *) usage + mem_section_usage_size();
}
sparse_buffer_fini();
return;
failed:
/* We failed to allocate, mark all the following pnums as not present */
for_each_present_section_nr(pnum_begin, pnum) {
struct mem_section *ms;
if (pnum >= pnum_end)
break;
ms = __nr_to_section(pnum);
ms->section_mem_map = 0;
}
}
/*
* Allocate the accumulated non-linear sections, allocate a mem_map
* for each and record the physical to section mapping.
*/
void __init sparse_init(void)
{
unsigned long pnum_end, pnum_begin, map_count = 1;
int nid_begin;
/* see include/linux/mmzone.h 'struct mem_section' definition */
BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
memblocks_present();
pnum_begin = first_present_section_nr();
nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
set_pageblock_order();
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
int nid = sparse_early_nid(__nr_to_section(pnum_end));
if (nid == nid_begin) {
map_count++;
continue;
}
/* Init node with sections in range [pnum_begin, pnum_end) */
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
nid_begin = nid;
pnum_begin = pnum_end;
map_count = 1;
}
/* cover the last node */
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
vmemmap_populate_print_last();
}
#ifdef CONFIG_MEMORY_HOTPLUG
/* Mark all memory sections within the pfn range as online */
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
/* onlining code should never touch invalid ranges */
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map |= SECTION_IS_ONLINE;
}
}
/* Mark all memory sections within the pfn range as offline */
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
{
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
unsigned long section_nr = pfn_to_section_nr(pfn);
struct mem_section *ms;
/*
* TODO this needs some double checking. Offlining code makes
* sure to check pfn_valid but those checks might be just bogus
*/
if (WARN_ON(!valid_section_nr(section_nr)))
continue;
ms = __nr_to_section(section_nr);
ms->section_mem_map &= ~SECTION_IS_ONLINE;
}
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static struct page * __meminit populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
return __populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
}
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
unsigned long start = (unsigned long) pfn_to_page(pfn);
unsigned long end = start + nr_pages * sizeof(struct page);
memmap_pages_add(-1L * (DIV_ROUND_UP(end - start, PAGE_SIZE)));
vmemmap_free(start, end, altmap);
}
static void free_map_bootmem(struct page *memmap)
{
unsigned long start = (unsigned long)memmap;
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
vmemmap_free(start, end, NULL);
}
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
struct mem_section *ms = __pfn_to_section(pfn);
unsigned long *subsection_map = ms->usage
? &ms->usage->subsection_map[0] : NULL;
subsection_mask_set(map, pfn, nr_pages);
if (subsection_map)
bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
"section already deactivated (%#lx + %ld)\n",
pfn, nr_pages))
return -EINVAL;
bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
return 0;
}
static bool is_subsection_map_empty(struct mem_section *ms)
{
return bitmap_empty(&ms->usage->subsection_map[0],
SUBSECTIONS_PER_SECTION);
}
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
struct mem_section *ms = __pfn_to_section(pfn);
DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
unsigned long *subsection_map;
int rc = 0;
subsection_mask_set(map, pfn, nr_pages);
subsection_map = &ms->usage->subsection_map[0];
if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
rc = -EINVAL;
else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
rc = -EEXIST;
else
bitmap_or(subsection_map, map, subsection_map,
SUBSECTIONS_PER_SECTION);
return rc;
}
#else
static struct page * __meminit populate_section_memmap(unsigned long pfn,
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
return kvmalloc_node(array_size(sizeof(struct page),
PAGES_PER_SECTION), GFP_KERNEL, nid);
}
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
kvfree(pfn_to_page(pfn));
}
static void free_map_bootmem(struct page *memmap)
{
unsigned long maps_section_nr, removing_section_nr, i;
unsigned long magic, nr_pages;
struct page *page = virt_to_page(memmap);
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
>> PAGE_SHIFT;
for (i = 0; i < nr_pages; i++, page++) {
magic = page->index;
BUG_ON(magic == NODE_INFO);
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
removing_section_nr = page_private(page);
/*
* When this function is called, the removing section is
* logical offlined state. This means all pages are isolated
* from page allocator. If removing section's memmap is placed
* on the same section, it must not be freed.
* If it is freed, page allocator may allocate it which will
* be removed physically soon.
*/
if (maps_section_nr != removing_section_nr)
put_page_bootmem(page);
}
}
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
return 0;
}
static bool is_subsection_map_empty(struct mem_section *ms)
{
return true;
}
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
{
return 0;
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
/*
* To deactivate a memory region, there are 3 cases to handle across
* two configurations (SPARSEMEM_VMEMMAP={y,n}):
*
* 1. deactivation of a partial hot-added section (only possible in
* the SPARSEMEM_VMEMMAP=y case).
