linux-IllusionX/mm/memfd.c
Steve Sistare 7fab8b3260 mm/hugetlb: simplify refs in memfd_alloc_folio
commit dc677b5f3765cfd0944c8873d1ea57f1a3439676 upstream.

The folio_try_get in memfd_alloc_folio is not necessary.  Delete it, and
delete the matching folio_put in memfd_pin_folios.  This also avoids
leaking a ref if the memfd_alloc_folio call to hugetlb_add_to_page_cache
fails.  That error path is also broken in a second way -- when its
folio_put causes the ref to become 0, it will implicitly call
free_huge_folio, but then the path *explicitly* calls free_huge_folio.
Delete the latter.

This is a continuation of the fix
  "mm/hugetlb: fix memfd_pin_folios free_huge_pages leak"

[steven.sistare@oracle.com: remove explicit call to free_huge_folio(), per Matthew]
  Link: https://lkml.kernel.org/r/Zti-7nPVMcGgpcbi@casper.infradead.org
  Link: https://lkml.kernel.org/r/1725481920-82506-1-git-send-email-steven.sistare@oracle.com
Link: https://lkml.kernel.org/r/1725478868-61732-1-git-send-email-steven.sistare@oracle.com
Fixes: 89c1905d9c ("mm/gup: introduce memfd_pin_folios() for pinning memfd folios")
Signed-off-by: Steve Sistare <steven.sistare@oracle.com>
Suggested-by: Vivek Kasireddy <vivek.kasireddy@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-10 12:04:06 +02:00

