/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Vibrator.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CapoDetector.h" #ifndef ARRAY_SIZE #define ARRAY_SIZE(x) (sizeof((x)) / sizeof((x)[0])) #endif #ifdef LOG_TAG #undef LOG_TAG #define LOG_TAG "Vibrator" #endif using CapoDetector = android::chre::CapoDetector; namespace aidl { namespace android { namespace hardware { namespace vibrator { static constexpr uint8_t FF_CUSTOM_DATA_LEN = 2; static constexpr uint16_t FF_CUSTOM_DATA_LEN_MAX_COMP = 2044; // (COMPOSE_SIZE_MAX + 1) * 8 + 4 static constexpr uint16_t FF_CUSTOM_DATA_LEN_MAX_PWLE = 2302; static constexpr uint32_t WAVEFORM_DOUBLE_CLICK_SILENCE_MS = 100; static constexpr uint32_t WAVEFORM_LONG_VIBRATION_THRESHOLD_MS = 50; static constexpr uint8_t VOLTAGE_SCALE_MAX = 100; static constexpr int8_t MAX_COLD_START_LATENCY_MS = 6; // I2C Transaction + DSP Return-From-Standby static constexpr uint32_t MIN_ON_OFF_INTERVAL_US = 8500; // SVC initialization time static constexpr int8_t MAX_PAUSE_TIMING_ERROR_MS = 1; // ALERT Irq Handling static constexpr uint32_t MAX_TIME_MS = UINT16_MAX; static constexpr auto ASYNC_COMPLETION_TIMEOUT = std::chrono::milliseconds(100); static constexpr auto POLLING_TIMEOUT = 20; static constexpr int32_t COMPOSE_DELAY_MAX_MS = 10000; /* nsections is 8 bits. Need to preserve 1 section for the first delay before the first effect. */ static constexpr int32_t COMPOSE_SIZE_MAX = 254; static constexpr int32_t COMPOSE_PWLE_SIZE_MAX_DEFAULT = 127; // Measured resonant frequency, f0_measured, is represented by Q10.14 fixed // point format on cs40l26 devices. The expression to calculate f0 is: // f0 = f0_measured / 2^Q14_BIT_SHIFT // See the LRA Calibration Support documentation for more details. static constexpr int32_t Q14_BIT_SHIFT = 14; // Measured Q factor, q_measured, is represented by Q8.16 fixed // point format on cs40l26 devices. The expression to calculate q is: // q = q_measured / 2^Q16_BIT_SHIFT // See the LRA Calibration Support documentation for more details. static constexpr int32_t Q16_BIT_SHIFT = 16; static constexpr int32_t COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS = 16383; static constexpr uint32_t WT_LEN_CALCD = 0x00800000; static constexpr uint8_t PWLE_CHIRP_BIT = 0x8; // Dynamic/static frequency and voltage static constexpr uint8_t PWLE_BRAKE_BIT = 0x4; static constexpr uint8_t PWLE_AMP_REG_BIT = 0x2; static constexpr float PWLE_LEVEL_MIN = 0.0; static constexpr float PWLE_LEVEL_MAX = 1.0; static constexpr float CS40L26_PWLE_LEVEL_MIX = -1.0; static constexpr float CS40L26_PWLE_LEVEL_MAX = 0.9995118; static constexpr float PWLE_FREQUENCY_RESOLUTION_HZ = 1.00; static constexpr float PWLE_FREQUENCY_MIN_HZ = 1.00; static constexpr float PWLE_FREQUENCY_MAX_HZ = 1000.00; static constexpr float PWLE_BW_MAP_SIZE = 1 + ((PWLE_FREQUENCY_MAX_HZ - PWLE_FREQUENCY_MIN_HZ) / PWLE_FREQUENCY_RESOLUTION_HZ); #ifndef DISABLE_ADAPTIVE_HAPTICS_FEATURE static constexpr bool mAdaptiveHapticsEnable = true; #else static constexpr bool mAdaptiveHapticsEnable = false; #endif /* DISABLE_ADAPTIVE_HAPTICS_FEATURE */ static sp vibeContextListener; uint8_t mCapoDeviceState = 0; uint32_t mLastFaceUpEvent = 0; uint32_t mLastEffectPlayedTime = 0; float mLastPlayedScale = 0; static uint32_t getCurrentTimeInMs(void) { return std::chrono::duration_cast(std::chrono::system_clock::now().time_since_epoch()).count(); } static void capoEventCallback(uint8_t eventId) { ALOGD("Vibrator %s, From: 0x%x To: 0x%x", __func__, mCapoDeviceState, (uint32_t)eventId); // Record the last moment we were in FACE_UP state if (mCapoDeviceState == capo::PositionType::ON_TABLE_FACE_UP || eventId == capo::PositionType::ON_TABLE_FACE_UP) { mLastFaceUpEvent = getCurrentTimeInMs(); } mCapoDeviceState = eventId; } static uint8_t getDeviceState(void) { return mCapoDeviceState; } enum WaveformBankID : uint8_t { RAM_WVFRM_BANK, ROM_WVFRM_BANK, OWT_WVFRM_BANK, }; enum WaveformIndex : uint16_t { /* Physical waveform */ WAVEFORM_LONG_VIBRATION_EFFECT_INDEX = 0, WAVEFORM_RESERVED_INDEX_1 = 1, WAVEFORM_CLICK_INDEX = 2, WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX = 3, WAVEFORM_THUD_INDEX = 4, WAVEFORM_SPIN_INDEX = 5, WAVEFORM_QUICK_RISE_INDEX = 6, WAVEFORM_SLOW_RISE_INDEX = 7, WAVEFORM_QUICK_FALL_INDEX = 8, WAVEFORM_LIGHT_TICK_INDEX = 9, WAVEFORM_LOW_TICK_INDEX = 10, WAVEFORM_RESERVED_MFG_1, WAVEFORM_RESERVED_MFG_2, WAVEFORM_RESERVED_MFG_3, WAVEFORM_MAX_PHYSICAL_INDEX, /* OWT waveform */ WAVEFORM_COMPOSE = WAVEFORM_MAX_PHYSICAL_INDEX, WAVEFORM_PWLE, /* * Refer to , the WAVEFORM_MAX_INDEX must not exceed 96. * #define FF_GAIN 0x60 // 96 in decimal * #define FF_MAX_EFFECTS FF_GAIN */ WAVEFORM_MAX_INDEX, }; std::vector defaultSupportedPrimitives = { ndk::enum_range().begin(), ndk::enum_range().end()}; enum vibe_state { VIBE_STATE_STOPPED = 0, VIBE_STATE_HAPTIC, VIBE_STATE_ASP, }; std::mutex mActiveId_mutex; // protects mActiveId static int min(int x, int y) { return x < y ? x : y; } static int floatToUint16(float input, uint16_t *output, float scale, float min, float max) { if (input < min || input > max) return -ERANGE; *output = roundf(input * scale); return 0; } struct dspmem_chunk { uint8_t *head; uint8_t *current; uint8_t *max; int bytes; uint32_t cache; int