* a) section was present at memory init.
* b) section was hot-added post memory init.
* 2. deactivation of a complete hot-added section.
* 3. deactivation of a complete section from memory init.
*
* For 1, when subsection_map does not empty we will not be freeing the
* usage map, but still need to free the vmemmap range.
*
* For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
*/
static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
struct mem_section *ms = __pfn_to_section(pfn);
bool section_is_early = early_section(ms);
struct page *memmap = NULL;
bool empty;
if (clear_subsection_map(pfn, nr_pages))
return;
empty = is_subsection_map_empty(ms);
if (empty) {
unsigned long section_nr = pfn_to_section_nr(pfn);
/*
* Mark the section invalid so that valid_section()
* return false. This prevents code from dereferencing
* ms->usage array.
*/
ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
/*
* When removing an early section, the usage map is kept (as the
* usage maps of other sections fall into the same page). It
* will be re-used when re-adding the section - which is then no
* longer an early section. If the usage map is PageReserved, it
* was allocated during boot.
*/
if (!PageReserved(virt_to_page(ms->usage))) {
kfree_rcu(ms->usage, rcu);
WRITE_ONCE(ms->usage, NULL);
}
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
}
/*
* The memmap of early sections is always fully populated. See
* section_activate() and pfn_valid() .
*/
if (!section_is_early)
depopulate_section_memmap(pfn, nr_pages, altmap);
else if (memmap)
free_map_bootmem(memmap);
if (empty)
ms->section_mem_map = (unsigned long)NULL;
}
static struct page * __meminit section_activate(int nid, unsigned long pfn,
unsigned long nr_pages, struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
struct mem_section *ms = __pfn_to_section(pfn);
struct mem_section_usage *usage = NULL;
struct page *memmap;
int rc;
if (!ms->usage) {
usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
if (!usage)
return ERR_PTR(-ENOMEM);
ms->usage = usage;
}
rc = fill_subsection_map(pfn, nr_pages);
if (rc) {
if (usage)
ms->usage = NULL;
kfree(usage);
return ERR_PTR(rc);
}
/*
* The early init code does not consider partially populated
* initial sections, it simply assumes that memory will never be
* referenced. If we hot-add memory into such a section then we
* do not need to populate the memmap and can simply reuse what
* is already there.
*/
if (nr_pages < PAGES_PER_SECTION && early_section(ms))
return pfn_to_page(pfn);
memmap = populate_section_memmap(pfn, nr_pages, nid, altmap, pgmap);
if (!memmap) {
section_deactivate(pfn, nr_pages, altmap);
return ERR_PTR(-ENOMEM);
}
return memmap;
}
/**
* sparse_add_section - add a memory section, or populate an existing one
* @nid: The node to add section on
* @start_pfn: start pfn of the memory range
* @nr_pages: number of pfns to add in the section
* @altmap: alternate pfns to allocate the memmap backing store
* @pgmap: alternate compound page geometry for devmap mappings
*
* This is only intended for hotplug.
*
* Note that only VMEMMAP supports sub-section aligned hotplug,
* the proper alignment and size are gated by check_pfn_span().
*
*
* Return:
* * 0 - On success.
* * -EEXIST - Section has been present.
* * -ENOMEM - Out of memory.
*/
int __meminit sparse_add_section(int nid, unsigned long start_pfn,
unsigned long nr_pages, struct vmem_altmap *altmap,
struct dev_pagemap *pgmap)
{
unsigned long section_nr = pfn_to_section_nr(start_pfn);
struct mem_section *ms;
struct page *memmap;
int ret;
ret = sparse_index_init(section_nr, nid);
if (ret < 0)
return ret;
memmap = section_activate(nid, start_pfn, nr_pages, altmap, pgmap);
if (IS_ERR(memmap))
return PTR_ERR(memmap);
/*
* Poison uninitialized struct pages in order to catch invalid flags
* combinations.
*/
if (!altmap || !altmap->inaccessible)
page_init_poison(memmap, sizeof(struct page) * nr_pages);
ms = __nr_to_section(section_nr);
set_section_nid(section_nr, nid);
__section_mark_present(ms, section_nr);
/* Align memmap to section boundary in the subsection case */
if (section_nr_to_pfn(section_nr) != start_pfn)
memmap = pfn_to_page(section_nr_to_pfn(section_nr));
sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
return 0;
}
void sparse_remove_section(unsigned long pfn, unsigned long nr_pages,
struct vmem_altmap *altmap)
{
struct mem_section *ms = __pfn_to_section(pfn);
if (WARN_ON_ONCE(!valid_section(ms)))
return;
section_deactivate(pfn, nr_pages, altmap);
}
#endif /* CONFIG_MEMORY_HOTPLUG */