426 lines
10 KiB
C

/*
* memfd_create system call and file sealing support
*
* Code was originally included in shmem.c, and broken out to facilitate
* use by hugetlbfs as well as tmpfs.
*
* This file is released under the GPL.
*/
#include <linux/fs.h>
#include <linux/vfs.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/sched/signal.h>
#include <linux/khugepaged.h>
#include <linux/syscalls.h>
#include <linux/hugetlb.h>
#include <linux/shmem_fs.h>
#include <linux/memfd.h>
#include <linux/pid_namespace.h>
#include <uapi/linux/memfd.h>
/*
* We need a tag: a new tag would expand every xa_node by 8 bytes,
* so reuse a tag which we firmly believe is never set or cleared on tmpfs
* or hugetlbfs because they are memory only filesystems.
*/
#define MEMFD_TAG_PINNED PAGECACHE_TAG_TOWRITE
#define LAST_SCAN 4 /* about 150ms max */
static bool memfd_folio_has_extra_refs(struct folio *folio)
{
return folio_ref_count(folio) - folio_mapcount(folio) !=
folio_nr_pages(folio);
}
static void memfd_tag_pins(struct xa_state *xas)
{
struct folio *folio;
int latency = 0;
lru_add_drain();
xas_lock_irq(xas);
xas_for_each(xas, folio, ULONG_MAX) {
if (!xa_is_value(folio) && memfd_folio_has_extra_refs(folio))
xas_set_mark(xas, MEMFD_TAG_PINNED);
if (++latency < XA_CHECK_SCHED)
continue;
latency = 0;
xas_pause(xas);
xas_unlock_irq(xas);
cond_resched();
xas_lock_irq(xas);
}
xas_unlock_irq(xas);
}
/*
* This is a helper function used by memfd_pin_user_pages() in GUP (gup.c).
* It is mainly called to allocate a folio in a memfd when the caller
* (memfd_pin_folios()) cannot find a folio in the page cache at a given
* index in the mapping.
*/
struct folio *memfd_alloc_folio(struct file *memfd, pgoff_t idx)
{
#ifdef CONFIG_HUGETLB_PAGE
struct folio *folio;
gfp_t gfp_mask;
int err;
if (is_file_hugepages(memfd)) {
/*
* The folio would most likely be accessed by a DMA driver,
* therefore, we have zone memory constraints where we can
* alloc from. Also, the folio will be pinned for an indefinite
* amount of time, so it is not expected to be migrated away.
*/
struct hstate *h = hstate_file(memfd);
gfp_mask = htlb_alloc_mask(h);
gfp_mask &= ~(__GFP_HIGHMEM | __GFP_MOVABLE);
idx >>= huge_page_order(h);
folio = alloc_hugetlb_folio_reserve(h,
numa_node_id(),
NULL,
gfp_mask);
if (folio) {
err = hugetlb_add_to_page_cache(folio,
memfd->f_mapping,
idx);
if (err) {
folio_put(folio);
return ERR_PTR(err);
}
folio_unlock(folio);
return folio;
}
return ERR_PTR(-ENOMEM);
}
#endif
return shmem_read_folio(memfd->f_mapping, idx);
}
/*
* Setting SEAL_WRITE requires us to verify there's no pending writer. However,
* via get_user_pages(), drivers might have some pending I/O without any active
* user-space mappings (eg., direct-IO, AIO). Therefore, we look at all folios
* and see whether it has an elevated ref-count. If so, we tag them and wait for
* them to be dropped.
* The caller must guarantee that no new user will acquire writable references
* to those folios to avoid races.
*/
static int memfd_wait_for_pins(struct address_space *mapping)
{
XA_STATE(xas, &mapping->i_pages, 0);
struct folio *folio;
int error, scan;
memfd_tag_pins(&xas);
error = 0;
for (scan = 0; scan <= LAST_SCAN; scan++) {
int latency = 0;
if (!xas_marked(&xas, MEMFD_TAG_PINNED))
break;
if (!scan)
lru_add_drain_all();
else if (schedule_timeout_killable((HZ << scan) / 200))
scan = LAST_SCAN;
xas_set(&xas, 0);
xas_lock_irq(&xas);
xas_for_each_marked(&xas, folio, ULONG_MAX, MEMFD_TAG_PINNED) {
bool clear = true;
if (!xa_is_value(folio) &&
memfd_folio_has_extra_refs(folio)) {
/*
* On the last scan, we clean up all those tags
* we inserted; but make a note that we still
* found folios pinned.
*/
if (scan == LAST_SCAN)
error = -EBUSY;
else
clear = false;
}
if (clear)
xas_clear_mark(&xas, MEMFD_TAG_PINNED);
if (++latency < XA_CHECK_SCHED)
continue;
latency = 0;
xas_pause(&xas);
xas_unlock_irq(&xas);
cond_resched();
xas_lock_irq(&xas);
}
xas_unlock_irq(&xas);
}
return error;
}
static unsigned int *memfd_file_seals_ptr(struct file *file)
{
if (shmem_file(file))
return &SHMEM_I(file_inode(file))->seals;
#ifdef CONFIG_HUGETLBFS
if (is_file_hugepages(file))
return &HUGETLBFS_I(file_inode(file))->seals;
#endif
return NULL;
}
#define F_ALL_SEALS (F_SEAL_SEAL | \
F_SEAL_EXEC | \
F_SEAL_SHRINK | \
F_SEAL_GROW | \
F_SEAL_WRITE | \
F_SEAL_FUTURE_WRITE)
static int memfd_add_seals(struct file *file, unsigned int seals)
{
struct inode *inode = file_inode(file);
unsigned int *file_seals;
int error;
/*
* SEALING
* Sealing allows multiple parties to share a tmpfs or hugetlbfs file
* but restrict access to a specific subset of file operations. Seals
* can only be added, but never removed. This way, mutually untrusted
* parties can share common memory regions with a well-defined policy.
* A malicious peer can thus never perform unwanted operations on a
* shared object.
*
* Seals are only supported on special tmpfs or hugetlbfs files and
* always affect the whole underlying inode. Once a seal is set, it