cachebits; }; static dspmem_chunk *dspmem_chunk_create(void *data, int size) { auto ch = new dspmem_chunk{ .head = reinterpret_cast(data), .current = reinterpret_cast(data), .max = reinterpret_cast(data) + size, }; return ch; } static bool dspmem_chunk_end(struct dspmem_chunk *ch) { return ch->current == ch->max; } static int dspmem_chunk_bytes(struct dspmem_chunk *ch) { return ch->bytes; } static int dspmem_chunk_write(struct dspmem_chunk *ch, int nbits, uint32_t val) { int nwrite, i; nwrite = min(24 - ch->cachebits, nbits); ch->cache <<= nwrite; ch->cache |= val >> (nbits - nwrite); ch->cachebits += nwrite; nbits -= nwrite; if (ch->cachebits == 24) { if (dspmem_chunk_end(ch)) return -ENOSPC; ch->cache &= 0xFFFFFF; for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= 8) *ch->current++ = (ch->cache & 0xFF000000) >> 24; ch->bytes += sizeof(ch->cache); ch->cachebits = 0; } if (nbits) return dspmem_chunk_write(ch, nbits, val); return 0; } static int dspmem_chunk_flush(struct dspmem_chunk *ch) { if (!ch->cachebits) return 0; return dspmem_chunk_write(ch, 24 - ch->cachebits, 0); } Vibrator::Vibrator(std::unique_ptr hwapi, std::unique_ptr hwcal) : mHwApi(std::move(hwapi)), mHwCal(std::move(hwcal)), mAsyncHandle(std::async([] {})) { int32_t longFrequencyShift; std::string caldata{8, '0'}; uint32_t calVer; const char *inputEventName = std::getenv("INPUT_EVENT_NAME"); const char *inputEventPathName = std::getenv("INPUT_EVENT_PATH"); if ((strstr(inputEventName, "cs40l26") != nullptr) || (strstr(inputEventName, "cs40l26_dual_input") != nullptr)) { glob_t inputEventPaths; int fd = -1; int ret; uint32_t val = 0; char str[20] = {0x00}; for (uint8_t retry = 0; retry < 10; retry++) { ret = glob(inputEventPathName, 0, nullptr, &inputEventPaths); if (ret) { ALOGE("Fail to get input event paths (%d): %s", errno, strerror(errno)); } else { for (int i = 0; i < inputEventPaths.gl_pathc; i++) { fd = TEMP_FAILURE_RETRY(open(inputEventPaths.gl_pathv[i], O_RDWR)); if (fd > 0) { if (ioctl(fd, EVIOCGBIT(0, sizeof(val)), &val) > 0 && (val & (1 << EV_FF)) && ioctl(fd, EVIOCGNAME(sizeof(str)), &str) > 0 && strstr(str, inputEventName) != nullptr) { mInputFd.reset(fd); ALOGI("Control %s through %s", inputEventName, inputEventPaths.gl_pathv[i]); break; } close(fd); } } } if (ret == 0) { globfree(&inputEventPaths); } if (mInputFd.ok()) { break; } sleep(1); ALOGW("Retry #%d to search in %zu input devices.", retry, inputEventPaths.gl_pathc); } if (!mInputFd.ok()) { ALOGE("Fail to get an input event with name %s", inputEventName); } } else { ALOGE("The input name %s is not cs40l26_input or cs40l26_dual_input", inputEventName); } mFfEffects.resize(WAVEFORM_MAX_INDEX); mEffectDurations.resize(WAVEFORM_MAX_INDEX); mEffectDurations = { 1000, 100, 30, 1000, 300, 130, 150, 500, 100, 15, 20, 1000, 1000, 1000, }; /* 11+3 waveforms. The duration must < UINT16_MAX */ uint8_t effectIndex; for (effectIndex = 0; effectIndex < WAVEFORM_MAX_INDEX; effectIndex++) { if (effectIndex < WAVEFORM_MAX_PHYSICAL_INDEX) { /* Initialize physical waveforms. */ mFfEffects[effectIndex] = { .type = FF_PERIODIC, .id = -1, .replay.length = static_cast(mEffectDurations[effectIndex]), .u.periodic.waveform = FF_CUSTOM, .u.periodic.custom_data = new int16_t[2]{RAM_WVFRM_BANK, effectIndex}, .u.periodic.custom_len = FF_CUSTOM_DATA_LEN, }; // Bypass the waveform update due to different input name if ((strstr(inputEventName, "cs40l26") != nullptr) || (strstr(inputEventName, "cs40l26_dual_input") != nullptr)) { if (!mHwApi->setFFEffect( mInputFd, &mFfEffects[effectIndex], static_cast(mFfEffects[effectIndex].replay.length))) { ALOGE("Failed upload effect %d (%d): %s", effectIndex, errno, strerror(errno)); } } if (mFfEffects[effectIndex].id != effectIndex) { ALOGW("Unexpected effect index: %d -> %d", effectIndex, mFfEffects[effectIndex].id); } } else { /* Initiate placeholders for OWT effects. */ mFfEffects[effectIndex] = { .type = FF_PERIODIC, .id = -1, .replay.length = 0, .u.periodic.waveform = FF_CUSTOM, .u.periodic.custom_data = nullptr, .u.periodic.custom_len = 0, }; } } if (mHwCal->getF0(&caldata)) { mHwApi->setF0(caldata); } if (mHwCal->getRedc(&caldata)) { mHwApi->setRedc(caldata); } if (mHwCal->getQ(&caldata)) { mHwApi->setQ(caldata); } mHwCal->getLongFrequencyShift(&longFrequencyShift); if (longFrequencyShift > 0) { mF0Offset = longFrequencyShift * std::pow(2, 14); } else if (longFrequencyShift < 0) { mF0Offset = std::pow(2, 24) - std::abs(longFrequencyShift) * std::pow(2, 14); } else { mF0Offset = 0; } mHwCal->getVersion(&calVer); if (calVer == 2) { mHwCal->getTickVolLevels(&mTickEffectVol); mHwCal->getClickVolLevels(&mClickEffectVol); mHwCal->getLongVolLevels(&mLongEffectVol); } else { ALOGD("Unsupported calibration version: %u!", calVer); } mHwApi->setF0CompEnable(mHwCal->isF0CompEnabled()); mHwApi->setRedcCompEnable(mHwCal->isRedcCompEnabled()); mIsUnderExternalControl = false; mIsChirpEnabled = mHwCal->isChirpEnabled(); mHwCal->getSupportedPrimitives(&mSupportedPrimitivesBits); if (mSupportedPrimitivesBits > 0) { for (auto e : defaultSupportedPrimitives) { if (mSupportedPrimitivesBits & (1 << uint32_t(e))) { mSupportedPrimitives.emplace_back(e); } } } else { for (auto e : defaultSupportedPrimitives) { mSupportedPrimitivesBits |= (1 << uint32_t(e)); } mSupportedPrimitives = defaultSupportedPrimitives; } mHwApi->setMinOnOffInterval(MIN_ON_OFF_INTERVAL_US); if (mAdaptiveHapticsEnable) { vibeContextListener = CapoDetector::start(); if (vibeContextListener == nullptr) { ALOGE("%s, CapoDetector failed to start", __func__); } else { ALOGD("%s, CapoDetector started successfully! NanoAppID: 0x%x", __func__, (uint32_t)vibeContextListener->getNanoppAppId()); vibeContextListener->setCallback(capoEventCallback); ALOGD("%s, CapoDetector Set Callback function from vibe", __func__); } } } ndk::ScopedAStatus Vibrator::getCapabilities(int32_t *_aidl_return) { ATRACE_NAME("Vibrator::getCapabilities"); int32_t ret = IVibrator::CAP_ON_CALLBACK | IVibrator::CAP_PERFORM_CALLBACK | IVibrator::CAP_AMPLITUDE_CONTROL | IVibrator::CAP_GET_RESONANT_FREQUENCY | IVibrator::CAP_GET_Q_FACTOR; if (hasHapticAlsaDevice()) { ret |= IVibrator::CAP_EXTERNAL_CONTROL; } else { ALOGE("No haptics ALSA device"); } if (mHwApi->hasOwtFreeSpace()) { ret |= IVibrator::CAP_COMPOSE_EFFECTS; if (mIsChirpEnabled) { ret |= IVibrator::CAP_FREQUENCY_CONTROL | IVibrator::CAP_COMPOSE_PWLE_EFFECTS; } } *_aidl_return = ret; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::off() { ATRACE_NAME("Vibrator::off"); bool ret{true}; const std::scoped_lock lock(mActiveId_mutex); if (mActiveId >= 0) { /* Stop the active effect. */ if (!mHwApi->setFFPlay(mInputFd, mActiveId, false)) { ALOGE("Failed to stop effect %d (%d): %s", mActiveId, errno, strerror(errno)); ret = false; } if ((mActiveId >= WAVEFORM_MAX_PHYSICAL_INDEX) && (!mHwApi->eraseOwtEffect(mInputFd, mActiveId, &mFfEffects))) { ALOGE("Failed to clean up the composed effect %d", mActiveId); ret = false; } } else { ALOGV("Vibrator is already off"); } mActiveId = -1; setGlobalAmplitude(false); if (mF0Offset) { mHwApi->setF0Offset(0); } if (ret) { return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } } ndk::ScopedAStatus Vibrator::on(int32_t timeoutMs, const std::shared_ptr &callback) { ATRACE_NAME("Vibrator::on"); if (timeoutMs > MAX_TIME_MS) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } const uint16_t index = (timeoutMs < WAVEFORM_LONG_VIBRATION_THRESHOLD_MS) ? WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX : WAVEFORM_LONG_VIBRATION_EFFECT_INDEX; if (MAX_COLD_START_LATENCY_MS <= MAX_TIME_MS - timeoutMs) { timeoutMs += MAX_COLD_START_LATENCY_MS; } setGlobalAmplitude(true); if (mF0Offset) { mHwApi->setF0Offset(mF0Offset); } return on(timeoutMs, index, nullptr /*ignored*/, callback); } ndk::ScopedAStatus Vibrator::perform(Effect effect, EffectStrength strength, const std::shared_ptr &callback, int32_t *_aidl_return) { ATRACE_NAME("Vibrator::perform"); return performEffect(effect, strength, callback, _aidl_return); } ndk::ScopedAStatus Vibrator::getSupportedEffects(std::vector *_aidl_return) { *_aidl_return = {Effect::TEXTURE_TICK, Effect::TICK, Effect::CLICK, Effect::HEAVY_CLICK, Effect::DOUBLE_CLICK}; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::setAmplitude(float amplitude) { ATRACE_NAME("Vibrator::setAmplitude"); if (amplitude <= 0.0f || amplitude > 1.0f) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } mLongEffectScale = amplitude; if (!isUnderExternalControl()) { return setGlobalAmplitude(true); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } ndk::ScopedAStatus Vibrator::setExternalControl(bool enabled) { ATRACE_NAME("Vibrator::setExternalControl"); setGlobalAmplitude(enabled); if (mHasHapticAlsaDevice || mConfigHapticAlsaDeviceDone || hasHapticAlsaDevice()) { if (!mHwApi->setHapticPcmAmp(&mHapticPcm, enabled, mCard, mDevice)) { ALOGE("Failed to %s haptic pcm device: %d", (enabled ? "enable" : "disable"), mDevice); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } } else { ALOGE("No haptics ALSA device"); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } mIsUnderExternalControl = enabled; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getCompositionDelayMax(int32_t *maxDelayMs) { ATRACE_NAME("Vibrator::getCompositionDelayMax"); *maxDelayMs = COMPOSE_DELAY_MAX_MS; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getCompositionSizeMax(int32_t *maxSize) { ATRACE_NAME("Vibrator::getCompositionSizeMax"); *maxSize = COMPOSE_SIZE_MAX; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getSupportedPrimitives(std::vector *supported) { *supported = mSupportedPrimitives; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getPrimitiveDuration(CompositePrimitive primitive, int32_t *durationMs) { ndk::ScopedAStatus status; uint32_t effectIndex; if (primitive != CompositePrimitive::NOOP) { status = getPrimitiveDetails(primitive, &effectIndex); if (!status.isOk()) { return status; } *durationMs = mEffectDurations[effectIndex]; } else { *durationMs = 0; } return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::compose(const std::vector &composite, const std::shared_ptr &callback) { ATRACE_NAME("Vibrator::compose"); uint16_t size; uint16_t nextEffectDelay; auto ch = dspmem_chunk_create(new uint8_t[FF_CUSTOM_DATA_LEN_MAX_COMP]{0x00}, FF_CUSTOM_DATA_LEN_MAX_COMP); if (composite.size() > COMPOSE_SIZE_MAX || composite.empty()) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } /* Check if there is a wait before the first effect. */ nextEffectDelay = composite.front().delayMs; if (nextEffectDelay > COMPOSE_DELAY_MAX_MS || nextEffectDelay < 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } else if (nextEffectDelay > 0) { size = composite.size() + 1; } else { size = composite.size(); } dspmem_chunk_write(ch, 8, 0); /* Padding */ dspmem_chunk_write(ch, 8, (uint8_t)(0xFF & size)); /* nsections */ dspmem_chunk_write(ch, 8, 0); /* repeat */ uint8_t header_count = dspmem_chunk_bytes(ch); /* Insert 1 section for a wait before the first effect. */ if (nextEffectDelay) { dspmem_chunk_write(ch, 32, 0); /* amplitude, index, repeat & flags */ dspmem_chunk_write(ch, 16, (uint16_t)(0xFFFF & nextEffectDelay)); /* delay */ } for (uint32_t i_curr = 0, i_next = 1; i_curr < composite.size(); i_curr++, i_next++) { auto &e_curr = composite[i_curr]; uint32_t effectIndex = 0; uint32_t effectVolLevel = 0; if (e_curr.scale < 0.0f || e_curr.scale > 1.0f) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (e_curr.primitive != CompositePrimitive::NOOP) { ndk::ScopedAStatus status; status = getPrimitiveDetails(e_curr.primitive, &effectIndex); if (!status.isOk()) { return status; } effectVolLevel = intensityToVolLevel(e_curr.scale, effectIndex); } /* Fetch the next composite effect delay and fill into the current section */ nextEffectDelay = 0; if (i_next < composite.size()) { auto &e_next = composite[i_next]; int32_t delay = e_next.delayMs; if (delay > COMPOSE_DELAY_MAX_MS || delay < 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } nextEffectDelay = delay; } if (effectIndex == 0 && nextEffectDelay == 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } dspmem_chunk_write(ch, 8, (uint8_t)(0xFF & effectVolLevel)); /* amplitude */ dspmem_chunk_write(ch, 8, (uint8_t)(0xFF & effectIndex)); /* index */ dspmem_chunk_write(ch, 8, 0); /* repeat */ dspmem_chunk_write(ch, 8, 0); /* flags */ dspmem_chunk_write(ch, 16, (uint16_t)(0xFFFF & nextEffectDelay)); /* delay */ } dspmem_chunk_flush(ch); if (header_count == dspmem_chunk_bytes(ch)) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } else { return performEffect(WAVEFORM_MAX_INDEX /*ignored*/, VOLTAGE_SCALE_MAX /*ignored*/, ch, callback); } } ndk::ScopedAStatus Vibrator::on(uint32_t timeoutMs, uint32_t effectIndex, dspmem_chunk *ch, const std::shared_ptr &callback) { ndk::ScopedAStatus status = ndk::ScopedAStatus::ok(); if (effectIndex >= FF_MAX_EFFECTS) { ALOGE("Invalid waveform index %d", effectIndex); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (mAsyncHandle.wait_for(ASYNC_COMPLETION_TIMEOUT) != std::future_status::ready) { ALOGE("Previous vibration pending: prev: %d, curr: %d", mActiveId, effectIndex); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } if (ch) { /* Upload OWT effect. */ if (ch->head == nullptr) { ALOGE("Invalid OWT bank"); delete ch; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } bool isPwle = (*reinterpret_cast(ch->head) != 0x0000); effectIndex = isPwle ? WAVEFORM_PWLE : WAVEFORM_COMPOSE; uint32_t freeBytes; mHwApi->getOwtFreeSpace(&freeBytes); if (dspmem_chunk_bytes(ch) > freeBytes) { ALOGE("Invalid OWT length: Effect %d: %d > %d!", effectIndex, dspmem_chunk_bytes(ch), freeBytes); delete ch; return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } int errorStatus; if (!mHwApi->uploadOwtEffect(mInputFd, ch->head, dspmem_chunk_bytes(ch), &mFfEffects[effectIndex], &effectIndex, &errorStatus)) { delete ch; ALOGE("Invalid uploadOwtEffect"); return ndk::ScopedAStatus::fromExceptionCode(errorStatus); } delete ch; } else if (effectIndex == WAVEFORM_SHORT_VIBRATION_EFFECT_INDEX || effectIndex == WAVEFORM_LONG_VIBRATION_EFFECT_INDEX) { /* Update duration for long/short vibration. */ mFfEffects[effectIndex].replay.length = static_cast(timeoutMs); if (!mHwApi->setFFEffect(mInputFd, &mFfEffects[effectIndex], static_cast(timeoutMs))) { ALOGE("Failed to edit effect %d (%d): %s", effectIndex, errno, strerror(errno)); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } } const std::scoped_lock lock(mActiveId_mutex); mActiveId = effectIndex; /* Play the event now. */ if (!mHwApi->setFFPlay(mInputFd, effectIndex, true)) { ALOGE("Failed to play effect %d (%d): %s", effectIndex, errno, strerror(errno)); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } mAsyncHandle = std::async(&Vibrator::waitForComplete, this, callback); return ndk::ScopedAStatus::ok(); } uint16_t Vibrator::amplitudeToScale(float amplitude, float maximum, bool scalable) { float ratio = 100; /* Unit: % */ if (maximum != 0) ratio = amplitude / maximum * 100; if (maximum == 0 || ratio > 100) ratio = 100; if (scalable && mContextEnable & mAdaptiveHapticsEnable) { uint32_t now = getCurrentTimeInMs(); uint32_t last_played = mLastEffectPlayedTime; float context_scale = 1.0; bool device_face_up = getDeviceState() == capo::PositionType::ON_TABLE_FACE_UP; float pre_scaled_ratio = ratio; mLastEffectPlayedTime = now; ALOGD("Vibrator Now: %u, Last: %u, ScaleTime: %u, Since? %d", now, mLastFaceUpEvent, mScaleTime, (now < mLastFaceUpEvent + mScaleTime)); /* If the device is face-up or within the fade scaling range, find new scaling factor */ if (device_face_up || now < mLastFaceUpEvent + mScaleTime) { /* Device is face-up, so we will scale it down. Start with highest scaling