linux-IllusionX/arch/alpha/kernel/sys_mikasa.c

266 lines
6.3 KiB
C
Raw Normal View History

/*
* linux/arch/alpha/kernel/sys_mikasa.c
*
* Copyright (C) 1995 David A Rusling
* Copyright (C) 1996 Jay A Estabrook
* Copyright (C) 1998, 1999 Richard Henderson
*
* Code supporting the MIKASA (AlphaServer 1000).
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/mmu_context.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/core_apecs.h>
#include <asm/core_cia.h>
#include <asm/tlbflush.h>
#include "proto.h"
#include "irq_impl.h"
#include "pci_impl.h"
#include "machvec_impl.h"
/* Note mask bit is true for ENABLED irqs. */
static int cached_irq_mask;
static inline void
mikasa_update_irq_hw(int mask)
{
outw(mask, 0x536);
}
static inline void
mikasa_enable_irq(unsigned int irq)
{
mikasa_update_irq_hw(cached_irq_mask |= 1 << (irq - 16));
}
static void
mikasa_disable_irq(unsigned int irq)
{
mikasa_update_irq_hw(cached_irq_mask &= ~(1 << (irq - 16)));
}
static unsigned int
mikasa_startup_irq(unsigned int irq)
{
mikasa_enable_irq(irq);
return 0;
}
static void
mikasa_end_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
mikasa_enable_irq(irq);
}
static struct hw_interrupt_type mikasa_irq_type = {
.typename = "MIKASA",
.startup = mikasa_startup_irq,
.shutdown = mikasa_disable_irq,
.enable = mikasa_enable_irq,
.disable = mikasa_disable_irq,
.ack = mikasa_disable_irq,
.end = mikasa_end_irq,
};
static void
mikasa_device_interrupt(unsigned long vector, struct pt_regs *regs)
{
unsigned long pld;
unsigned int i;
/* Read the interrupt summary registers */
pld = (((~inw(0x534) & 0x0000ffffUL) << 16)
| (((unsigned long) inb(0xa0)) << 8)
| inb(0x20));
/*
* Now for every possible bit set, work through them and call
* the appropriate interrupt handler.
*/
while (pld) {
i = ffz(~pld);
pld &= pld - 1; /* clear least bit set */
if (i < 16) {
isa_device_interrupt(vector, regs);
} else {
handle_irq(i, regs);
}
}
}
static void __init
mikasa_init_irq(void)
{
long i;
if (alpha_using_srm)
alpha_mv.device_interrupt = srm_device_interrupt;
mikasa_update_irq_hw(0);
for (i = 16; i < 32; ++i) {
irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL;
irq_desc[i].handler = &mikasa_irq_type;
}
init_i8259a_irqs();
common_init_isa_dma();
}
/*
* PCI Fixup configuration.
*
* Summary @ 0x536:
* Bit Meaning
* 0 Interrupt Line A from slot 0
* 1 Interrupt Line B from slot 0
* 2 Interrupt Line C from slot 0
* 3 Interrupt Line D from slot 0
* 4 Interrupt Line A from slot 1
* 5 Interrupt line B from slot 1
* 6 Interrupt Line C from slot 1
* 7 Interrupt Line D from slot 1
* 8 Interrupt Line A from slot 2
* 9 Interrupt Line B from slot 2
*10 Interrupt Line C from slot 2
*11 Interrupt Line D from slot 2
*12 NCR 810 SCSI
*13 Power Supply Fail
*14 Temperature Warn
*15 Reserved
*
* The device to slot mapping looks like:
*
* Slot Device
* 6 NCR SCSI controller
* 7 Intel PCI-EISA bridge chip
* 11 PCI on board slot 0
* 12 PCI on board slot 1
* 13 PCI on board slot 2
*
*
* This two layered interrupt approach means that we allocate IRQ 16 and
* above for PCI interrupts. The IRQ relates to which bit the interrupt
* comes in on. This makes interrupt processing much easier.
*/
static int __init
mikasa_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
static char irq_tab[8][5] __initdata = {
/*INT INTA INTB INTC INTD */
{16+12, 16+12, 16+12, 16+12, 16+12}, /* IdSel 17, SCSI */
{ -1, -1, -1, -1, -1}, /* IdSel 18, PCEB */
{ -1, -1, -1, -1, -1}, /* IdSel 19, ???? */
{ -1, -1, -1, -1, -1}, /* IdSel 20, ???? */
{ -1, -1, -1, -1, -1}, /* IdSel 21, ???? */
{ 16+0, 16+0, 16+1, 16+2, 16+3}, /* IdSel 22, slot 0 */
{ 16+4, 16+4, 16+5, 16+6, 16+7}, /* IdSel 23, slot 1 */
{ 16+8, 16+8, 16+9, 16+10, 16+11}, /* IdSel 24, slot 2 */
};
const long min_idsel = 6, max_idsel = 13, irqs_per_slot = 5;
return COMMON_TABLE_LOOKUP;
}
#if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO)
static void
mikasa_apecs_machine_check(unsigned long vector, unsigned long la_ptr,
struct pt_regs * regs)
{
#define MCHK_NO_DEVSEL 0x205U
#define MCHK_NO_TABT 0x204U
struct el_common *mchk_header;
unsigned int code;
mchk_header = (struct el_common *)la_ptr;
/* Clear the error before any reporting. */
mb();
mb(); /* magic */
draina();
apecs_pci_clr_err();
wrmces(0x7);
mb();
code = mchk_header->code;
process_mcheck_info(vector, la_ptr, regs, "MIKASA APECS",
(mcheck_expected(0)
&& (code == MCHK_NO_DEVSEL
|| code == MCHK_NO_TABT)));
}
#endif
/*
* The System Vector
*/
#if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO)
struct alpha_machine_vector mikasa_mv __initmv = {
.vector_name = "Mikasa",
DO_EV4_MMU,
DO_DEFAULT_RTC,
DO_APECS_IO,
.machine_check = mikasa_apecs_machine_check,
.max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
.min_io_address = DEFAULT_IO_BASE,
.min_mem_address = APECS_AND_LCA_DEFAULT_MEM_BASE,
.nr_irqs = 32,
.device_interrupt = mikasa_device_interrupt,
.init_arch = apecs_init_arch,
.init_irq = mikasa_init_irq,
.init_rtc = common_init_rtc,
.init_pci = common_init_pci,
.pci_map_irq = mikasa_map_irq,
.pci_swizzle = common_swizzle,
};
ALIAS_MV(mikasa)
#endif
#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_PRIMO)
struct alpha_machine_vector mikasa_primo_mv __initmv = {
.vector_name = "Mikasa-Primo",
DO_EV5_MMU,
DO_DEFAULT_RTC,
DO_CIA_IO,
.machine_check = cia_machine_check,
.max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
.min_io_address = DEFAULT_IO_BASE,
.min_mem_address = CIA_DEFAULT_MEM_BASE,
.nr_irqs = 32,
.device_interrupt = mikasa_device_interrupt,
.init_arch = cia_init_arch,
.init_irq = mikasa_init_irq,
.init_rtc = common_init_rtc,
.init_pci = cia_init_pci,
.kill_arch = cia_kill_arch,
.pci_map_irq = mikasa_map_irq,
.pci_swizzle = common_swizzle,
};
ALIAS_MV(mikasa_primo)
#endif