* may prevent some kinds of access to the file. Currently, the
* following seals are defined:
* SEAL_SEAL: Prevent further seals from being set on this file
* SEAL_SHRINK: Prevent the file from shrinking
* SEAL_GROW: Prevent the file from growing
* SEAL_WRITE: Prevent write access to the file
* SEAL_EXEC: Prevent modification of the exec bits in the file mode
*
* As we don't require any trust relationship between two parties, we
* must prevent seals from being removed. Therefore, sealing a file
* only adds a given set of seals to the file, it never touches
* existing seals. Furthermore, the "setting seals"-operation can be
* sealed itself, which basically prevents any further seal from being
* added.
*
* Semantics of sealing are only defined on volatile files. Only
* anonymous tmpfs and hugetlbfs files support sealing. More
* importantly, seals are never written to disk. Therefore, there's
* no plan to support it on other file types.
*/
if (!(file->f_mode & FMODE_WRITE))
return -EPERM;
if (seals & ~(unsigned int)F_ALL_SEALS)
return -EINVAL;
inode_lock(inode);
file_seals = memfd_file_seals_ptr(file);
if (!file_seals) {
error = -EINVAL;
goto unlock;
}
if (*file_seals & F_SEAL_SEAL) {
error = -EPERM;
goto unlock;
}
if ((seals & F_SEAL_WRITE) && !(*file_seals & F_SEAL_WRITE)) {
error = mapping_deny_writable(file->f_mapping);
if (error)
goto unlock;
error = memfd_wait_for_pins(file->f_mapping);
if (error) {
mapping_allow_writable(file->f_mapping);
goto unlock;
}
}
/*
* SEAL_EXEC implys SEAL_WRITE, making W^X from the start.
*/
if (seals & F_SEAL_EXEC && inode->i_mode & 0111)
seals |= F_SEAL_SHRINK|F_SEAL_GROW|F_SEAL_WRITE|F_SEAL_FUTURE_WRITE;
*file_seals |= seals;
error = 0;
unlock:
inode_unlock(inode);
return error;
}
static int memfd_get_seals(struct file *file)
{
unsigned int *seals = memfd_file_seals_ptr(file);
return seals ? *seals : -EINVAL;
}
long memfd_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
{
long error;
switch (cmd) {
case F_ADD_SEALS:
error = memfd_add_seals(file, arg);
break;
case F_GET_SEALS:
error = memfd_get_seals(file);
break;
default:
error = -EINVAL;
break;
}
return error;
}
#define MFD_NAME_PREFIX "memfd:"
#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB | MFD_NOEXEC_SEAL | MFD_EXEC)
static int check_sysctl_memfd_noexec(unsigned int *flags)
{
#ifdef CONFIG_SYSCTL
struct pid_namespace *ns = task_active_pid_ns(current);
int sysctl = pidns_memfd_noexec_scope(ns);
if (!(*flags & (MFD_EXEC | MFD_NOEXEC_SEAL))) {
if (sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_SEAL)
*flags |= MFD_NOEXEC_SEAL;
else
*flags |= MFD_EXEC;
}
if (!(*flags & MFD_NOEXEC_SEAL) && sysctl >= MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED) {
pr_err_ratelimited(
"%s[%d]: memfd_create() requires MFD_NOEXEC_SEAL with vm.memfd_noexec=%d\n",
current->comm, task_pid_nr(current), sysctl);
return -EACCES;
}
#endif
return 0;
}
SYSCALL_DEFINE2(memfd_create,
const char __user *, uname,
unsigned int, flags)
{
unsigned int *file_seals;
struct file *file;
int fd, error;
char *name;
long len;
if (!(flags & MFD_HUGETLB)) {
if (flags & ~(unsigned int)MFD_ALL_FLAGS)
return -EINVAL;
} else {
/* Allow huge page size encoding in flags. */
if (flags & ~(unsigned int)(MFD_ALL_FLAGS |
(MFD_HUGE_MASK << MFD_HUGE_SHIFT)))
return -EINVAL;
}
/* Invalid if both EXEC and NOEXEC_SEAL are set.*/
if ((flags & MFD_EXEC) && (flags & MFD_NOEXEC_SEAL))
return -EINVAL;
error = check_sysctl_memfd_noexec(&flags);
if (error < 0)
return error;
/* length includes terminating zero */
len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
if (len <= 0)
return -EFAULT;
if (len > MFD_NAME_MAX_LEN + 1)
return -EINVAL;
name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_KERNEL);
if (!name)
return -ENOMEM;
strcpy(name, MFD_NAME_PREFIX);
if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
error = -EFAULT;
goto err_name;
}
/* terminating-zero may have changed after strnlen_user() returned */
if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
error = -EFAULT;
goto err_name;
}
fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
if (fd < 0) {
error = fd;
goto err_name;
}
if (flags & MFD_HUGETLB) {
file = hugetlb_file_setup(name, 0, VM_NORESERVE,
HUGETLB_ANONHUGE_INODE,
(flags >> MFD_HUGE_SHIFT) &
MFD_HUGE_MASK);
} else
file = shmem_file_setup(name, 0, VM_NORESERVE);
if (IS_ERR(file)) {
error = PTR_ERR(file);
goto err_fd;
}
file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
file->f_flags |= O_LARGEFILE;
if (flags & MFD_NOEXEC_SEAL) {
struct inode *inode = file_inode(file);
inode->i_mode &= ~0111;
file_seals = memfd_file_seals_ptr(file);
if (file_seals) {
*file_seals &= ~F_SEAL_SEAL;
*file_seals |= F_SEAL_EXEC;
}
} else if (flags & MFD_ALLOW_SEALING) {
/* MFD_EXEC and MFD_ALLOW_SEALING are set */
file_seals = memfd_file_seals_ptr(file);
if (file_seals)
*file_seals &= ~F_SEAL_SEAL;
}
fd_install(fd, file);
kfree(name);
return fd;
err_fd:
put_unused_fd(fd);
err_name:
kfree(name);
return error;
}