factor */ context_scale = mScalingFactor <= 100 ? static_cast(mScalingFactor)/100 : 1.0; if (mFadeEnable && mScaleTime > 0 && (context_scale < 1.0) && (now < mLastFaceUpEvent + mScaleTime) && !device_face_up) { float fade_scale = static_cast(now - mLastFaceUpEvent)/static_cast(mScaleTime); context_scale += ((1.0 - context_scale)*fade_scale); ALOGD("Vibrator fade scale applied: %f", fade_scale); } ratio *= context_scale; ALOGD("Vibrator adjusting for face-up: pre: %f, post: %f", std::round(pre_scaled_ratio), std::round(ratio)); } /* If we haven't played an effect within the cooldown time, save the scaling factor */ if ((now - last_played) > mScaleCooldown) { ALOGD("Vibrator updating lastplayed scale, old: %f, new: %f", mLastPlayedScale, context_scale); mLastPlayedScale = context_scale; } else { /* Override the scale to match previously played scale */ ratio = mLastPlayedScale * pre_scaled_ratio; ALOGD("Vibrator repeating last scale: %f, new ratio: %f, duration since last: %u", mLastPlayedScale, ratio, (now - last_played)); } } return std::round(ratio); } void Vibrator::updateContext() { mContextEnable = mHwApi->getContextEnable(); mFadeEnable = mHwApi->getContextFadeEnable(); mScalingFactor = mHwApi->getContextScale(); mScaleTime = mHwApi->getContextSettlingTime(); mScaleCooldown = mHwApi->getContextCooldownTime(); } ndk::ScopedAStatus Vibrator::setEffectAmplitude(float amplitude, float maximum, bool scalable) { uint16_t scale; if (mAdaptiveHapticsEnable && scalable) { updateContext(); } scale = amplitudeToScale(amplitude, maximum, scalable); if (!mHwApi->setFFGain(mInputFd, scale)) { ALOGE("Failed to set the gain to %u (%d): %s", scale, errno, strerror(errno)); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::setGlobalAmplitude(bool set) { uint8_t amplitude = set ? roundf(mLongEffectScale * mLongEffectVol[1]) : VOLTAGE_SCALE_MAX; if (!set) { mLongEffectScale = 1.0; // Reset the scale for the later new effect. } return setEffectAmplitude(amplitude, VOLTAGE_SCALE_MAX, true); } ndk::ScopedAStatus Vibrator::getSupportedAlwaysOnEffects(std::vector * /*_aidl_return*/) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus Vibrator::alwaysOnEnable(int32_t /*id*/, Effect /*effect*/, EffectStrength /*strength*/) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus Vibrator::alwaysOnDisable(int32_t /*id*/) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } ndk::ScopedAStatus Vibrator::getResonantFrequency(float *resonantFreqHz) { std::string caldata{8, '0'}; if (!mHwCal->getF0(&caldata)) { ALOGE("Failed to get resonant frequency (%d): %s", errno, strerror(errno)); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } *resonantFreqHz = static_cast(std::stoul(caldata, nullptr, 16)) / (1 << Q14_BIT_SHIFT); return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getQFactor(float *qFactor) { std::string caldata{8, '0'}; if (!mHwCal->getQ(&caldata)) { ALOGE("Failed to get q factor (%d): %s", errno, strerror(errno)); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_STATE); } *qFactor = static_cast(std::stoul(caldata, nullptr, 16)) / (1 << Q16_BIT_SHIFT); return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getFrequencyResolution(float *freqResolutionHz) { int32_t capabilities; Vibrator::getCapabilities(&capabilities); if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) { *freqResolutionHz = PWLE_FREQUENCY_RESOLUTION_HZ; return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } ndk::ScopedAStatus Vibrator::getFrequencyMinimum(float *freqMinimumHz) { int32_t capabilities; Vibrator::getCapabilities(&capabilities); if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) { *freqMinimumHz = PWLE_FREQUENCY_MIN_HZ; return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } ndk::ScopedAStatus Vibrator::getBandwidthAmplitudeMap(std::vector *_aidl_return) { // TODO(b/170919640): complete implementation int32_t capabilities; Vibrator::getCapabilities(&capabilities); if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) { std::vector bandwidthAmplitudeMap(PWLE_BW_MAP_SIZE, 1.0); *_aidl_return = bandwidthAmplitudeMap; return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } ndk::ScopedAStatus Vibrator::getPwlePrimitiveDurationMax(int32_t *durationMs) { int32_t capabilities; Vibrator::getCapabilities(&capabilities); if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) { *durationMs = COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS; return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } ndk::ScopedAStatus Vibrator::getPwleCompositionSizeMax(int32_t *maxSize) { int32_t capabilities; Vibrator::getCapabilities(&capabilities); if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) { *maxSize = COMPOSE_PWLE_SIZE_MAX_DEFAULT; return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } ndk::ScopedAStatus Vibrator::getSupportedBraking(std::vector *supported) { int32_t capabilities; Vibrator::getCapabilities(&capabilities); if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) { *supported = { Braking::NONE, }; return ndk::ScopedAStatus::ok(); } else { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } } static void resetPreviousEndAmplitudeEndFrequency(float *prevEndAmplitude, float *prevEndFrequency) { const float reset = -1.0; *prevEndAmplitude = reset; *prevEndFrequency = reset; } static void incrementIndex(int *index) { *index += 1; } static void constructPwleSegment(dspmem_chunk *ch, uint16_t delay, uint16_t amplitude, uint16_t frequency, uint8_t flags, uint32_t vbemfTarget = 0) { dspmem_chunk_write(ch, 16, delay); dspmem_chunk_write(ch, 12, amplitude); dspmem_chunk_write(ch, 12, frequency); /* feature flags to control the chirp, CLAB braking, back EMF amplitude regulation */ dspmem_chunk_write(ch, 8, (flags | 1) << 4); if (flags & PWLE_AMP_REG_BIT) { dspmem_chunk_write(ch, 24, vbemfTarget); /* target back EMF voltage */ } } static int constructActiveSegment(dspmem_chunk *ch, int duration, float amplitude, float frequency, bool chirp) { uint16_t delay = 0; uint16_t amp = 0; uint16_t freq = 0; uint8_t flags = 0x0; if ((floatToUint16(duration, &delay, 4, 0.0f, COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) < 0) || (floatToUint16(amplitude, &, 2048, CS40L26_PWLE_LEVEL_MIX, CS40L26_PWLE_LEVEL_MAX) < 0) || (floatToUint16(frequency, &freq, 4, PWLE_FREQUENCY_MIN_HZ, PWLE_FREQUENCY_MAX_HZ) < 0)) { ALOGE("Invalid argument: %d, %f, %f", duration, amplitude, frequency); return -ERANGE; } if (chirp) { flags |= PWLE_CHIRP_BIT; } constructPwleSegment(ch, delay, amp, freq, flags, 0 /*ignored*/); return 0; } static int constructBrakingSegment(dspmem_chunk *ch, int duration, Braking brakingType) { uint16_t delay = 0; uint16_t freq = 0; uint8_t flags = 0x00; if (floatToUint16(duration, &delay, 4, 0.0f, COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) < 0) { ALOGE("Invalid argument: %d", duration); return -ERANGE; } floatToUint16(PWLE_FREQUENCY_MIN_HZ, &freq, 4, PWLE_FREQUENCY_MIN_HZ, PWLE_FREQUENCY_MAX_HZ); if (static_cast::type>(brakingType)) { flags |= PWLE_BRAKE_BIT; } constructPwleSegment(ch, delay, 0 /*ignored*/, freq, flags, 0 /*ignored*/); return 0; } static void updateWLength(dspmem_chunk *ch, uint32_t totalDuration) { totalDuration *= 8; /* Unit: 0.125 ms (since wlength played @ 8kHz). */ totalDuration |= WT_LEN_CALCD; /* Bit 23 is for WT_LEN_CALCD; Bit 22 is for WT_INDEFINITE. */ *(ch->head + 0) = (totalDuration >> 24) & 0xFF; *(ch->head + 1) = (totalDuration >> 16) & 0xFF; *(ch->head + 2) = (totalDuration >> 8) & 0xFF; *(ch->head + 3) = totalDuration & 0xFF; } static void updateNSection(dspmem_chunk *ch, int segmentIdx) { *(ch->head + 7) |= (0xF0 & segmentIdx) >> 4; /* Bit 4 to 7 */ *(ch->head + 9) |= (0x0F & segmentIdx) << 4; /* Bit 3 to 0 */ } ndk::ScopedAStatus Vibrator::composePwle(const std::vector &composite, const std::shared_ptr &callback) { ATRACE_NAME("Vibrator::composePwle"); int32_t capabilities; Vibrator::getCapabilities(&capabilities); if ((capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) == 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } if (composite.empty() || composite.size() > COMPOSE_PWLE_SIZE_MAX_DEFAULT) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } std::vector supported; Vibrator::getSupportedBraking(&supported); bool isClabSupported = std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end(); int segmentIdx = 0; uint32_t totalDuration = 0; float prevEndAmplitude; float prevEndFrequency; resetPreviousEndAmplitudeEndFrequency(&prevEndAmplitude, &prevEndFrequency); auto ch = dspmem_chunk_create(new uint8_t[FF_CUSTOM_DATA_LEN_MAX_PWLE]{0x00}, FF_CUSTOM_DATA_LEN_MAX_PWLE); bool chirp = false; dspmem_chunk_write(ch, 24, 0x000000); /* Waveform length placeholder */ dspmem_chunk_write(ch, 8, 0); /* Repeat */ dspmem_chunk_write(ch, 12, 0); /* Wait time between repeats */ dspmem_chunk_write(ch, 8, 0x00); /* nsections placeholder */ for (auto &e : composite) { switch (e.getTag()) { case PrimitivePwle::active: { auto active = e.get(); if (active.duration < 0 || active.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (active.startAmplitude < PWLE_LEVEL_MIN || active.startAmplitude > PWLE_LEVEL_MAX || active.endAmplitude < PWLE_LEVEL_MIN || active.endAmplitude > PWLE_LEVEL_MAX) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (active.startAmplitude > CS40L26_PWLE_LEVEL_MAX) { active.startAmplitude = CS40L26_PWLE_LEVEL_MAX; } if (active.endAmplitude > CS40L26_PWLE_LEVEL_MAX) { active.endAmplitude = CS40L26_PWLE_LEVEL_MAX; } if (active.startFrequency < PWLE_FREQUENCY_MIN_HZ || active.startFrequency > PWLE_FREQUENCY_MAX_HZ || active.endFrequency < PWLE_FREQUENCY_MIN_HZ || active.endFrequency > PWLE_FREQUENCY_MAX_HZ) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (!((active.startAmplitude == prevEndAmplitude) && (active.startFrequency == prevEndFrequency))) { if (constructActiveSegment(ch, 0, active.startAmplitude, active.startFrequency, false) < 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } incrementIndex(&segmentIdx); } if (active.startFrequency != active.endFrequency) { chirp = true; } if (constructActiveSegment(ch, active.duration, active.endAmplitude, active.endFrequency, chirp) < 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } incrementIndex(&segmentIdx); prevEndAmplitude = active.endAmplitude; prevEndFrequency = active.endFrequency; totalDuration += active.duration; chirp = false; break; } case PrimitivePwle::braking: { auto braking = e.get(); if (braking.braking > Braking::CLAB) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } else if (!isClabSupported && (braking.braking == Braking::CLAB)) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (braking.duration > COMPOSE_PWLE_PRIMITIVE_DURATION_MAX_MS) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } if (constructBrakingSegment(ch, 0, braking.braking) < 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } incrementIndex(&segmentIdx); if (constructBrakingSegment(ch, braking.duration, braking.braking) < 0) { return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } incrementIndex(&segmentIdx); resetPreviousEndAmplitudeEndFrequency(&prevEndAmplitude, &prevEndFrequency); totalDuration += braking.duration; break; } } if (segmentIdx > COMPOSE_PWLE_SIZE_MAX_DEFAULT) { ALOGE("Too many PrimitivePwle section!"); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } } dspmem_chunk_flush(ch); /* Update wlength */ totalDuration += MAX_COLD_START_LATENCY_MS; if (totalDuration > 0x7FFFF) { ALOGE("Total duration is too long (%d)!", totalDuration); return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); } updateWLength(ch, totalDuration); /* Update nsections */ updateNSection(ch, segmentIdx); return performEffect(WAVEFORM_MAX_INDEX /*ignored*/, VOLTAGE_SCALE_MAX /*ignored*/, ch, callback); } bool Vibrator::isUnderExternalControl() { return mIsUnderExternalControl; } binder_status_t Vibrator::dump(int fd, const char **args, uint32_t numArgs) { if (fd < 0) { ALOGE("Called debug() with invalid fd."); return STATUS_OK; } (void)args; (void)numArgs; dprintf(fd, "AIDL:\n"); dprintf(fd, " F0 Offset: %" PRIu32 "\n", mF0Offset); dprintf(fd, " Voltage Levels:\n"); dprintf(fd, " Tick Effect Min: %" PRIu32 " Max: %" PRIu32 "\n", mTickEffectVol[0], mTickEffectVol[1]); dprintf(fd, " Click Effect Min: %" PRIu32 " Max: %" PRIu32 "\n", mClickEffectVol[0], mClickEffectVol[1]); dprintf(fd, " Long Effect Min: %" PRIu32 " Max: %" PRIu32 "\n", mLongEffectVol[0], mLongEffectVol[1]); dprintf(fd, " FF effect:\n"); dprintf(fd, " Physical waveform:\n"); dprintf(fd, "\tId\tIndex\tt ->\tt'\n"); for (uint8_t effectId = 0; effectId < WAVEFORM_MAX_PHYSICAL_INDEX; effectId++) { dprintf(fd, "\t%d\t%d\t%d\t%d\n", mFfEffects[effectId].id, mFfEffects[effectId].u.periodic.custom_data[1], mEffectDurations[effectId], mFfEffects[effectId].replay.length); } dprintf(fd, " OWT waveform:\n"); dprintf(fd, "\tId\tBytes\tData\n"); for (uint8_t effectId = WAVEFORM_MAX_PHYSICAL_INDEX; effectId < WAVEFORM_MAX_INDEX; effectId++) { uint32_t numBytes = mFfEffects[effectId].u.periodic.custom_len * 2; std::stringstream ss; ss << " "; for (int i = 0; i < numBytes; i++) { ss << std::uppercase << std::setfill('0') << std::setw(2) << std::hex << (uint16_t)(*( reinterpret_cast(mFfEffects[effectId].u.periodic.custom_data) + i)) << " "; } dprintf(fd, "\t%d\t%d\t{%s}\n", mFfEffects[effectId].id, numBytes, ss.str().c_str()); } dprintf(fd, "\n"); dprintf(fd, "\n"); mHwApi->debug(fd); dprintf(fd, "\n"); mHwCal->debug(fd); dprintf(fd, "Capo Info\n"); if (vibeContextListener) { dprintf(fd, "Capo ID: 0x%x\n", (uint32_t)(vibeContextListener->getNanoppAppId())); dprintf(fd, "Capo State: %d DetectedState: %d\n", vibeContextListener->getCarriedPosition(), getDeviceState()); } else { dprintf(fd, "Capo ID: 0x%x\n", (uint32_t)(0xdeadbeef)); dprintf(fd, "Capo State: %d DetectedState: %d\n", (uint32_t)0x454545, getDeviceState()); } fsync(fd); return STATUS_OK; } bool Vibrator::hasHapticAlsaDevice() { // We need to call findHapticAlsaDevice once only. Calling in the // constructor is too early in the boot process and the pcm file contents // are empty. Hence we make the call here once only right before we need to. if (!mConfigHapticAlsaDeviceDone) { if (mHwApi->getHapticAlsaDevice(&mCard, &mDevice)) { mHasHapticAlsaDevice = true; mConfigHapticAlsaDeviceDone = true; } else { ALOGE("Haptic ALSA device not supported"); } } else { ALOGD("Haptic ALSA device configuration done."); } return mHasHapticAlsaDevice; } ndk::ScopedAStatus Vibrator::getSimpleDetails(Effect effect, EffectStrength strength, uint32_t *outEffectIndex, uint32_t *outTimeMs, uint32_t *outVolLevel) { uint32_t effectIndex; uint32_t timeMs; float intensity; uint32_t volLevel; switch (strength) { case EffectStrength::LIGHT: intensity = 0.5f; break; case EffectStrength::MEDIUM: intensity = 0.7f; break; case EffectStrength::STRONG: intensity = 1.0f; break; default: return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } switch (effect) { case Effect::TEXTURE_TICK: effectIndex = WAVEFORM_LIGHT_TICK_INDEX; intensity *= 0.5f; break; case Effect::TICK: effectIndex = WAVEFORM_CLICK_INDEX; intensity *= 0.5f; break; case Effect::CLICK: effectIndex = WAVEFORM_CLICK_INDEX; intensity *= 0.7f; break; case Effect::HEAVY_CLICK: effectIndex = WAVEFORM_CLICK_INDEX; intensity *= 1.0f; break; default: return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } volLevel = intensityToVolLevel(intensity, effectIndex); timeMs = mEffectDurations[effectIndex] + MAX_COLD_START_LATENCY_MS; *outEffectIndex = effectIndex; *outTimeMs = timeMs; *outVolLevel = volLevel; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getCompoundDetails(Effect effect, EffectStrength strength, uint32_t *outTimeMs, dspmem_chunk *outCh) { ndk::ScopedAStatus status; uint32_t timeMs = 0; uint32_t thisEffectIndex; uint32_t thisTimeMs; uint32_t thisVolLevel; switch (effect) { case Effect::DOUBLE_CLICK: dspmem_chunk_write(outCh, 8, 0); /* Padding */ dspmem_chunk_write(outCh, 8, 2); /* nsections */ dspmem_chunk_write(outCh, 8, 0); /* repeat */ status = getSimpleDetails(Effect::CLICK, strength, &thisEffectIndex, &thisTimeMs, &thisVolLevel); if (!status.isOk()) { return status; } timeMs += thisTimeMs; dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisVolLevel)); /* amplitude */ dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisEffectIndex)); /* index */ dspmem_chunk_write(outCh, 8, 0); /* repeat */ dspmem_chunk_write(outCh, 8, 0); /* flags */ dspmem_chunk_write(outCh, 16, (uint16_t)(0xFFFF & WAVEFORM_DOUBLE_CLICK_SILENCE_MS)); /* delay */ timeMs += WAVEFORM_DOUBLE_CLICK_SILENCE_MS + MAX_PAUSE_TIMING_ERROR_MS; status = getSimpleDetails(Effect::HEAVY_CLICK, strength, &thisEffectIndex, &thisTimeMs, &thisVolLevel); if (!status.isOk()) { return status; } timeMs += thisTimeMs; dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisVolLevel)); /* amplitude */ dspmem_chunk_write(outCh, 8, (uint8_t)(0xFF & thisEffectIndex)); /* index */ dspmem_chunk_write(outCh, 8, 0); /* repeat */ dspmem_chunk_write(outCh, 8, 0); /* flags */ dspmem_chunk_write(outCh, 16, 0); /* delay */ dspmem_chunk_flush(outCh); break; default: return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } *outTimeMs = timeMs; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::getPrimitiveDetails(CompositePrimitive primitive, uint32_t *outEffectIndex) { uint32_t effectIndex; uint32_t primitiveBit = 1 << int32_t(primitive); if ((primitiveBit & mSupportedPrimitivesBits) == 0x0) { return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } switch (primitive) { case CompositePrimitive::NOOP: return ndk::ScopedAStatus::fromExceptionCode(EX_ILLEGAL_ARGUMENT); case CompositePrimitive::CLICK: effectIndex = WAVEFORM_CLICK_INDEX; break; case CompositePrimitive::THUD: effectIndex = WAVEFORM_THUD_INDEX; break; case CompositePrimitive::SPIN: effectIndex = WAVEFORM_SPIN_INDEX; break; case CompositePrimitive::QUICK_RISE: effectIndex = WAVEFORM_QUICK_RISE_INDEX; break; case CompositePrimitive::SLOW_RISE: effectIndex = WAVEFORM_SLOW_RISE_INDEX; break; case CompositePrimitive::QUICK_FALL: effectIndex = WAVEFORM_QUICK_FALL_INDEX; break; case CompositePrimitive::LIGHT_TICK: effectIndex = WAVEFORM_LIGHT_TICK_INDEX; break; case CompositePrimitive::LOW_TICK: effectIndex = WAVEFORM_LOW_TICK_INDEX; break; default: return ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); } *outEffectIndex = effectIndex; return ndk::ScopedAStatus::ok(); } ndk::ScopedAStatus Vibrator::performEffect(Effect effect, EffectStrength strength, const std::shared_ptr &callback, int32_t *outTimeMs) { ndk::ScopedAStatus status; uint32_t effectIndex; uint32_t timeMs = 0; uint32_t volLevel; dspmem_chunk *ch = nullptr; switch (effect) { case Effect::TEXTURE_TICK: // fall-through case Effect::TICK: // fall-through case Effect::CLICK: // fall-through case Effect::HEAVY_CLICK: status = getSimpleDetails(effect, strength, &effectIndex, &timeMs, &volLevel); break; case Effect::DOUBLE_CLICK: ch = dspmem_chunk_create(new uint8_t[FF_CUSTOM_DATA_LEN_MAX_COMP]{0x00}, FF_CUSTOM_DATA_LEN_MAX_COMP); status = getCompoundDetails(effect, strength, &timeMs, ch); volLevel = VOLTAGE_SCALE_MAX; break; default: status = ndk::ScopedAStatus::fromExceptionCode(EX_UNSUPPORTED_OPERATION); break; } if (!status.isOk()) { goto exit; } status = performEffect(effectIndex, volLevel, ch, callback); exit: *outTimeMs = timeMs; return status; } ndk::ScopedAStatus Vibrator::performEffect(uint32_t effectIndex, uint32_t volLevel, dspmem_chunk *ch, const std::shared_ptr &callback) { setEffectAmplitude(volLevel, VOLTAGE_SCALE_MAX, false); return on(MAX_TIME_MS, effectIndex, ch, callback); } void Vibrator::waitForComplete(std::shared_ptr &&callback) { if (!mHwApi->pollVibeState(VIBE_STATE_HAPTIC, POLLING_TIMEOUT)) { ALOGW("Failed to get state \"Haptic\""); } mHwApi->pollVibeState(VIBE_STATE_STOPPED); const std::scoped_lock lock(mActiveId_mutex); if ((mActiveId >= WAVEFORM_MAX_PHYSICAL_INDEX) && (!mHwApi->eraseOwtEffect(mInputFd, mActiveId, &mFfEffects))) { ALOGE("Failed to clean up the composed effect %d", mActiveId); } mActiveId = -1; if (callback) { auto ret = callback->onComplete(); if (!ret.isOk()) { ALOGE("Failed completion callback: %d", ret.getExceptionCode()); } } } uint32_t Vibrator::intensityToVolLevel(float intensity, uint32_t effectIndex) { uint32_t volLevel; auto calc = [](float intst, std::array v) -> uint32_t { return std::lround(intst * (v[1] - v[0])) + v[0]; }; switch (effectIndex) { case WAVEFORM_LIGHT_TICK_INDEX: volLevel = calc(intensity, mTickEffectVol); break; case WAVEFORM_QUICK_RISE_INDEX: // fall-through case WAVEFORM_QUICK_FALL_INDEX: volLevel = calc(intensity, mLongEffectVol); break; case WAVEFORM_CLICK_INDEX: // fall-through case WAVEFORM_THUD_INDEX: // fall-through case WAVEFORM_SPIN_INDEX: // fall-through case WAVEFORM_SLOW_RISE_INDEX: // fall-through default: volLevel = calc(intensity, mClickEffectVol); break; } return volLevel; } } // namespace vibrator } // namespace hardware } // namespace android } // namespace aidl